JP2004217459A - Mold for glass-made optical element, and processing machine - Google Patents

Mold for glass-made optical element, and processing machine Download PDF

Info

Publication number
JP2004217459A
JP2004217459A JP2003005792A JP2003005792A JP2004217459A JP 2004217459 A JP2004217459 A JP 2004217459A JP 2003005792 A JP2003005792 A JP 2003005792A JP 2003005792 A JP2003005792 A JP 2003005792A JP 2004217459 A JP2004217459 A JP 2004217459A
Authority
JP
Japan
Prior art keywords
mold
die
glass
optical element
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005792A
Other languages
Japanese (ja)
Inventor
Hisashi Kinugasa
比佐志 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2003005792A priority Critical patent/JP2004217459A/en
Publication of JP2004217459A publication Critical patent/JP2004217459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved mold which is easily set and unnecessitates a posttreatment, such as centering or deburring, in economically advantageously molding a glass-made optical element. <P>SOLUTION: The mold for molding a glass-made optical element has a tubular trunk mold 6 and a pair of force plungers 7, 8 freely slidably inserted into the mold 6. A glass material heated to a specified temperature and placed between the plungers 7, 8 having been inserted in the mold 6 is press molded by causing the plungers 7, 8 to forcibly approach to each other, giving the glass-made optical element. The plungers 7, 8 are made of a material having a thermal expansion coefficient higher than that of the material of the mold 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CDドライブ、レーザ機器、カメラ、顕微鏡、望遠鏡、光ファイバー用機器等に用いられるレンズ、プリズムといったガラス製光学素子用成形型及びガラス製光学素子用加工機に係り、詳しくは、ワンモールド成形するための成形型に関するものである。
【0002】
【従来の技術】
従来、ガラスレンズは、レンズ母材を研削する工程や、磨き工程等を有した複数工程による加工方法を用いて製作されてきたが、近年の光学素子の発達からレンズの使用量が増えてきており、それに対応すべく、量産性に優れるモールディングによってレンズ成形を行う製造方法に変わりつつある。
【0003】
例えば、ガラスレンズのモールド成形は、縦断面が凸状の円柱形状を為す下押し型と、縦断面が逆凸状の円柱形状を為す上押し型と、これら上下の押し型における径の小さい本体型部分どうしに亘って外嵌自在な筒状の胴型とから成る成形型を用いるのが一般的である。すなわち、上下の押し型の間に成形ガラスを入れておき、型を高温に昇温することで成形ガラスを軟化させながら上下の押し型を互いに接近移動させることにより、短時間で効率的に所定形状にプレス形成する製法である。このようなモールド成形としては、特許文献1において示されたものが知られている。
【0004】
【特許文献1】
特開2002−220239号公報
【0005】
【発明が解決しようとする課題】
低コストで生産できる利点のあるモールド成形において、精度の高いレンズを作るには、上下の押し型と胴型との3つの型を用いて行うモールド成形では、上押し型と胴型、及び下押し型と胴型の嵌め合い隙間を如何に小さくするかがポイントである。すなわち、隙間を小さくすれば、レンズの光軸同芯度は向上し、芯出しのための後加工(研削加工)等が不要になる利点はあるが、金型どうしを嵌め合うセット作業は困難になるとともに、ガラス軟化点付近の高温下で成形(ほっとプレス)するに際しては、金型どうしの接触で傷を生じたり、噛み込んだり、或いは型の材質がSiC(シリコンカーバイト)の様な脆性材の場合には、欠けを生じるといった不都合のおそれもある。
【0006】
そこで、前述の嵌め合い隙間を大きくすると、金型どうしのセット作業、及び成形自体は容易になるが、成形されたレンズの精度(光軸のズレ)は芳しくないとともにバリが生じ易くなり、芯出しやバリ取りのための後加工が必要になる。つまり、いずれの手段を採っても一長一短があるため、現状では成形品の種類や目的を勘案して隙間の大小を設定する他なく、モールド成形には改善の余地が残されているものであった。
【0007】
