JP2004216297A - Method for treating chemical washing waste liquid of filter membrane module - Google Patents

Method for treating chemical washing waste liquid of filter membrane module Download PDF

Info

Publication number
JP2004216297A
JP2004216297A JP2003007786A JP2003007786A JP2004216297A JP 2004216297 A JP2004216297 A JP 2004216297A JP 2003007786 A JP2003007786 A JP 2003007786A JP 2003007786 A JP2003007786 A JP 2003007786A JP 2004216297 A JP2004216297 A JP 2004216297A
Authority
JP
Japan
Prior art keywords
waste liquid
membrane module
chemical cleaning
chlorine
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003007786A
Other languages
Japanese (ja)
Inventor
Yoichi Hirose
洋一 広瀬
Hiroshi Matsuura
寛 松浦
Yuichi Noma
雄一 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Original Assignee
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSO KENSETSU KOGYO, Fuso Kensetsu Kogyo KK filed Critical FUSO KENSETSU KOGYO
Priority to JP2003007786A priority Critical patent/JP2004216297A/en
Publication of JP2004216297A publication Critical patent/JP2004216297A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sanitarily treating the chemical washing waste liquid of a filter membrane module. <P>SOLUTION: The chlorine type waste liquid CL and organic acid waste liquid OA, which are discharged from the chemical washing process of the filter membrane module, are stored in individual storage tanks 1 and 2, and an alkali agent A1 is added to both waste liquids. These waste liquids are introduced into a mixing reaction tank 2 to be stagnated therein for a predetermined time and, after an oxidizing agent Ox is added to the waste liquids, the oxidizing agent-added waste liquids are introduced into an ultraviolet irradiation tank 5 through a filter 4 to be irradiated with ultraviolet rays. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水道原水を処理し、飲料水として安全な水道水を生産するための膜ろ過装置に使用するろ過膜モジュールの薬品洗浄廃液の処理方法に関するものである。
【0002】
【従来の技術】
近年、水道浄水処理の分野においては、濁質や細菌類、病原性原虫類等をほぼ完全に除去できる精密ろ過(MF)あるいは限外ろ過(UF)といった膜ろ過装置の採用が急速に増加しており、これらの施設は、財団法人水道技術研究センターの調査結果によれば、平成14年6月現在で建設中のものを含めて全国で280箇所に達している。
【0003】
ところで、膜ろ過装置に用いられるろ過膜モジュールの洗浄方法としては、逆圧水洗浄あるいは物理洗浄と呼ばれる、膜ろ過装置を一定のろ過継続時間毎に、ろ過操作を一旦中断し、予め貯留しておいた膜ろ過水をポンプで加圧して、ろ過水側から原水側へと逆方向に送り、膜表面に付着した濁質等の汚れ成分を除去する方法が一般的に採用されている。
