JP2004215826A - Revolution control device for laundry apparatus - Google Patents

Revolution control device for laundry apparatus Download PDF

Info

Publication number
JP2004215826A
JP2004215826A JP2003005697A JP2003005697A JP2004215826A JP 2004215826 A JP2004215826 A JP 2004215826A JP 2003005697 A JP2003005697 A JP 2003005697A JP 2003005697 A JP2003005697 A JP 2003005697A JP 2004215826 A JP2004215826 A JP 2004215826A
Authority
JP
Japan
Prior art keywords
rotation speed
motor
rotation
phase difference
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005697A
Other languages
Japanese (ja)
Other versions
JP4203641B2 (en
Inventor
Kenji Terai
謙治 寺井
Mitsusachi Kiuchi
光幸 木内
Hiroyuki Saito
弘幸 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003005697A priority Critical patent/JP4203641B2/en
Publication of JP2004215826A publication Critical patent/JP2004215826A/en
Application granted granted Critical
Publication of JP4203641B2 publication Critical patent/JP4203641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Washing Machine And Dryer (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a revolution control device for laundry apparatus which realizes rotation control of a wide range from a low speed to a high speed by precisely detecting the number of revolutions of a motor in the area of the small number of revolutions so as to control the slow revolution of the motor by inexpensive constitution in the revolution controlling device for the laundry apparatus for controlling the number of the revolutions of the motor driving a pulsator or an inner tub. <P>SOLUTION: The motor 3 is connected in series with a power switching means 2 connected to an AC power source 1 to control the power switching means 2 by the output signal of a revolution detecting means 4 and to control the number of revolutions of the motor 3. The detecting means 4 detects the number of revolutions of the motor 3 on the basis of the voltage phase difference signal of an AC power source 1 and a capacitor 30 obtained when fully energizing the motor 3 after increasing the number of revolutions by repeating full energizing and turning off of the motor for a