本発明の目的は、ガラス製光学素子を製造するに経済的に有利なモールド成形を行うに当り、金型のセット作業が容易であり、かつ、芯出しやバリ取りといった後処理も不要となるよう、改善された成形型を実現させる点にある。
【0008】
【課題を解決するための手段】
請求項1の構成は、ガラス製光学素子用成形型において、筒状の胴型と、この胴型にスライド自在に内嵌される一対の押し型とを有し、胴型に内嵌された状態における一対の押し型どうしの強制相対接近移動により、所定の温度に加熱された状態で両押し型間に介装されたガラス素材をプレス成形してガラス製光学素子を形成するように構成するとともに、胴型の材質の熱膨張係数よりも押し型の材質の熱膨張係数を大に設定してあることを特徴とする。
【0009】
成形型の温度は、胴型に押し型を嵌め入れる金型の嵌合セット操作時は低く、加熱昇温しての成形時は高くなるが、請求項1の構成によれば、胴型の材質の熱膨張係数よりも押し型の材質の熱膨張係数を大に設定してあるから、比較的温度の低い成形型の嵌合セット操作時には胴型と押し型との隙間を大きめとして、型どうしが強く擦れ合うとか、型の角が当って欠けが出るといった不都合なく、円滑で簡単に成形型の組付けができるようになる。
【0010】
そして、ガラス素材をプレス成形すべく加熱されて比較的高温となる成形時には、外側に配置される胴型よりも、胴型に内嵌されている内側の押し型の方が大きく膨張するので、胴型と押し型との隙間が、型の嵌合セット時よりも小さくなり、軟化状態のガラス素材がプレス成形による圧力で胴型と押し型との間に入り込む現象が、従来に比べて起り難く、或いは起きないようにすることができる。これにより、バリや光軸の芯ズレが抑制又は解消して、バリ取りや光軸調整等の後加工を軽減又は不要にするといった利点を得ることも可能である。
【0011】
請求項2の構成のように、胴型の材質を熱膨張係数の小さいSiC(シリコンカーバイト)に、かつ、押し型の材質を熱膨張係数の大きいWC(タングステンカーバイト)等の超硬合金に夫々設定すれば、型材として一般的で入手し易い量産に適したものとしながら、請求項1の構成による作用効果を奏することができる。
【0012】
さらに、請求項3の構成のように、直径10mm程度の前記ガラス製光学素子を形成する場合に、胴型と押し型との隙間dを、0.011mm≦d≦0.023mmに設定すれば、詳しくは、実施形態の項において説明するが、請求項2の構成による作用効果をより確実に享受し得るようになる。
【0013】
請求項4の構成は、ガラス製光学素子用加工機において、筒状の胴型と、この胴型にスライド自在に内嵌される一対の押し型と、胴型に内嵌された状態における一対の押し型どうしを強制的に相対接近移動自在な駆動機構と、胴型に内嵌された状態における一対の押し型間に配置されたガラス素材を加熱自在な加熱手段とを有するとともに、胴型の材質の熱膨張係数よりも押し型の材質の熱膨張係数を大に設定してあることを特徴とするものである。
【0014】
請求項4の構成によれば、請求項1の構成によって規定されるガラス製光学素子用成形型を用いた加工機が構成されるものであり、胴型に押し型を嵌め入れる金型の嵌合セット操作時は低く、加熱昇温しての成形時は高くなるが、請求項1の構成によれば、胴型の材質の熱膨張係数よりも押し型の材質の熱膨張係数を大に設定してあるから、比較的温度の低い成形型の嵌合セット操作時には胴型と押し型との隙間を大きめとして、型どうしが強く擦れ合うとか、型の角が当って欠けが出るといった不都合なく、円滑で簡単に成形型の組付けができるようになる。
【0015】
そして、加熱されて比較的高温となる成形時には、外側に配置される胴型よりも、胴型に内嵌されている内側の押し型の方が大きく膨張するので、胴型と押し型との隙間が、型の嵌合セット時よりも小さくなる。故に、加圧された軟化状態のガラス素材が胴型と押し型との間に入り込む現象が、従来に比べて起こり難く或いは生じないようにすることができ、バリや光軸の芯ズレが抑制又は解消されて、バリ取りや光軸調整等の後加工が軽減又は不要となるようにしながら、光軸精度が大きく向上する等、ガラス製光学素子用加工機によって作成されるガラス製光学素子の性能アップを図ることができた。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0017】
【実施例】
図1にガラス製光学素子用加工機の一例であるガラスレンズ加工機Aが、図2にその加工機Aに用いられる成形型Sのモデル図が夫々示されている。ガラスレンズ成形装置Aは、枠体1の上段床2に成形型Sを配備し、下段床3に型駆動機構4を配備するとともに、成形型Sの温度制御や型駆動機構4の駆動制御を司る制御装置5を備えて構成されている。
【0018】
成形型Sは、中空筒状の胴型6と、この胴型6に上下スライド自在に内嵌される上押し型7と、同じく胴型6に上下スライド自在に内嵌される下押し型8とから構成されている。上押し型7は、枠体1の上部壁9に吊設固定自在に装備されており、下押し型8を型駆動機構4によって駆動昇降するよう構成するとともに、温度調節のための赤外線ランプ(加熱手段の一例)10を胴型6に内装してある。
【0019】
型駆動機構4は、駆動源としてACサーボモータ11を有するとともに、駆動上下移動自在な出力台4aに、ロードセル12を介して下押し型7を載置支持してある。上下の各押し型7,8の夫々には、ガラスレンズの成形を安定的に行える雰囲気を得るための窒素ガス(不活性ガス)の導入路13が形成されるとともに、下押し型8には、胴型6の内周壁であるチャンバ14内を真空化するための排気路15も形成されている。
【0020】
この加工機Aには(この成形型Sには)、図3に示すように、径が9.7mmで高さが6.6mmの側面視で楕円形を呈する粒状のガラス素材(プリフォーム)16を用する。このガラス素材16の特性は、L−LAM69、Tg=497℃である。このガラス素材16を図1に示す成形装置Aで成形することにより、直径10mmの凸レンズ(ガラス製光学素子)を形成することができる。
【0021】
加工機Aによる成形動作としては、まず、ガラス素材16が上下の押し型7,8間に配置されるように各型6〜8を組み込みセットし、その後、図示しない排気装置、及び排気路15を用いてチャンバ14内を真空化する。それから、赤外線ランプ10を点灯することによって成形型Sを所定の高温度に加熱し、その後に上下の導入路13から窒素ガスを、チャンバ14内にて大気圧になるまで導入し、ACサーボモータ11の駆動で下押し型8を上昇移動させて所定圧力まで加圧し、5分間保持した後冷却して成形体を取り出す、というものである。