この操作によって膜のろ過能力を常に一定レベルに保持しながら膜ろ過浄水処理を継続することができるが、この操作によっても膜面に付着した原水に由来する有機物あるいは鉄、マンガン等の金属類は完全には除去できないことから、膜のろ過能力は徐々に低下する。
【0004】
この現象は、通常、原水側の圧力上昇として現れるため、膜ろ過装置を構成している原水供給ポンプの仕様圧力を超える前に、薬品洗浄と呼ばれる、薬品溶液を使用して膜モジュールを洗浄することにより膜ろ過能力を回復させる方法が一般的に採用されている(特許文献1参照)。
【0005】
ところで、膜ろ過装置が採用されている施設のうち、約9割が1日当たりの浄水処理量が1000m未満の小規模なものであるが、このような小規模な施設においては、薬品洗浄を行う場合、膜ろ過装置の系列毎に膜ろ過浄水処理を中断して、膜モジュールを装置から取り外し、保存液を充填した状態で工場に持ち帰り、専用の装置で薬品洗浄を行った後、膜ろ過装置を設置している浄水施設へ送り返し、膜ろ過装置に取り付けた後、膜ろ過浄水処理を再開するのが一般的である。
【0006】
この薬品洗浄の頻度は、被処理原水の水質等によって変動するが、概ね1年間に数回程度は必要であり、薬品洗浄に要する人件費、膜モジュールの運送費等の経費が膜ろ過浄水処理の運転管理費を押し上げる要因となっている。
【0007】
膜ろ過浄水処理に適用されるMF膜やUF膜は、セルロース化合物、ポリスルホン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等の有機化合物を材質とする有機膜と高純度セラミックスを材質とする無機膜とに大別される。
これらの材料を薬品洗浄する際に使用される薬品としては、有機膜、無機膜を問わず、膜面に付着した有機物の除去のためには次亜塩素酸ソーダ溶液が、また、鉄、マンガン、カルシウム等の金属塩の除去のためにはシュウ酸、クエン酸等の有機酸溶液が一般的である。
なお、ポリフッ化ビニリデン製の膜のように耐薬品性に優れる場合には、前記の次亜塩素酸ソーダ溶液に苛性ソーダ溶液を併用して洗浄効果を高める場合もある。
【0008】
これらのろ過膜モジュールの薬品洗浄は、膜ろ過装置の規模が増大した場合、上述したような、工場へ持ち帰って行う薬品洗浄が実際上困難になることが予想されることから、膜ろ過装置を設置している浄水施設において、膜モジュールを装置から取り外すことなく、薬品洗浄を実施する方法が試みられている。
【0009】
この場合に、前記2種類の薬品溶液を用いた薬品洗浄廃液を浄水場現地において安全かつ衛生的に処理する方法が求められる。
【0010】
膜モジュールの薬品洗浄において発生する塩素系廃液及び有機酸系廃液を処理する方法として、個別に貯留して液状産業廃棄物として廃棄物処理業者に引き取らせ、有料で処理を委託する方法があるが、収集、運搬、最終処分を含めた処理費が非常に高価となり、膜ろ過による水道浄水処理のコストを押し上げる要因になるとともに、大型のバキューム車、タンクローリー等が入れ替わり立ち替わりに浄水場に出入りすることは浄水場のイメージを甚だしく損ない、交通上の諸問題も発生し、さらに、ゼロエミッションの見地からも好ましい処理方法とはいえない。
【0011】
薬品溶液を用いた薬品洗浄廃液を浄水場現地において処理する方法としては、このほか、図4に示す、塩素系廃液及び有機酸系廃液を公共用水域に放流可能な程度に処理する方法がある。
【0012】
この場合、塩素系廃液CLは、塩素系廃液貯槽1に貯留後、pHを7以上のアルカリ側に保持しながら、廃液に含まれる残留塩素をチオ硫酸ソーダ、重亜硫酸ソーダ、亜硫酸ソーダ等の還元剤Reを添加し、還元反応槽9を経て酸化還元反応により、中和槽6にて中和処理する方法が一般的である。
pHをアルカリ側に保持する理由は、有害な塩素ガスの発生を防止するためであり、その後、酸Oを添加してpHを放流に差し支えのない範囲に調整する。
そして、さらに、必要に応じて、残留する有機物を除去するために活性炭吸着処理を行って放流する。
【0013】
なお、次亜塩素酸ソーダによる薬品洗浄に苛性ソーダを併用する場合は、前記pH調整においてアルカリの添加は不要である。
【0014】
他方、有機酸系廃液OAは、有機酸系貯槽2に貯留後、アルカリ剤Alを添加することにより、pH調整槽10においてpH調整を行った後、好気性生物処理槽11内にて、好気性微生物による生物学的処理をする方法が一般的である。
この際、廃液中には好気性微生物の良好な活動を促進するために窒素NやリンP等の栄養塩の添加が必要であるが、この生物学的処理方法は運転管理費が比較的安価であるという利点を有する。
【0015】
【特許文献1】
特開2000−246069号公報
【0016】
【発明が解決しようとする課題】
しかしながら、生物学的処理方法の場合、処理施設の水槽容量が大きくなり、広い設置面積を必要とする欠点があるとともに、処理効果が水温に左右されやすいことや、処理効果が発揮されるまでに1ヶ月以上にわたる立ち上げ期間を必要とすること、さらには、薬品洗浄廃液は数ヶ月に1度程度の頻度でしか発生しないため、処理槽内の微生物の活性を良好に維持することが困難である等の問題があった。