prescribed period in the case of starting rotation by a control means 5 and reaching first number of revolutions where the number of revolutions of the motor 3 can be detected from an induced voltage pulse width just after turning off the motor 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、パルセータまたは内槽を駆動するモータの回転数を制御するランドリー機器の回転制御装置に関するものである。
【0002】
【従来の技術】
従来の洗濯機を含むランドリー機器は、モータのオフ時に発生する進相コンデンサの両端の誘起電圧波形を波形整形し、出力パルスの周期を測定することにより回転数を検知し、脱水回転数を制御したり、あるいは異常を検知するようにしていた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平8−089685号公報
【0004】
【発明が解決しようとする課題】
しかし、このような従来の構成では、モータを低速回転制御した場合、モータのオフ時に発生する誘起電圧が低くなり、回転数が正確に測定できなくなるので、低速回転制御ができなくなるという問題があった。
【0005】
本発明は上記従来課題を解決するもので、低速回転数領域におけるモータ回転数の検知精度を高め、安価な構成でモータの低速回転制御ができるようにし、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することを目的としている。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するために、交流電源に接続したパワースイッチング手段に直列にパルセータまたは内槽を駆動するモータを接続し、モータに進相コンデンサを接続し、制御手段によりモータの回転数を検知する回転数検知手段の出力信号によりパワースイッチング手段を制御し、モータの回転数を制御するよう構成し、回転数検知手段は、制御手段により内槽の回転起動時に所定時間モータをフル通電、オフを繰返しながら回転数を上げていき、モータをオフした直後の誘起電圧パルス幅からモータの回転数を検知できる第1の回転数に達した後、モータをフル通電したときの交流電源と進相コンデンサの電圧位相差信号を基にモータの回転数を検知するようにしたものである。
【0007】
これにより、低速回転数領域におけるモータ回転数の検知精度を高めることができ、安価な構成でモータの低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、交流電源と、前記交流電源に接続したパワースイッチング手段と、前記パワースイッチング手段に直列に接続しパルセータまたは内槽を駆動するモータと、前記モータに接続した進相コンデンサと、前記モータの回転数を検知する回転数検知手段と、前記回転数検知手段の出力信号により前記パワースイッチング手段を制御し前記モータの回転数を制御する制御手段とを備え、前記回転数検知手段は、前記制御手段により内槽の回転起動時に所定時間前記モータをフル通電、オフを繰返しながら回転数を上げていき、前記モータをオフした直後の誘起電圧パルス幅から前記モータの回転数を検知できる第1の回転数に達した後、前記モータをフル通電したときの前記交流電源と進相コンデンサの電圧位相差信号を基に前記モータの回転数を検知するようにしたものであり、第1の回転数に達した後の回転数検知は、電圧位相差信号を基に検知することで、低速回転数領域におけるモータ回転数の検知精度を高めることができ、安価な構成でモータの低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【0009】
請求項2に記載の発明は、上記請求項1に記載の発明において、制御手段は、内槽の回転起動時にモータのフル通電、オフを行い、回転数検知手段により前記モータをフル通電したときの交流電源と進相コンデンサの第1の回転数に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅から前記モータの第1の回転数を検知し、第1の回転数信号と第1の回転数に対応した電圧位相差信号から第2の回転数に対応した第2の電圧位相差を求め、前記モータのフル通電時の電圧位相差信号が第2の電圧位相差に達すると所定時間前記モータをオフ、または位相制御するようにしたものであり、第1の回転数に達した後の回転制御は、モータを駆動中に回転数が検知できるので設定回転数以上にはならない制御が可能となり、安価な構成でモータの低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【0010】