【0022】
加工機Aの具体的な主要緒元は、成形型Sの温度500℃、プレス圧力10Mpaで成形し、5分間その状態を維持した後、冷却するというものである。また、胴型7の材料はSiC焼結体で、上下の押し型は超硬合金であるWC(タングステンカーバイト)で夫々作成されている。SiC焼結体は、純度99%のもので密度3.17グラム/立方センチメートル(g/cm3)、熱膨張係数は600℃まで平均4/1000000℃(4/百万℃)であり、一方、WCの熱膨張係数は600℃まで平均6/1000000℃(6/百万℃)である。
【0023】
上述した条件の加工機A及びガラス素材16を用いてガラスレンズを成形するにあたり、胴型6と上下押し型7,8との嵌め合い公差を種々に変更設定した場合の型セットの容易性、及び成形品状況(バリ発生の有無)をまとめた一覧表を図5に示す。図5において、D1は常温における押し型7,8の外径、D2は常温における胴型6の内径、D3は500℃における押し型7,8の外径、D4は500℃における胴型6の内径であり、胴型6の材質であるSiCの熱膨張係数を、25〜600℃の範囲では3.8〜4.2/1000000℃(3.8〜4.2/百万℃)に、押し型7,8の材質であるWCの熱膨張係数を、25〜600℃の範囲では5.8〜6.2/1000000℃(5.8〜6.2/百万℃)に夫々設定してある。
【0024】
成形によってバリが生じる概念図を図4に示してある。高温となる型成形時において押し型7,8の外径と胴型6の内径との隙間が大きいと、その隙間にガラス素材が入り込んでしまい、それがバリとなってしまうのであり、その隙間が充分に小さければガラス素材は入り込むことができず、バリの無い良好なガラスレンズを作成することができる。
【0025】
加工機Aによる型成形によって得られたガラスレンズを形状観察した結果、胴型6と押し型7,8とが同材質である場合は、常温時隙間d(D2−D1)が10μm程度で型どうしを嵌合セットする組付けがきつくなり、特に材質がSiCどうしの場合では、押し型7,8のエッジが欠け易く、組付けのためには20μm程度の常温時隙間dが必要であることが判明した。また、隙間dが9μm程度の場合でも、ガラス成形体にバリが発生しており、バリを無くすためにはさらに隙間dを小さくする必要が伺える。
【0026】
一方、胴型6の材質をSiC、かつ、押し型7,8の材質をWCとした場合には、常温時隙間d(D2−D1)が14μm程度では、500℃成形時における成形時隙間k(D4−D3)は14μmよりも小さくなって、ガラス成形体のバリは僅かに認められる程度に減少した。さらに、常温時隙間d(D2−D1)が11μm程度の場合は、成形後におけるバリは殆ど認められない状態が得られ、成形時隙間k(D4−D3)は推定で2μmに近い値にあると推察できた。
【0027】
図5に示すような種々の実験結果から、直径10mm程度のレンズ(ガラス製光学素子)を形成する場合、常温時隙間d(D2−D1)及び成形時隙間k(D4−D3)は、
Z: 0.011mm≦d(D2−D1)≦0.023mm
Y: 0.002mm≦k(D4−D3)≦0.014mm
という範囲に設定するのが良い。
【0028】
より好ましくは、
X: 0.011mm<d(D2−D1)<0.023mm
W: 0.002mm<k(D4−D3)<0.014mm
という範囲に設定するのが良い。
【0029】
すなわち、生産性に優れて低コストでガラスレンズが製作できるモールド成形を、金型の嵌合セット操作が不都合無く簡単に行えるようにしながら、高温となる成形時には胴型6と押し型7,8との隙間を殆ど0(ゼロ)に近づけることが可能となり、バリが無く、かつ、レンズとしての光軸精度も飛躍的に向上させることができる。逆に言うと、常温等の低温となる型セット時における隙間dを前式Z(又は前式X)を満たすように設定すると、高温となる成形時の隙間kが前式Y(又は前式W)を満たすような熱膨張係数を持つ材質を、胴型や押し型の材質に設定すれば良い。
【0030】
つまり、押し型7,8の材質に超硬合金(WC)を用いたことにより、SiC材質の場合より、欠けの発生が少なくなり、超硬合金(WC)の強靭性を活かすことができることも実証できた。胴型6の材質であるSiCは、WCに比べて比重が1/5と小さく、型重量が軽くなるため、型の熱容量が小さく、従って成形温度までの昇温が速いとともに、熱伝導度が2〜3倍と大きいので、金型の灼熱も速く、省エネルギーとなる利点もある。
【0031】
〔別実施形態〕
胴型6と押し型7,8との嵌合部の形状は、円形の他、三角形や四角形、多角形等も可能である。また、成形用空間として奥止まり状の穴部を有した胴型と、その穴部に内嵌自在な凸状の押し型との2個の金型で成る成形型(図示省略)にも、本発明を適用可能である。また、図5において、直径10mm程度のガラス製光学素子を形成する場合を示したが、直径10mm以外のガラス製光学素子を形成する場合にも、本発明を適用可能である。
【0032】
【発明の効果】
以上説明したように、本発明によるガラス製光学素子用成形型、及びこれを用いたガラス製光学素子用加工機は、筒状の胴型と、この胴型にスライド自在に内嵌される一対の押し型とを有し、胴型に内嵌された状態における一対の押し型どうしの強制相対接近移動により、所定の温度に加熱された状態で両押し型間に配置されたガラス素材をプレス成形してガラス製光学素子を形成するように構成するとともに、胴型の材質の熱膨張係数よりも押し型の材質の熱膨張係数を大に設定したものである。
【0033】
これにより、熱膨張係数の大きい押し型と、熱膨張係数の小さい胴型を用いることにより、型をセットする常温下では、胴型と押し型との隙間が十分大きく、金型のセット作業を不都合なく容易に行えるとともに、成形時はガラス軟化点付近の高温下であるため、胴型の膨張量よりも押し型の膨張量の方が大きくなり、胴型と押し型との隙間(径方向の間隙)を極力ゼロに近づけることができる。その結果、経済的でローコストに成形できるモールド成形でありながら、バリが生ぜず、レンズの光軸精度を飛躍的に向上させることができた。