また、好気性微生物が有機物を酸化分解する際に、好気性微生物自身が増殖し、これにより余剰汚泥が発生するため、これらの処理の問題も発生することとなる。浄水場は、本来飲料に適した水を製造して水道水として供給するための施設である点に鑑みれば、格段の衛生上の配慮を必要とする場所である。したがって、一種の細菌類の培養設備といっても過言ではない生物学的廃水処理施設を浄水場敷地内に設置することは、細菌類による汚染の危険性を抱えることにもなり、その防止に配慮したとしても、水道水の消費者からは感覚的に許容されない場合もありうるという問題があった。
【0017】
本発明は、上記従来のろ過膜モジュールの薬品洗浄廃液の処理方法の有する問題点に鑑み、衛生的に薬品洗浄廃液の処理することができるろ過膜モジュールの薬品洗浄廃液の処理方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成するため、本発明のろ過膜モジュールの薬品洗浄廃液の処理方法は、ろ過膜モジュールの薬品洗浄工程から排出される塩素系廃液と有機酸系廃液とを、個別の貯留槽に貯留するようにするとともに、前記両廃液にアルカリ剤を添加し、混合反応槽に導入して、所定時間混合反応槽内に滞留させた後、酸化剤を添加し、フィルタを通過させ、紫外線を照射することを特徴とする。
【0019】
このろ過膜モジュールの薬品洗浄廃液の処理方法は、ろ過膜モジュールの薬品洗浄工程から排出される塩素系廃液と有機酸系廃液とを、混合反応槽に導入し、順次所要の反応を行わせることによって、公共用水域に放流可能な程度まで衛生的に処理することができる。
【0020】
【発明の実施の形態】
以下、本発明のろ過膜モジュールの薬品洗浄廃液の処理方法の実施の形態を図面に基づいて説明する。
【0021】
図1〜図3に、本発明の膜モジュール薬品洗浄廃液の処理方法の第1〜第3実施例のフロー図を示す。
【0022】
この膜モジュール薬品洗浄廃液の処理方法は、図4に示す従来例と同様、膜モジュールの薬品洗浄において発生する塩素系廃液CL及び有機酸系廃液OAの2種類の薬品洗浄廃液を、塩素系廃液貯槽1及び機酸系貯槽2に個別に貯留するようにするとともに、略等量混合してpHが10以上となるようにアルカリ剤Alを添加して混合反応槽3に移送する。
【0023】
この工程において、塩素系廃液CLの廃液中の残留塩素と、有機酸系廃液OAの廃液中に含まれる主としてクエン酸、シュウ酸等の有機物とが、酸化・還元反応を起こし、塩素系廃液CLの廃液中の有害な残留塩素が消滅するとともに、有機酸系廃液OA中の有機物も塩素によって酸化されて減少する。
【0024】
その後、残留する有機物をさらに酸化するに足り得る量の酸化剤Oxとして、次亜塩素酸ソーダもしくは過酸化水素を添加し、この混合廃液を目開き数ミクロン乃至数十ミクロンのフィルタ4に通して廃液中に含まれる微細な懸濁物質や酸化作用により懸濁物として析出する鉄、マンガンを予め除去した後、内部に紫外線ランプを装備した紫外線照射槽5に定量ずつ導入するようにする。
【0025】
紫外線照射槽5内では、滞留する間に、添加された酸化剤Oxが紫外線照射されて発生する活性酸素及びpHがアルカリ側にあることにより発生するヒドロキシラジカル等により、強力な酸化作用を及ぼし、残留する有機物が酸化分解される。
その後、硫酸、塩酸等の無機酸(以下、総称して「酸O」という。)を添加し、中和槽6内にて、被処理液のpHを8付近になるように調整した後、放流する。
【0026】
膜ろ過の対象原水が凝集沈殿水の場合、使用される凝集剤中のアルミニウムが膜ろ過で除去さるため、膜モジュール薬品洗浄廃液中にアルミニウムが析出し、フロックを形成する場合がある。
このような場合には、図2の第2実施例に示すように、最終処理として目開き数ミクロン乃至数十ミクロンのフィルタ7に通してこれらフロックを除去した後、放流する。
【0027】
さらに、廃液の放流先の状況に応じてCOD規制が厳しい場合には、図3の第3実施例に示すように、フィルタ7に通した処理水を、さらに、活性炭フィルタ8に通してより高度な処理を行った後、放流する。
【0028】
次に、ろ過膜モジュールの薬品洗浄廃液の処理方法について、実際に運転されている膜ろ過装置において、ろ過膜モジュール薬品洗浄を実施した際に得られた塩素系廃液及び有機酸系廃液の2種類の廃液を用いて、本発明の処理方法を実験室において実施した結果を示す。
【0029】
対象としたろ過膜モジュールは、ポリフッ化ビニリデンを材質とするMF膜モジュールで、耐薬品性に優れた膜であることから、塩素系薬品洗浄では5000mg/Lの次亜塩素酸ソーダ溶液と2%濃度の苛性ソーダ溶液とを用いた。
一方、有機酸洗浄では2%濃度のシュウ酸溶液を用いた。
そして、発生した塩素系廃液及び有機酸系廃液の2種類の薬品洗浄廃液を等量混合した廃液に苛性ソーダを添加し、pHを10程度にした後、次亜塩素酸ソーダを有効塩素として1000mg/L添加して撹拌しながら中圧紫外線ランプから放射される紫外線を10分間照射した。
その液に硫酸を添加してpHを8程度に調整した後、JIS−P38015種Bに規格されるろ紙を用いてろ過して最終処理水を得た。