請求項3に記載の発明は、上記請求項2に記載の発明において、制御手段は、内槽の回転起動時にモータのフル通電、オフを複数回行い、回転数検知手段により少なくとも2回以上、前記モータをフル通電したときの交流電源と進相コンデンサの第1の回転数に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅から前記モータの第1の回転数を検知し、少なくとも2個以上の第1の回転数信号と第1の回転数に対応した電圧位相差信号から第2の回転数に対応した第2の電圧位相差を求め、第2の回転数で制御するようにしたものであり、複数の信号から第2の電圧位相差を求めるため、回転数検知の精度を向上でき、安定した回転制御装置を実現することができる。
【0011】
請求項4に記載の発明は、上記請求項2または3に記載の発明において、制御手段は、回転数検知手段によりモータの回転数と、交流電源と進相コンデンサの回転数に対応した電圧位相差信号との関係が略線形となる回転数の範囲内で第2の回転数に対応した位相差を求め、第2の回転数で制御するようにしたものであり、確実に回転数を検知でき、安定した回転制御装置を実現することができる。
【0012】
請求項5に記載の発明は、上記請求項1〜4に記載の発明において、内槽を回転自在に配設した外槽を備え、制御手段は、第2の回転数を前記外槽の共振回転数よりも高い回転数で制御するようにしたものであり、外槽の振動を抑え、低振動、低騒音のランドリー機器を実現するとともに、外槽が筐体に当たるなどの異常振動、異常音を発生するのを防ぐことができる。
【0013】
請求項6に記載の発明は、上記請求項1〜5に記載の発明において、内部に外槽を弾性支持する筐体を備え、制御手段は、第2の回転数を前記筐体の共振回転数よりも低い回転数で制御するようにしたものであり、筐体の振動を抑え、低振動、低騒音のランドリー機器を実現することができる。
【0014】
【実施例】
以下、本発明の一実施例について、図面を参照しながら説明する。
【0015】
図1に示すように、交流電源1は、一方のラインにパワースイッチング手段2を直列に接続し、パワースイッチング手段2と直列にモータ3を接続する。パワースイッチング手段2は、3端子双方向性サイリスタ(以下、単にサイリスタという)により構成し、交流電源1に同期してフル通電、オフ制御や位相制御を行うようにしている。モータ3は、筐体に弾性支持された外槽に回転自在に配設した内槽とパルセータ(いずれも図示せず)を駆動するもので、通常、コンデンサラン誘導モータで構成し、主巻線3aと補助巻線3b間に進相コンデンサ30を接続している。
【0016】
主巻線3aに直列にパワースイッチング手段2aを接続し、補助巻線3bと直列にパワースイッチング手段2bを接続し、パワースイッチング手段2aまたは2bをオンすることにより、モータ3の正反転制御が可能となる。また、パワースイッチング手段2aを位相制御して回転制御する場合には、主巻線3aとパワースイッチング手段2a間にチョークコイル31を接続してラジオ雑音を低減させる。
【0017】
回転数検知手段4は、パワースイッチング手段2のフル通電時における進相コンデンサ電圧位相と、パワースイッチング手段2をオフした直後の誘起電圧パルス幅よりモータ3の回転数を検知するようにしたものであり、進相コンデンサ30の電圧位相を検出する進相コンデンサ零電圧検出回路41と、交流電源1の零電圧を検出する交流零電圧検出回路42と、進相コンデンサ零電圧検出回路41の出力信号と交流零電圧検出回路42の出力信号位相差、および進相コンデンサ電圧周期より回転数を検出する回転数検出回路43とで構成している。
【0018】
すなわち、サイリスタのフル通電時の進相コンデンサ30の電圧位相差信号φと、サイリスタのオフ直後の進相コンデンサ30の電圧周期(あるいはコンデンサパルス幅tpw)を回転数検知回路43により検知することで、モータ3の回転数を検知するようにしている。
【0019】
コンデンサ零電圧検出回路41は、フォトカプラーと抵抗による簡単な回路構成により実現でき、ロータ回転を永久磁石とホールIC等で検出する回転センサよりも安価で、機械的取り付けが不必要で、信頼性の高い回転数検知手段を実現できる。
【0020】
図2は、交流電源1の電圧Vaと進相コンデンサ電圧Vc、および交流零電圧検出回路42の出力信号である電源位相信号vaと、進相コンデンサ零電圧検出回路41の出力信号である電圧位相信号vcの波形関係を示すものであり、交流電源1の電圧Vaと進相コンデンサ電圧Vcの電圧位相差信号φは、交流零電圧検出回路42の出力信号である電源位相信号vaの時間差より検出できることを示している。モータ3の回転数が零の場合には、位相φは零に近づくが、回転数が増加すると(滑りが小さくなると)ロータの2次側電流により巻線インピーダンスと見かけの2次抵抗が変化して電圧位相差信号φが大きくなるので、電圧位相差信号φより回転数を検知することが可能となる。