【図面の簡単な説明】
【図1】図1は、ガラスレンズ加工機の概略構造を示す全体側面図
【図2】図2は、成形型の構造を示すモデル図
【図3】図3は、成形用ガラス素材を示す側面図
【図4】図4は、ガラスレンズのバリを示す模式図
【図5】図5は、レンズ成形型の各種緒元表を示す図
【符号の説明】
4 駆動機構
6 胴型
7,8 押し型
d 隙間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold for glass optical elements such as a lens and a prism used in a device for a CD drive, a laser device, a camera, a microscope, a telescope, an optical fiber and the like, and a processing machine for a glass optical element. The present invention relates to a molding die for molding.
[0002]
[Prior art]
Conventionally, glass lenses have been manufactured using a processing method involving a plurality of steps including a step of grinding a lens base material and a polishing step, but the use of lenses has increased due to the development of optical elements in recent years. In order to cope with such a situation, a manufacturing method in which lens molding is performed by molding excellent in mass productivity is being changed.
[0003]
For example, the molding of a glass lens includes a downward pressing die having a vertical cylindrical cross section, an upward pressing die having a reverse convex cylindrical shape, and a main body die having a small diameter in these upper and lower pressing dies. It is common to use a molding die composed of a cylindrical body die that can be fitted over the entire part. That is, the molding glass is put between the upper and lower pressing dies, and the upper and lower pressing dies are moved closer to each other while softening the molding glass by raising the temperature of the mold to a high temperature, so that a predetermined time can be efficiently obtained. This is a manufacturing method of press forming into a shape. As such a molding, the one shown in Patent Document 1 is known.
[0004]
[Patent Document 1]
JP-A-2002-220239
[Problems to be solved by the invention]
In molding with the advantage of being able to produce at low cost, in order to make a high-precision lens, molding using three molds, upper and lower pressing molds and barrel molds, requires upper and lower molds, and lower pushing. The point is how to reduce the fitting gap between the mold and the body mold. That is, if the gap is reduced, the optical axis concentricity of the lens is improved, and there is an advantage that post-processing (grinding) or the like for centering becomes unnecessary, but it is difficult to perform a setting operation for fitting the dies. In addition, when molding (hot pressing) at a high temperature near the glass softening point, the molds may be damaged or bitten by contact with each other, or the material of the mold may be SiC (silicon carbide). In the case of a brittle material, there is a possibility of inconvenience such as chipping.