表1はこの時の水質分析結果である。
【0030】
【表1】

Figure 2004216297
【0031】
表1からも明らかなように、上記処理を施すことにより、塩素系廃液及び有機酸系廃液の2種類の薬品洗浄廃液を、公共用水域に放流可能な程度まで衛生的に処理することができることが確認できた。
【0032】
以上、本発明のろ過膜モジュールの薬品洗浄廃液の処理方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
【0033】
【発明の効果】
本発明のろ過膜モジュールの薬品洗浄廃液の処理方法によれば、MF膜ろ過装置やUF膜ろ過装置に用いられるろ過膜モジュールの薬品洗浄工程から排出される塩素系廃液と有機酸系の廃液とを、混合反応槽に導入し、順次所要の反応を行わせることによって、塩素系廃液及び有機酸系廃液の2種類の薬品洗浄廃液を、その発生の都度、速やかに、かつ、安全、衛生的に公共用水域に放流可能な程度まで処理することができ、施設規模の大容量化にも対応できることから、膜ろ過浄水処理の今後一層の普及に寄与することができる。
また、本発明のろ過膜モジュールの薬品洗浄廃液の処理方法に必要な処理槽及びフィルタ等は、コンパクトなため、これら装置一式を車載し、小規模膜ろ過浄水場を巡回することにより、その都度発生する廃液を浄水場現地に廃液処理設備を設置することなく、ろ過膜モジュールの薬品洗浄を実施することが可能となり、一層のコスト低減が可能となる。
【図面の簡単な説明】
【図1】本発明における膜モジュール薬品洗浄廃液の処理方法の第1実施例を示すフロー図である。
【図2】本発明における膜モジュール薬品洗浄廃液の処理方法の第2実施例を示すフロー図である。
【図3】本発明における膜モジュール薬品洗浄廃液の処理方法の第3実施例を示すフロー図である。
【図4】従来の膜モジュール薬品洗浄廃液の代表的な処理方法を示すフロー図である。
【符号の説明】
1 塩素系廃液貯槽
2 有機酸系貯槽
3 混合反応槽
4 フィルタ
5 紫外線照射槽
6 中和槽
7 フィルタ
8 活性炭フィルタ
9 還元反応槽
10 pH調整槽
11 好気性生物処理槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating chemical cleaning wastewater of a filtration membrane module used in a membrane filtration device for treating tap water and producing safe tap water as drinking water.
[0002]
[Prior art]
In recent years, in the field of water purification treatment, the use of membrane filtration devices such as microfiltration (MF) or ultrafiltration (UF), which can almost completely remove turbidity, bacteria, and pathogenic protozoa, has increased rapidly. According to the results of a survey by the Waterworks Technology Research Center, the number of these facilities has reached 280 nationwide, including those under construction as of June 2002.
[0003]
By the way, as a method of washing a filtration membrane module used in a membrane filtration device, the filtration operation of the membrane filtration device, which is called back pressure water washing or physical washing, is interrupted at regular intervals of filtration, and the filtration operation is temporarily interrupted and stored in advance. In general, a method is used in which the filtered membrane water is pressurized by a pump and sent in the reverse direction from the filtered water side to the raw water side to remove contaminants such as turbidity attached to the membrane surface.