【0021】
ここで、モータ回転数Nと電圧位相差信号φとの関係は、図3に示すように、回転数が第3の回転数N3より低い場合には略線形で、モータ回転数Nが高くなれば電圧位相差信号φも大きくなるが、第3の回転数N3より高くなるとその関係が崩れ、さらに回転数が高くなると逆転する特性を示している。よって、電圧位相差信号φによる回転数検知は、低回転領域でより優れていることがわかる。
【0022】
また、曲線Aは運転初期の回転数−位相特性で、曲線Bはモータを低速回転制御して数10分後経過してモータが温度上昇したときの回転数−位相特性であり、温度により特性が変化する様子を示している。
【0023】
図4は、サイリスタをフル通電させた後、サイリスタをオフさせて進相コンデンサ電圧パルス幅tpwを検出してモータ巻線誘起電圧の周期を検出することにより回転数を検知する場合のタイミングチャートを示している。
【0024】
電圧Vcはコンデンサ電圧波形で、サイリスタのゲート信号vgを連続して加えることによりフル通電させ、時間toffにてゲート信号vgを遮断すると、交流電源1のつぎの半サイクルでサイリスタはオフし、コンデンサ電圧Vcはモータ巻線誘起電圧に応じて減衰振動する。
【0025】
減衰振動の初期電圧周期はモータ回転数に依存するので、サイリスタのオフ直後のコンデンサ30の電圧周期、あるいは図4に示すようにコンデンサ電圧パルス幅tpwを検出することにより、モータ3の回転数を検知することができる。
【0026】
サイリスタをフル通電した後、サイリスタをオフさせた直後のモータ回転数Nとコンデンサ電圧パルス幅tpwの関係は、図5に示すように、回転数Nが高い程コンデンサパルス幅tpwの変化が大きくなり、回転数検知精度が向上する。また、回転数が同期回転数の半分以下では誘起電圧がほとんどなくなるので、回転数検知は不可能となる。よって、コンデンサパルス幅tpw(コンデンサ電圧周期も同様)による回転数検知方法は、高回転数領域で行う必要がある。
【0027】
制御手段5は、パワースイッチング手段2のフル通電、オフ制御、あるいは位相制御を行うもので、交流零電圧検出回路42の出力信号に同期してパワースイッチング手段2の導通を制御する。給水弁6および排水弁7も同様にパワースイッチング手段2によりフル通電、オフ制御される。
【0028】
ここで、制御手段5は、回転数検知手段4の出力信号によりモータ3の回転数を制御するとともに、モータ3の回転起動時に所定時間モータ3をフル通電、オフを繰返しながら回転数を上げていき、回転数検知手段4によりモータ3をフル通電したときの交流電源1と進相コンデンサ30の第1の回転数N1に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅からモータ3の第1の回転数N1を検知し、第1の回転数信号と第1の回転数N1に対応した電圧位相差信号から第2の回転数N2に対応した第2の電圧位相差を求め、モータ3のフル通電時の電圧位相差信号が第2の電圧位相差に達すると所定時間モータ3をオフ、または位相制御するようにしている。
【0029】
上記構成において図6に示す回転制御のフローチャートを参照しながら、サイリスタのフル通電時のコンデンサ電圧位相と、サイリスタのオフ直後のコンデンサ電圧周期よりモータ回転数を検知して回転制御する場合の動作を説明する。
【0030】
ステップ100より回転制御が開始し、ステップ101にて回転数設定、あるいはタイマーのクリヤ等の初期設定を実行し、つぎにステップ102にて所定時間サイリスタをフル通電させながら、ステップ103で交流電源1と進相コンデンサ30の第1の回転数N1に対応した電圧位相差信号φを検知する。このとき、モータ3の回転数は上昇していくため、電圧位相差信号φは絶えず変化していくが、ステップ104で所定時間サイリスタのフル通電終了時の回転数に対応した電圧位相差信号を第1の回転数N1に対応した電圧位相差信号をφ1=φに仮決定する。
【0031】
つぎに、ステップ105に進んでサイリスタをオフし、ステップ106に進んで、図4に示すコンデンサ電圧周期、あるいはパルス幅tpwを測定し、ステップ107にてパルス幅tpwが検知できれば、ステップ108で第1の回転数N1に対応した電圧位相差信号φ1=φに本決定し、パルス幅をtpw1=tpwに決定する。パルス幅tpwが検知できなければ、ステップ102に戻り、再度所定時間サイリスタのフル通電、オフを繰返し、tpwが検知できる回転数に達した後、φ1、tpw1の決定を行う。そして、ステップ109にて第1の回転数N1に対応した電圧位相差信号φ1、パルス幅tpw1より、第2の回転数N2に対応した電圧位相差信号φ2を求める。
【0032】
つぎに、ステップ110にて運転時間Tのカウントを実行した後、ステップ111に進んで運転時間Tが設定時間Tmaxに達したかどうか判定する。設定時間Tmax以上ならばステップ112に進んでサイリスタをオフし、ステップ113に進んで回転制御を終了する。