[0006]
Therefore, if the above-mentioned fitting gap is enlarged, the setting work of the dies and the molding itself become easy, but the accuracy (deviation of the optical axis) of the molded lens is not good, and burrs are easily generated, and Post processing for deburring and deburring is required. In other words, no matter which method is used, there are advantages and disadvantages.Therefore, at present, there is no choice but to set the size of the gap in consideration of the type and purpose of the molded product, and there is room for improvement in molding. Was.
[0007]
An object of the present invention is to perform a molding process which is economically advantageous for manufacturing a glass optical element, in which a mold setting operation is easy, and post-processing such as centering and deburring is not required. Thus, the present invention is to achieve an improved mold.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a glass mold for an optical element, comprising: a cylindrical body die; and a pair of pressing dies which are slidably fitted in the body die. In a state in which the pair of pressing dies are forcibly moved relative to each other in a state, the glass material interposed between the two pressing dies is press-formed while being heated to a predetermined temperature to form a glass optical element. In addition, the thermal expansion coefficient of the material of the pressing die is set to be larger than the thermal expansion coefficient of the material of the body die.
[0009]
The temperature of the molding die is low during the fitting set operation of the die for fitting the pressing die into the body die, and becomes high during the molding after heating and raising the temperature. Since the coefficient of thermal expansion of the material of the stamping die is set to be larger than the coefficient of thermal expansion of the material, the gap between the body mold and the stamping die is set to be larger when the fitting set operation of the mold with relatively low temperature is performed. It is possible to smoothly and easily assemble the molding die without inconvenience such as strong rubbing against each other or chipping due to the corner of the die.
[0010]
Then, when the glass material is heated to press molding and becomes relatively high in temperature, the inner press die fitted inside the trunk die expands more than the trunk die arranged outside, The gap between the die and the die becomes smaller than when the die is set, and the phenomenon that the softened glass material enters between the die and the die due to the pressure of press molding occurs more than before. It can be difficult or not to happen. As a result, it is possible to obtain an advantage that burrs and misalignment of the optical axis are suppressed or eliminated, and post-processing such as deburring and optical axis adjustment is reduced or unnecessary.
[0011]
A cemented carbide such as WC (tungsten carbide) having a large thermal expansion coefficient as a material of the body mold and SiC (silicon carbide) having a small thermal expansion coefficient. In this case, it is possible to obtain the function and effect of the configuration of claim 1 while making the mold material suitable for mass production that is general and easily available.
[0012]
Furthermore, when the glass optical element having a diameter of about 10 mm is formed as in the configuration of claim 3, the gap d between the body mold and the press mold is set to 0.011 mm ≦ d ≦ 0.023 mm. Although the details will be described in the section of the embodiment, the operation and effect of the configuration of claim 2 can be more reliably enjoyed.
[0013]
According to a fourth aspect of the present invention, in the glass optical element processing machine, a cylindrical body, a pair of push dies that are slidably fitted in the body, and a pair of push dies that are fitted in the body. A driving mechanism capable of forcibly moving the pressing dies relative to each other and a heating means capable of heating a glass material disposed between a pair of the pressing dies in a state of being fitted in the drum, and a drum. The thermal expansion coefficient of the material of the pressing die is set to be larger than the thermal expansion coefficient of the material.
[0014]
According to a fourth aspect of the present invention, there is provided a processing machine using the glass optical element forming die defined by the first aspect of the present invention. According to the configuration of claim 1, the coefficient of thermal expansion of the material of the pressing mold is larger than the coefficient of thermal expansion of the material of the body mold, although the temperature is low during the joint setting operation and high during molding after heating. Because it is set, the gap between the body die and the press die is made large at the time of the fitting set operation of the molding die with a relatively low temperature, and there is no inconvenience such that the dies are strongly rubbed or the corners of the dies hit and chipped The mold can be smoothly and easily assembled.
[0015]
Then, at the time of molding that is heated to a relatively high temperature, the inner die that is fitted inside the die expands more than the die that is disposed outside, so that the die and the die are not squeezed. The gap is smaller than when the mold is set. Therefore, the phenomenon that the glass material in the softened state under pressure enters between the barrel mold and the press mold can be less likely or not to occur as compared with the conventional case, and burrs and misalignment of the optical axis can be suppressed. Or, it is eliminated, and post-processing such as deburring and optical axis adjustment is reduced or becomes unnecessary, while the optical axis accuracy is greatly improved, and the glass optical element created by the glass optical element processing machine is used. Performance was improved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
【Example】
FIG. 1 shows a glass lens processing machine A as an example of a glass optical element processing machine, and FIG. 2 shows a model diagram of a molding die S used for the processing machine A. The glass lens forming apparatus A is provided with a molding die S on the upper floor 2 of the frame 1, a mold driving mechanism 4 on the lower floor 3, and controls the temperature of the molding die S and the driving control of the mold driving mechanism 4. It is configured to include a control device 5 for controlling.