By this operation, the membrane filtration water purification treatment can be continued while the filtration ability of the membrane is always kept at a constant level.However, even by this operation, organic matter derived from raw water adhered to the membrane surface or metals such as iron and manganese are removed. Since it cannot be completely removed, the filtration capacity of the membrane gradually decreases.
[0004]
Since this phenomenon usually appears as an increase in pressure on the raw water side, the membrane module is washed using a chemical solution, which is called chemical cleaning, before exceeding the specified pressure of the raw water supply pump that constitutes the membrane filtration device. In general, a method of restoring the membrane filtration ability by using such a method has been adopted (see Patent Document 1).
[0005]
Meanwhile, among the facilities that the membrane filtration apparatus is employed, although about 90% of those water purification processes daily amount is small less than 1000 m 3, in such a small-scale facility, the chemical cleaning In this case, the membrane filtration water purification process is interrupted for each line of the membrane filtration device, the membrane module is removed from the device, the sample is taken back to the factory with the storage solution filled, and chemical cleaning is performed using a dedicated device. It is common to return the water to the water purification facility where the equipment is installed, attach it to the membrane filtration device, and then restart the membrane filtration water purification treatment.
[0006]
The frequency of this chemical cleaning varies depending on the quality of the raw water to be treated, but it is generally required several times a year. This is a factor that raises operation management costs.
[0007]
The MF and UF membranes used in membrane filtration and water purification are organic membranes made of organic compounds such as cellulose compounds, polysulfone, polyacrylonitrile, polyethylene, polypropylene, and polyvinylidene fluoride, and inorganic membranes made of high-purity ceramics. They are roughly divided into
Chemicals used for chemical cleaning of these materials, whether organic or inorganic, include sodium hypochlorite solution for removing organic substances attached to the film surface, and iron and manganese. For removing metal salts such as calcium and calcium, an organic acid solution such as oxalic acid and citric acid is generally used.
In addition, when the film is made of polyvinylidene fluoride and has excellent chemical resistance, the washing effect may be enhanced by using a sodium hydroxide solution together with the sodium hydroxide solution.
[0008]
Chemical cleaning of these filtration membrane modules is expected to be difficult when taken back to the factory, as described above, when the scale of the membrane filtration device is increased. At the installed water purification facility, a method of performing chemical cleaning without removing the membrane module from the device has been attempted.
[0009]
In this case, there is a need for a method of safely and sanitarily treating a chemical cleaning waste liquid using the two types of chemical solutions at a water purification plant site.
[0010]
As a method of treating chlorine-based wastewater and organic acid-based wastewater generated during chemical cleaning of membrane modules, there is a method of separately storing the liquid waste and taking it to a waste disposal contractor as liquid industrial waste, and commissioning the treatment for a fee. The cost of treatment, including collection, transportation, and final disposal, becomes extremely expensive, which drives up the cost of water purification treatment by membrane filtration, and large vacuum trucks, tank trucks, etc. are switched in and out of the water treatment plant. This seriously damages the image of the water treatment plant, causes various traffic problems, and is not a preferable treatment method from the viewpoint of zero emission.
[0011]
As a method of treating a chemical cleaning waste liquid using a chemical solution at the site of a water purification plant, there is another method shown in FIG. 4 in which a chlorine-based waste liquid and an organic acid-based waste liquid are treated to such an extent that they can be discharged into public water bodies. .
[0012]
In this case, after the chlorine-based waste liquid CL is stored in the chlorine-based waste liquid storage tank 1, the residual chlorine contained in the waste liquid is reduced to sodium thiosulfate, sodium bisulfite, sodium sulfite, etc. while maintaining the pH on the alkaline side of 7 or more. Generally, a method of adding the agent Re and performing a neutralization treatment in the neutralization tank 6 by an oxidation-reduction reaction through the reduction reaction tank 9 is used.
The reason for keeping the pH on the alkaline side is to prevent generation of harmful chlorine gas. Thereafter, acid O is added to adjust the pH to a range that does not interfere with the discharge.
Then, if necessary, an activated carbon adsorption treatment is performed to remove the remaining organic substances, and the water is discharged.