【0033】
運転時間Tが設定時間Tmax未満ならばステップ114に進んでサイリスタをフル通電させ、つぎに、ステップ115に進んで電圧位相差信号φの検知を行う。つぎに、ステップ116に進んで位相φが第2の回転数N2に対応した電圧位相差信号φ2以上かどうか判定し、φ2以上ならばステップ117に進んで所定時間位相制御してモータ電流を減らし、モータ駆動トルクを減らして回転数を減らし、ステップ110に移行する。ステップ116にて位相φが第2の回転数N2に対応した電圧位相差信号φ2に達しなければステップ110に戻り、サイリスタのフル通電を続行する。
【0034】
このときの回転制御の制御特性は、図7に示すように、フル通電区間(フル通電区間T1)と位相制御区間(区間T2)を交互に繰り返し、回転数Nが第2の回転数N2(すなわち、電圧位相差信号φ2)に達すると位相制御に移行するので、回転数設定値N2以上にはならない制御特性が得られる。
【0035】
ここで、サイリスタをフル通電と位相制御により回転制御した場合のモータ電流波形は、図8に示すように、区間T1がフル通電で、区間T2が位相制御となり、Tφ’は位相制御の制御位相角を示している。制御位相角Tφ’はクラッチスプリングが戻らない程度に調整される。また、期間T2と制御位相角Tφ’を適当に調整すれば回転制御における回転数変動を少なくすることができる。
【0036】
電圧位相差信号φは、モータ3の2次抵抗と巻線インダクタンスと回転数(滑り)により変化し、回転数だけではなく回路インピーダンスによる影響があり、モータ3の巻線の2次抵抗(ロータ抵抗)が温度によって変化するので、回転数と電圧位相差信号φの特性は運転ごとに変化する。すなわち、モータの温度が上昇したときは同一滑りに対して2次抵抗が増加してモータ出力が減少し、図3の曲線Bに示すような特性となる。
【0037】
よって、温度による電圧位相差信号の変化を補正するために、内槽の回転起動時に所定時間モータをフル通電、オフを繰返しながら回転数を上げていき、サイリスタのオフ時のコンデンサパルス幅tpwが検知可能となる回転数に達した後、サイリスタのフル通電時に電圧位相差信号を測定し、サイリスタのオフ時にコンデンサ電圧周期より回転数を検知して第2の回転数N2に対応した電圧位相差信号φ2を補正することにより、温度変化による設定回転数の変動を防ぐことができる。
【0038】
このように、回転数検知手段4は、パワースイッチング手段2のフル通電時における進相コンデンサ電圧位相と、パワースイッチング手段2をオフした直後の誘起電圧パルス幅よりモータ3の回転数を検知するようにしているので、フル通電時における進相コンデンサ電圧位相と、パワースイッチング手段2をオフした直後の誘起電圧パルス幅の2つの信号により回転数を検知することで、負荷条件や温度変化による回転数の検知誤差を低減させることができ、精度の高い回転制御をすることができる。
【0039】
なお、ステップ117において位相制御する場合を示したが、サイリスタを完全にオフさせても回転制御は可能である。所定位相にて位相制御してもよいし、サイリスタフル通電時間を測定し、フル通電時間に応じて位相制御の位相角を変えてもよい。
【0040】
以上述べた如く本発明の特徴は、交流電源1と進相コンデンサ30の電圧位相差信号を検知してサイリスタにより回転制御するものであり、サイリスタのフル通電時に回転数検知できるので、設定回転数に達してからパワースイッチング手段を完全にオフさせても、あるいは、位相制御によりモータ電流を減らして加速を減らす方法でも、どちらでも回転制御方法を選択できる特徴がある。
【0041】
特に、全自動洗濯機の脱水回転制御においては、モータ3の通電をオフさせるとクラッチスプリングが戻ることによるクラッチスプリングの異常振動が発生し、さらに、モータ3の通電フル通電、オフを繰り返すとクラッチスプリングの摩耗とばね性が減少する問題があるので、フル通電と位相制御により回転制御可能な本発明は、全自動洗濯機の脱水回転制御にとって優れた方法である。
【0042】
以上のように本実施例によれば、制御手段5により、モータ3の回転数を検知する回転数検知手段4の出力信号によりモータ3の回転数を制御するよう構成し、回転数検知手段4は、制御手段5により内槽の回転起動時に所定時間モータをフル通電、オフを繰返しながら回転数を上げていき、モータ3をオフした直後の誘起電圧パルス幅からモータ3の回転数を検知できる第1の回転数N1に達した後、モータ3をフル通電したときの交流電源1と進相コンデンサ30の電圧位相差信号を基にモータ3の回転数を検知するようにしたので、第1の回転数N1に達した後の回転数検知は、電圧位相差信号を基に検知することで、低速回転数領域におけるモータ回転数の検知精度を高めることができ、安価な構成でモータの低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【0043】