[0018]
The molding die S includes a hollow cylindrical body die 6, an upper pressing die 7 which is internally fitted to the body die 6 so as to be vertically slidable, and a lower pressing die 8 which is also internally fitted to the body die 6 so as to be vertically slidable. It is composed of The upper pressing die 7 is provided so as to be suspended and fixed to the upper wall 9 of the frame 1, and is configured to drive up and down the lower pressing die 8 by the die driving mechanism 4. (Example of means) 10 is housed in a trunk mold 6.
[0019]
The mold drive mechanism 4 has an AC servomotor 11 as a drive source, and supports a downward press mold 7 via a load cell 12 on an output table 4a that can be driven up and down. Each of the upper and lower pressing dies 7 and 8 is formed with a nitrogen gas (inert gas) introduction path 13 for obtaining an atmosphere in which the glass lens can be formed stably. An exhaust path 15 for evacuating the inside of the chamber 14 which is the inner peripheral wall of the body die 6 is also formed.
[0020]
As shown in FIG. 3, the processing machine A (in the molding die S) has a granular glass material (preform) having a diameter of 9.7 mm and a height of 6.6 mm, which has an elliptical shape in a side view. Use 16. The characteristics of the glass material 16 are L-LAM69 and Tg = 497 ° C. By molding this glass material 16 with the molding apparatus A shown in FIG. 1, a convex lens (glass optical element) having a diameter of 10 mm can be formed.
[0021]
The forming operation by the processing machine A is as follows. First, the dies 6 to 8 are assembled and set so that the glass material 16 is arranged between the upper and lower pressing dies 7 and 8, and then the exhaust device and the exhaust path 15 not shown. The inside of the chamber 14 is evacuated using. Then, the mold S is heated to a predetermined high temperature by turning on the infrared lamp 10, and then nitrogen gas is introduced from the upper and lower introduction paths 13 into the chamber 14 until atmospheric pressure is reached. The downward pressing die 8 is moved upward by the drive of 11, and pressurized to a predetermined pressure. After being held for 5 minutes, the molded body is taken out after cooling.
[0022]
The specific main specifications of the processing machine A are that the molding die S is molded at a temperature of 500 ° C. and a press pressure of 10 MPa, and after maintaining the state for 5 minutes, it is cooled. The body 7 is made of a SiC sintered body, and the upper and lower pressing dies are made of WC (tungsten carbide), which is a cemented carbide. The SiC sintered body has a purity of 99% and a density of 3.17 grams / cubic centimeter (g / cm3), a coefficient of thermal expansion of up to 600 ° C. and an average of 4/100000 ° C. (4 / million ° C.). Has an average coefficient of thermal expansion of 6 / 1,000,000 ° C. (6 / million ° C.) up to 600 ° C.
[0023]
In molding a glass lens using the processing machine A and the glass material 16 under the above-described conditions, ease of mold setting when the fitting tolerance between the body mold 6 and the vertical pressing molds 7 and 8 is variously changed and set, FIG. 5 shows a list summarizing the status of molded articles (whether or not burrs are generated). In FIG. 5, D1 is the outer diameter of the pressing dies 7 and 8 at normal temperature, D2 is the inner diameter of the drum dies 6 at normal temperature, D3 is the outer diameter of the pressing dies 7 and 8 at 500 ° C., and D4 is the diameter of the drum dies 6 at 500 ° C. It is the inner diameter, and the thermal expansion coefficient of SiC, which is the material of the body mold 6, is set to 3.8 to 4.2 / 1,000,000 ° C (3.8 to 4.2 / million ° C) in the range of 25 to 600 ° C. The coefficient of thermal expansion of WC, which is the material of the pressing dies 7 and 8, is set to 5.8 to 6.2 / 1,000,000 ° C (5.8 to 6.2 / million ° C) in the range of 25 to 600 ° C. It is.
[0024]
FIG. 4 shows a conceptual diagram in which burrs are generated by molding. If the gap between the outer diameters of the pressing dies 7 and 8 and the inner diameter of the body mold 6 is large at the time of molding at a high temperature, the glass material enters into the gap, which becomes a burr. Is sufficiently small, the glass material cannot enter, and a good glass lens without burrs can be produced.
[0025]
As a result of observing the shape of the glass lens obtained by the molding by the processing machine A, when the body die 6 and the pressing dies 7, 8 are made of the same material, the clearance d (D2-D1) at room temperature is about 10 μm and the mold is formed. The assembling to set and fit each other is tight, especially when the material is SiC, the edges of the pressing dies 7 and 8 are easily chipped, and a gap d at room temperature of about 20 μm is required for assembling. There was found. Further, even when the gap d is about 9 μm, burrs are generated in the glass molded body, and it is necessary to further reduce the gap d in order to eliminate the burrs.