[0013]
When caustic soda is used in combination with chemical cleaning with sodium hypochlorite, it is not necessary to add an alkali in the pH adjustment.
[0014]
On the other hand, after the organic acid-based waste liquid OA is stored in the organic acid-based storage tank 2 and the pH of the organic acid-based waste liquid OA is adjusted in the pH adjustment tank 10 by adding an alkaline agent Al, the OA is discharged in the aerobic biological treatment tank 11. A general method is a biological treatment with an aerial microorganism.
At this time, nutrients such as nitrogen N and phosphorus P are required to be added to the waste liquid in order to promote good activity of aerobic microorganisms, but this biological treatment method has a relatively low operation management cost. It has the advantage of being
[0015]
[Patent Document 1]
JP 2000-246069 A
[Problems to be solved by the invention]
However, in the case of the biological treatment method, the water tank capacity of the treatment facility becomes large, and there is a drawback that a large installation area is required. It requires a start-up period of one month or more, and furthermore, since the chemical cleaning waste liquid is generated only once every few months, it is difficult to maintain the activity of the microorganisms in the treatment tank well. There were some problems.
In addition, when the aerobic microorganisms oxidatively decompose the organic matter, the aerobic microorganisms themselves proliferate, thereby generating excess sludge, which also causes problems in these treatments. In view of the fact that water purification plants are originally facilities for producing water suitable for drinking and supplying it as tap water, it is a place that requires extreme sanitary considerations. Therefore, installing a biological wastewater treatment facility on the site of a water treatment plant, which is not an exaggeration to say that it is a kind of bacteria cultivation facility, has a risk of bacterial contamination, Even if such consideration is given, there is a problem that tap water consumers may not be perceptible in some cases.
[0017]
The present invention has been made in view of the above-described problems of the conventional method for treating a chemical cleaning waste liquid of a filtration membrane module, and provides a method for treating a chemical cleaning waste liquid of a filtration membrane module that can sanitarily treat the chemical cleaning waste liquid. With the goal.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating a chemical cleaning waste liquid of a filtration membrane module according to the present invention comprises storing a chlorine-based waste liquid and an organic acid-based waste liquid discharged from a chemical cleaning step of a filtration membrane module in separate storage tanks. In addition, an alkali agent is added to the two waste liquids, introduced into a mixing reaction tank, and allowed to stay in the mixing reaction tank for a predetermined time. After that, an oxidizing agent is added, the mixture is passed through a filter, and ultraviolet rays are irradiated. It is characterized by doing.
[0019]
The treatment method of the chemical cleaning waste liquid of the filtration membrane module is such that a chlorine-based waste liquid and an organic acid-based waste liquid discharged from the chemical cleaning step of the filtration membrane module are introduced into a mixing reaction tank and a required reaction is sequentially performed. Thereby, sanitary treatment can be performed to such an extent that it can be discharged into public water bodies.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for treating a chemical cleaning waste liquid of a filtration membrane module according to the present invention will be described with reference to the drawings.
[0021]
FIGS. 1 to 3 show flow charts of first to third embodiments of the method for treating chemical module cleaning waste liquid of the present invention.
[0022]
This membrane module chemical cleaning waste liquid is treated in the same manner as in the conventional example shown in FIG. 4 by removing two types of chemical cleaning waste liquid, chlorine-based waste liquid CL and organic acid-based waste liquid OA, generated during chemical cleaning of the membrane module. Alkaline agent Al is added so that the pH is 10 or more, and the mixture is transferred to mixing reaction tank 3 while being stored in storage tank 1 and acid-based storage tank 2 individually.
[0023]
In this step, residual chlorine in the waste liquid of the chlorine-based waste liquid CL and organic substances such as citric acid and oxalic acid mainly contained in the waste liquid of the organic acid-based waste liquid OA cause oxidation / reduction reactions, and the chlorine-based waste liquid CL The harmful residual chlorine in the waste liquid is eliminated and the organic matter in the organic acid waste liquid OA is also oxidized by chlorine and reduced.
[0024]
Thereafter, sodium hypochlorite or hydrogen peroxide is added as an oxidizing agent Ox in an amount sufficient to further oxidize the remaining organic substances, and the mixed waste liquid is passed through a filter 4 having an opening of several microns to several tens of microns. After removing fine suspended substances contained in the waste liquid and iron and manganese which are precipitated as a suspended substance by the oxidizing action in advance, they are introduced quantitatively into an ultraviolet irradiation tank 5 equipped with an ultraviolet lamp inside.