また、制御手段5は、内槽の回転起動時にモータ3のフル通電、オフを行い、回転数検知手段4によりモータ3をフル通電したときの交流電源1と進相コンデンサ30の第1の回転数N1に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅からモータ3の第1の回転数N1を検知し、第1の回転数信号と第1の回転数N1に対応した電圧位相差信号から第2の回転数N2に対応した第2の電圧位相差を求め、モータ3のフル通電時の電圧位相差信号が第2の電圧位相差に達すると所定時間モータ3をオフ、または位相制御するようにしたので、第1の回転数N1に達した後の回転制御は、モータ3を駆動中に回転数が検知できるので設定回転数以上にはならない制御が可能となり、安価な構成でモータ3の低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【0044】
また、制御手段5は、内槽の回転起動時にモータ3のフル通電、オフを複数回行い、回転数検知手段4により少なくとも2回以上、モータ3をフル通電したときの交流電源1と進相コンデンサ30の第1の回転数N1に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅からモータ3の第1の回転数N1を検知し、少なくとも2個以上の第1の回転数信号と第1の回転数N1に対応した電圧位相差信号から第2の回転数N2に対応した第2の電圧位相差を求め、第2の回転数N2で制御することで、複数の信号から第2の電圧位相差を求めるため、回転数検知の精度を向上でき、安定した回転制御装置を実現することができる。
【0045】
また、制御手段5は、回転数検知手段4によりモータ3の回転数と、交流電源1と進相コンデンサ30の回転数に対応した電圧位相差信号との関係が略線形となる回転数の範囲内で第2の回転数N2に対応した位相差を求め、第2の回転数N2で制御することで、確実に回転数を検知でき、安定した回転制御装置を実現することができる。
【0046】
また、制御手段5は、図7に示すように、第2の回転数N2を外槽の共振回転数N4よりも高い回転数で制御することで、外槽の振動を抑え、低振動、低騒音のランドリー機器を実現するとともに、外槽が筐体に当たるなどの異常振動、異常音を発生するのを防ぐことができる。
【0047】
また、制御手段5は、図7に示すように、第2の回転数N2を筐体の共振回転数N5よりも低い回転数で制御することで、筐体の振動を抑え、低振動、低騒音のランドリー機器を実現することができる。
【0048】
また、乾燥運転時など運転を長時間続ける場合は、モータ3の温度上昇により、回転数と電圧位相差信号の特性はずれてくる。このようなときは、所定時間ごとに内槽の回転を停止し、再度内槽の回転起動時に電圧位相差信号φ2を補正してもよい。
【0049】
【発明の効果】
以上のように、本発明の請求項1に記載の発明によれば、制御手段により、モータの回転数を検知する回転数検知手段の出力信号によりモータの回転数を制御するよう構成し、回転数検知手段は、制御手段により内槽の回転起動時に所定時間モータをフル通電、オフを繰返しながら回転数を上げていき、モータをオフした直後の誘起電圧パルス幅からモータの回転数を検知できる第1の回転数に達した後、モータをフル通電したときの交流電源と進相コンデンサの電圧位相差信号を基にモータの回転数を検知するようにしたので、第1の回転数に達した後の回転数検知は、電圧位相差信号を基に検知することで、低速回転数領域におけるモータ回転数の検知精度を高めることができ、安価な構成でモータの低速回転制御をすることができ、低速から高速領域まで広範囲の回転制御可能なランドリー機器の回転制御装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施例のランドリー機器の回転制御装置の一部ブロック化した回路図
【図2】同ランドリー機器の回転制御装置の要部波形図
【図3】同ランドリー機器の回転制御装置の回転数と電圧位相差信号の特性図
【図4】同ランドリー機器の回転制御装置の要部波形図
【図5】同ランドリー機器の回転制御装置の回転数とサイリスタオフ時の進相コンデンサ電圧パルス幅の特性図
【図6】同ランドリー機器の回転制御装置の回転制御フローチャート
【図7】同ランドリー機器の回転制御装置による回転制御特性図
【図8】同ランドリー機器の回転制御装置のフル通電と位相制御による回転制御の電流波形図
【符号の説明】
1 交流電源
2 パワースイッチング手段
3 モータ
4 回転数検知手段
5 制御手段
30 進相コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation control device for a laundry machine that controls the rotation speed of a motor that drives a pulsator or an inner tub.