[0026]
On the other hand, when the material of the body mold 6 is SiC and the material of the press dies 7 and 8 is WC, when the room temperature gap d (D2−D1) is about 14 μm, the molding gap k at the time of molding at 500 ° C. (D4-D3) became smaller than 14 μm, and the burr of the glass molded article was reduced to a slightly recognizable degree. Furthermore, when the room temperature gap d (D2−D1) is about 11 μm, a state in which burrs are hardly observed after molding is obtained, and the molding gap k (D4−D3) is estimated to be close to 2 μm. I was able to speculate.
[0027]
From various experimental results as shown in FIG. 5, when a lens (glass optical element) having a diameter of about 10 mm is formed, the normal-temperature gap d (D2-D1) and the molding gap k (D4-D3) are:
Z: 0.011 mm ≦ d (D2−D1) ≦ 0.023 mm
Y: 0.002 mm ≦ k (D4-D3) ≦ 0.014 mm
It is good to set in the range.
[0028]
More preferably,
X: 0.011 mm <d (D2-D1) <0.023 mm
W: 0.002 mm <k (D4-D3) <0.014 mm
It is good to set in the range.
[0029]
That is, it is possible to easily mold the glass lens with high productivity and to produce a glass lens at low cost without inconvenience in the fitting and setting operation of the mold. Can be made almost zero (zero), and there is no burr, and the optical axis accuracy as a lens can be dramatically improved. Conversely, if the gap d at the time of setting the mold at a low temperature such as room temperature is set so as to satisfy the above equation Z (or the previous equation X), the gap k at the time of molding at a high temperature will be the same as the equation Y (or the previous equation). A material having a thermal expansion coefficient that satisfies W) may be set as a material for the body mold or the push mold.
[0030]
In other words, the use of cemented carbide (WC) as the material of the pressing dies 7 and 8 reduces the occurrence of chipping as compared with the case of SiC material, and can make use of the toughness of cemented carbide (WC). I was able to prove it. Since the specific gravity of SiC, which is the material of the body mold 6, is 1/5 smaller than that of WC and the weight of the mold is light, the heat capacity of the mold is small, so that the temperature rise to the molding temperature is fast and the thermal conductivity is low. Since it is as large as two to three times, there is also an advantage that the mold is quickly burned and energy is saved.
[0031]
[Another embodiment]
The shape of the fitting portion between the body die 6 and the pressing dies 7, 8 can be circular, triangular, quadrangular, polygonal, or the like. Also, a molding die (not shown) composed of two dies, a trunk die having a recessed hole as a molding space, and a convex pressing die that can be fitted in the hole, The present invention is applicable. FIG. 5 shows a case where a glass optical element having a diameter of about 10 mm is formed. However, the present invention can be applied to a case where a glass optical element having a diameter other than 10 mm is formed.
[0032]
【The invention's effect】
As described above, the glass optical element forming die and the glass optical element processing machine using the same according to the present invention include a cylindrical body die and a pair of slidably fitted inside the body die. Pressing the glass material disposed between the two pressing dies while being heated to a predetermined temperature by a forced relative approach movement of the pair of pressing dies in a state where the pressing dies are fitted inside the body die. The optical element made of glass is formed by molding, and the coefficient of thermal expansion of the material of the pressing mold is set to be larger than that of the material of the body mold.
[0033]
As a result, by using a pressing mold having a large thermal expansion coefficient and a body mold having a small thermal expansion coefficient, at room temperature for setting the mold, the gap between the body mold and the pressing mold is sufficiently large, so that the work of setting the mold can be performed. It can be easily performed without any inconvenience, and since the molding is at a high temperature near the glass softening point, the expansion amount of the stamping die is larger than the expansion amount of the drum die, and the gap between the drum die and the pressing die (radial direction) Gap) can be made as close to zero as possible. As a result, although the molding was economical and could be performed at low cost, burrs did not occur and the optical axis accuracy of the lens could be dramatically improved.
[Brief description of the drawings]
1 is an overall side view showing a schematic structure of a glass lens processing machine. [FIG. 2] FIG. 2 is a model diagram showing a structure of a molding die. [FIG. 3] FIG. FIG. 4 is a schematic diagram showing burrs of a glass lens. FIG. 5 is a diagram showing various specifications of a lens mold.