[0025]
In the ultraviolet irradiation tank 5, during the stagnation, the added oxidizing agent Ox exerts a strong oxidizing effect due to active oxygen generated by irradiation with ultraviolet light and hydroxyl radicals generated when the pH is on the alkali side, The remaining organic matter is oxidatively decomposed.
Thereafter, an inorganic acid such as sulfuric acid or hydrochloric acid (hereinafter collectively referred to as “acid O”) is added, and the pH of the liquid to be treated is adjusted to about 8 in the neutralization tank 6. Release.
[0026]
When the raw water to be subjected to membrane filtration is coagulated sedimentation water, aluminum in the coagulant used is removed by membrane filtration, so that aluminum may precipitate in the membrane module chemical washing waste liquid and form flocs.
In such a case, as shown in the second embodiment of FIG. 2, as a final treatment, these flocs are removed by passing through a filter 7 having openings of several to several tens of microns, and then discharged.
[0027]
Further, when the COD regulation is strict according to the situation of the discharge destination of the waste liquid, the treated water passed through the filter 7 is further passed through the activated carbon filter 8 to obtain a higher After the appropriate treatment, release.
[0028]
Next, regarding the treatment method of the chemical cleaning waste liquid of the filtration membrane module, two types of chlorine-based waste liquid and organic acid-based waste liquid obtained when the chemical cleaning of the filtration membrane module is performed in the actually operated membrane filtration device. The result of having carried out the treatment method of the present invention in a laboratory using the waste liquid of FIG.
[0029]
The target filtration membrane module is an MF membrane module made of polyvinylidene fluoride, which is a membrane with excellent chemical resistance. For chlorine-based chemical cleaning, 5000 mg / L sodium hypochlorite solution and 2% A concentrated sodium hydroxide solution was used.
On the other hand, in the organic acid cleaning, an oxalic acid solution having a concentration of 2% was used.
Then, caustic soda is added to a waste liquid obtained by mixing equal amounts of two kinds of chemical cleaning waste liquids of the generated chlorine-based waste liquid and organic acid-based waste liquid to adjust the pH to about 10, and then sodium hypochlorite is converted to available chlorine at 1000 mg / chlorine. With the addition of L and stirring, ultraviolet light emitted from a medium pressure ultraviolet lamp was irradiated for 10 minutes.
After adjusting the pH to about 8 by adding sulfuric acid to the solution, the solution was filtered using a filter paper specified in JIS-P38015 type B to obtain final treated water.
Table 1 shows the water quality analysis results at this time.
[0030]
[Table 1]
Figure 2004216297
[0031]
As is clear from Table 1, by performing the above-mentioned treatment, it is possible to sanitarily treat two types of chemical washing waste liquid, a chlorine-based waste liquid and an organic acid-based waste liquid, to such an extent that they can be discharged into public water bodies. Was confirmed.
[0032]
As described above, the method for treating the chemical cleaning waste liquid of the filtration membrane module of the present invention has been described based on the embodiment, but the present invention is not limited to the configuration described in the above embodiment and does not depart from the gist thereof. The configuration can be appropriately changed within the range.
[0033]
【The invention's effect】
According to the method for treating a chemical cleaning waste liquid of a filtration membrane module of the present invention, a chlorine-based waste liquid and an organic acid-based waste liquid discharged from a chemical cleaning step of a filtration membrane module used in an MF membrane filtration device or a UF membrane filtration device are used. Are introduced into a mixing reaction tank, and the required reaction is sequentially carried out, so that each time two types of chemical washing waste liquids, a chlorine-based waste liquid and an organic acid-based waste liquid, are generated, quickly, safely and sanitarily. Since it can be treated to the extent that it can be discharged into public water bodies and can accommodate large-scale facilities, it can contribute to the further spread of membrane filtration and purification.
In addition, since the treatment tank, filter, and the like required for the treatment method of the chemical washing waste liquid of the filtration membrane module of the present invention are compact, by mounting these devices on-board and patroling a small-scale membrane filtration water purification plant, The generated waste liquid can be subjected to chemical cleaning of the filtration membrane module without installing a waste liquid treatment facility at the site of the water purification plant, and the cost can be further reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first embodiment of a method for treating chemical module cleaning waste liquid in the present invention.