[0002]
[Prior art]
Laundry equipment including conventional washing machines shapes the induced voltage waveform across the phase-advancing capacitor that occurs when the motor is off, detects the rotation speed by measuring the output pulse period, and controls the spin speed. Or an abnormality is detected (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-089685
[Problems to be solved by the invention]
However, in such a conventional configuration, when the motor is controlled to rotate at a low speed, the induced voltage generated when the motor is turned off becomes low, and the rotational speed cannot be accurately measured. Was.
[0005]
The present invention solves the above-mentioned conventional problems by improving detection accuracy of the motor rotation speed in a low-speed rotation region, enabling low-speed rotation control of the motor with an inexpensive configuration, and enabling a wide range of rotation control from a low-speed to a high-speed region. It is intended to realize a rotation control device for a laundry machine.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention connects a motor for driving a pulsator or an inner tank in series with power switching means connected to an AC power supply, connects a phase-advancing capacitor to the motor, and controls the number of rotations of the motor by the control means. The power switching means is controlled by the output signal of the rotation speed detection means for detecting the rotation speed of the motor, and the rotation speed detection means is fully energized for a predetermined time when the rotation of the inner tank is started by the control means. After the motor is turned off, the rotation speed is increased, and after reaching the first rotation speed at which the motor rotation speed can be detected from the induced voltage pulse width immediately after the motor is turned off, the AC power supply when the motor is fully energized is used. The motor rotation speed is detected based on the voltage phase difference signal of the phase advance capacitor.
[0007]
As a result, it is possible to improve the detection accuracy of the motor rotation speed in the low-speed rotation region, control the low-speed rotation of the motor with an inexpensive configuration, and to control the rotation of laundry equipment that can control the rotation in a wide range from the low-speed to the high-speed region. A control device can be realized.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention provides an AC power supply, a power switching means connected to the AC power supply, a motor connected in series to the power switching means to drive a pulsator or an inner tank, and a motor connected to the motor. A phase-advancing capacitor, a rotation speed detection means for detecting the rotation speed of the motor, and a control means for controlling the power switching means by an output signal of the rotation speed detection means to control the rotation speed of the motor, The rotation speed detection means increases the rotation speed while repeating the full energization and off of the motor for a predetermined time at the start of rotation of the inner tank by the control means, and increases the rotation speed from the induced voltage pulse width immediately after the motor is turned off. After reaching the first rotation speed at which the rotation speed of the motor can be detected, the voltage phase difference between the AC power supply and the phase-advancing capacitor when the motor is fully energized. The number of revolutions of the motor is detected based on the signal number, and the number of revolutions detected after reaching the first number of revolutions is detected based on the voltage phase difference signal. It is possible to realize a rotation control device of a laundry machine that can control the rotation speed of a motor with a low-cost configuration and can control the rotation speed in a wide range from a low speed to a high speed region. it can.
[0009]
According to a second aspect of the present invention, in the first aspect of the present invention, the control means performs full energization and off of the motor at the time of starting rotation of the inner tank, and performs full energization of the motor by the rotation number detecting means. Detecting the voltage phase difference signal corresponding to the first rotation speed of the AC power supply and the phase-advancing capacitor, and detecting the first rotation speed of the motor from the induced voltage pulse width immediately after turning off the power supply. A second voltage phase difference corresponding to the second rotation speed is obtained from the number signal and the voltage phase difference signal corresponding to the first rotation speed, and the voltage phase difference signal when the motor is fully energized is equal to the second voltage level. When the phase difference is reached, the motor is turned off or the phase is controlled for a predetermined time. The rotation control after reaching the first rotation speed is performed by setting the rotation speed because the rotation speed can be detected while the motor is being driven. Control that does not exceed the above is possible Ri can be a low speed control of the motor with an inexpensive configuration, it is possible to realize a rotation control device for a wide range of rotation can be controlled laundry machine from a low speed to a high speed region.
[0010]
According to a third aspect of the present invention, in the second aspect of the present invention, the control unit performs full energization and off of the motor a plurality of times at the time of starting rotation of the inner tank, and at least two or more times by the rotation speed detection unit. While detecting the voltage phase difference signal corresponding to the first rotation speed of the AC power supply and the phase advance capacitor when the motor is fully energized, the first rotation speed of the motor is determined from the induced voltage pulse width immediately after the motor is turned off. Detecting a second voltage phase difference corresponding to a second rotation speed from at least two or more first rotation speed signals and a voltage phase difference signal corresponding to the first rotation speed; Since the second voltage phase difference is obtained from a plurality of signals, the accuracy of rotation speed detection can be improved, and a stable rotation control device can be realized.