4 Driving mechanism 6 Body type 7, 8 Push type d Clearance

Claims (4)

筒状の胴型と、この胴型にスライド自在に内嵌される一対の押し型とを有し、前記胴型に内嵌された状態における一対の前記押し型どうしの強制相対接近移動により、所定の温度に加熱された状態で両前記押し型間に配置されたガラス素材をプレス成形してガラス製光学素子を形成するように構成するとともに、前記胴型の材質の熱膨張係数よりも前記押し型の材質の熱膨張係数を大に設定してあるガラス製光学素子用成形型。A cylindrical body mold and a pair of press dies that are slidably fitted in the body mold, and a forced relative approach movement of the pair of the press dies in a state of being fitted in the body mold, While being configured to press-mold a glass material disposed between the two pressing dies in a state where it is heated to a predetermined temperature to form a glass optical element, the thermal expansion coefficient of the material of the body mold is more than the above. A mold for optical elements made of glass in which the material of the press mold has a large coefficient of thermal expansion. 前記胴型の材質をSiCに、かつ、前記押し型の材質を超硬合金に夫々設定してある請求項1に記載のガラス製光学素子用成形型。The molding die for a glass optical element according to claim 1, wherein the material of the body die is set to SiC, and the material of the pressing die is set to a cemented carbide. 直径10mm程度の前記ガラス製光学素子を形成する場合に、前記胴型と前記押し型との隙間dを、次式Zの如く設定してある請求項2に記載のガラス製光学素子用成形型。
式Z:0.011mm≦d≦0.023mm
The molding die for a glass optical element according to claim 2, wherein when forming the glass optical element having a diameter of about 10 mm, a gap d between the body die and the pressing die is set as in the following formula Z. .
Formula Z: 0.011 mm ≦ d ≦ 0.023 mm
筒状の胴型と、この胴型にスライド自在に内嵌される一対の押し型と、前記胴型に内嵌された状態における一対の前記押し型どうしを強制的に相対接近移動自在な駆動機構と、前記胴型に内嵌された状態における一対の前記押し型間に配置されたガラス素材を加熱自在な加熱手段とを有するとともに、前記胴型の材質の熱膨張係数よりも前記押し型の材質の熱膨張係数を大に設定してあるガラス製光学素子用加工機。A cylindrical body, a pair of dies that are slidably fitted in the body, and a pair of the dies in the state of being fitted in the body, and a drive that is forcibly movable toward and away from each other. A mechanism and a heating means capable of heating a glass material disposed between the pair of the pressing dies in a state of being fitted in the body die, and the pressing mold having a coefficient of thermal expansion greater than a material of the body die. A glass optical element processing machine in which the thermal expansion coefficient of the material is set to a large value.
JP2003005792A 2003-01-14 2003-01-14 Mold for glass-made optical element, and processing machine Pending JP2004217459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005792A JP2004217459A (en) 2003-01-14 2003-01-14 Mold for glass-made optical element, and processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005792A JP2004217459A (en) 2003-01-14 2003-01-14 Mold for glass-made optical element, and processing machine

Publications (1)

Publication Number Publication Date
JP2004217459A true JP2004217459A (en) 2004-08-05

Family

ID=32896362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005792A Pending JP2004217459A (en) 2003-01-14 2003-01-14 Mold for glass-made optical element, and processing machine

Country Status (1)

Country Link
JP (1) JP2004217459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197241A (en) * 2006-01-25 2007-08-09 Konica Minolta Opto Inc Method for molding optical glass element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197241A (en) * 2006-01-25 2007-08-09 Konica Minolta Opto Inc Method for molding optical glass element

Similar Documents

Publication Publication Date Title
TW201111144A (en) High sag optical lens and method for fast molding the same
KR100774270B1 (en) Press-forming machine for glass
JP3974200B2 (en) Glass optical element molding method
JP2004217459A (en) Mold for glass-made optical element, and processing machine
JP2002020130A (en) Method and device for manufacturing press forming
JPH0431328A (en) Mold structure for forming optical element and press-molding method
JP4094210B2 (en) Manufacturing method of glass optical element and molding die for glass optical element used therefor
KR101347619B1 (en) Manufacturing method of aspheric lens using glass powder
CN101633550A (en) Molding method for an optical element and optical element molding apparatus
JP2746454B2 (en) Optical element molding method
JP7407874B2 (en) Columnar glass, method for producing columnar glass, and apparatus for producing columnar glass
JP3753415B2 (en) Glass optical element molding method
JP2001097731A (en) Method for molding quartz glass
JP2000086255A (en) Method for molding optical element
JPH06345464A (en) Mold for optical element molding, production thereof and method of molding optical element
JPH03279225A (en) Glass molding equipment and glass molding using the same
JP4094587B2 (en) Glass optical element molding method
JP2004351740A (en) Lens manufacturing method and mold assembly using in this method
JP2618527B2 (en) Optical component manufacturing method
JPH11236230A (en) Mold for forming optical element and forming method using the same
JPH1160251A (en) Formation of optical element
JP2000053432A (en) Forming apparatus for optical glass element
JP2003183039A (en) Method for manufacturing optical element
JP2004277242A (en) Optical element molding die, method and apparatus
JP2004043248A (en) Molding die for molding optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02