FIG. 2 is a flowchart showing a second embodiment of the method for treating a chemical module cleaning waste liquid according to the present invention.
FIG. 3 is a flow chart showing a third embodiment of the method for treating a chemical module cleaning waste liquid according to the present invention.
FIG. 4 is a flow chart showing a typical method for treating a conventional membrane module chemical cleaning waste liquid.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chlorine waste liquid storage tank 2 Organic acid storage tank 3 Mixing reaction tank 4 Filter 5 Ultraviolet irradiation tank 6 Neutralization tank 7 Filter 8 Activated carbon filter 9 Reduction reaction tank 10 pH adjustment tank 11 Aerobic biological treatment tank

Claims (1)

ろ過膜モジュールの薬品洗浄工程から排出される塩素系廃液と有機酸系廃液とを、個別の貯留槽に貯留するようにするとともに、前記両廃液にアルカリ剤を添加し、混合反応槽に導入して、所定時間混合反応槽内に滞留させた後、酸化剤を添加し、フィルタを通過させ、紫外線を照射することを特徴とするろ過膜モジュールの薬品洗浄廃液の処理方法。The chlorine-based waste liquid and the organic acid-based waste liquid discharged from the chemical washing step of the filtration membrane module are stored in separate storage tanks, and an alkali agent is added to the two waste liquids and introduced into a mixing reaction tank. A method for treating a chemical cleaning waste liquid of a filtration membrane module, comprising adding an oxidizing agent, allowing the mixture to pass through a filter, and irradiating with ultraviolet light after being kept in a mixing reaction tank for a predetermined time.
JP2003007786A 2003-01-16 2003-01-16 Method for treating chemical washing waste liquid of filter membrane module Withdrawn JP2004216297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007786A JP2004216297A (en) 2003-01-16 2003-01-16 Method for treating chemical washing waste liquid of filter membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007786A JP2004216297A (en) 2003-01-16 2003-01-16 Method for treating chemical washing waste liquid of filter membrane module

Publications (1)

Publication Number Publication Date
JP2004216297A true JP2004216297A (en) 2004-08-05

Family

ID=32897780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007786A Withdrawn JP2004216297A (en) 2003-01-16 2003-01-16 Method for treating chemical washing waste liquid of filter membrane module

Country Status (1)

Country Link
JP (1) JP2004216297A (en)

Similar Documents

Publication Publication Date Title
US20180009691A1 (en) Method and apparatus for residential water recycling
JP3323040B2 (en) Ultrapure water production equipment
JP6194887B2 (en) Fresh water production method
KR100446041B1 (en) Industrial wastewater reusing system using combination biofilter process, AC/ACF/Sand filter process and advanced oxidation process
JP2002011498A (en) Device for treating leachate
AU2020367205A1 (en) Process and apparatus for water treatment
AU2009200113A1 (en) Water purification
KR100446042B1 (en) Industrial wastewater reusing system using combination froth separation process, hollow fiber filter process and advanced oxidation process
KR101062388B1 (en) Water system of toilet
JP2005169304A (en) Method of treating high concentration colored organic waste water
JP4897255B2 (en) Water treatment apparatus and method
KR100462943B1 (en) The Waste disposal system
KR100711259B1 (en) Purification treatment apparatus
CN104787967A (en) Treatment device for slightly-polluted surface water and application thereof
RU70512U1 (en) COMPACT INSTALLATION OF BIOLOGICAL CLEANING AND DISINFECTION OF SEWAGE WATER USING MEMBRANE FILTRATION
JP2005193119A (en) Method for clarifying filter membrane module with chemical
JP2001300576A (en) Sewage treating method
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
JP2007130567A (en) System for circulating to use water utilizing membrane
JP2004216297A (en) Method for treating chemical washing waste liquid of filter membrane module
KR20110133933A (en) Method and devices to treat wastewater by recycling hybrid system
JP2000204629A (en) Self-contained flush toilet
JP2000350997A (en) Method and apparatus for treating sewage
JP2003080274A (en) Treatment method and equipment for sewage
JP2019202265A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404