[0011]
According to a fourth aspect of the present invention, in the second or third aspect of the present invention, the control means controls the rotation speed of the motor and the voltage level corresponding to the rotation speeds of the AC power supply and the phase-advancing capacitor by the rotation speed detecting device. The phase difference corresponding to the second rotation speed is obtained within the range of the rotation speed at which the relationship with the phase difference signal is substantially linear, and the control is performed at the second rotation speed, and the rotation speed is reliably detected. As a result, a stable rotation control device can be realized.
[0012]
According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, there is provided an outer tank in which the inner tank is rotatably disposed, and the control means sets the second rotation speed to the resonance of the outer tank. It is controlled at a higher rotation speed than the rotation speed, suppressing the vibration of the outer tub, realizing low vibration and low noise laundry equipment, and abnormal vibration and abnormal sound such as the outer tub hitting the housing Can be prevented from occurring.
[0013]
According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, there is provided a housing for elastically supporting the outer tub therein, and the control means controls the second rotational speed to the resonance rotation of the housing. The number of rotations is controlled to be lower than the number of rotations, so that the vibration of the housing can be suppressed, and a laundry machine with low vibration and low noise can be realized.
[0014]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0015]
As shown in FIG. 1, an AC power supply 1 has a power switching means 2 connected in series to one line, and a motor 3 connected in series with the power switching means 2. The power switching means 2 is composed of a three-terminal bidirectional thyristor (hereinafter simply referred to as a thyristor), and performs full energization, off control and phase control in synchronization with the AC power supply 1. The motor 3 drives an inner tank and a pulsator (both not shown) rotatably disposed in an outer tank elastically supported by the housing, and is usually constituted by a condenser run induction motor and has a main winding. A phase advance capacitor 30 is connected between 3a and the auxiliary winding 3b.
[0016]
By connecting the power switching means 2a in series with the main winding 3a, connecting the power switching means 2b in series with the auxiliary winding 3b, and turning on the power switching means 2a or 2b, forward / reverse control of the motor 3 is possible. It becomes. When the rotation of the power switching means 2a is controlled by controlling the phase, a choke coil 31 is connected between the main winding 3a and the power switching means 2a to reduce radio noise.
[0017]
The rotation speed detection means 4 detects the rotation speed of the motor 3 from the voltage phase of the leading capacitor when the power switching means 2 is fully energized and the induced voltage pulse width immediately after the power switching means 2 is turned off. Yes, a leading capacitor zero voltage detection circuit 41 for detecting the voltage phase of the leading capacitor 30, an AC zero voltage detection circuit 42 for detecting the zero voltage of the AC power supply 1, and an output signal of the leading capacitor zero voltage detection circuit 41 And a rotation speed detection circuit 43 for detecting the rotation speed from the output signal phase difference of the AC zero voltage detection circuit 42 and the phase of the phase advance capacitor voltage.
[0018]
That is, the rotation speed detection circuit 43 detects the voltage phase difference signal φ of the phase advance capacitor 30 when the thyristor is fully energized and the voltage cycle (or the capacitor pulse width tpw) of the phase advance capacitor 30 immediately after the thyristor is turned off. , The number of rotations of the motor 3 is detected.
[0019]
The capacitor zero voltage detection circuit 41 can be realized by a simple circuit configuration using a photocoupler and a resistor, is less expensive than a rotation sensor that detects the rotor rotation with a permanent magnet and a Hall IC, requires no mechanical mounting, and has high reliability. The rotation speed detecting means having a high speed can be realized.
[0020]
FIG. 2 shows the voltage Va and the phase-advancing capacitor voltage Vc of the AC power supply 1, the power phase signal va that is an output signal of the AC zero-voltage detection circuit 42, and the voltage phase that is the output signal of the phase-advance capacitor zero-voltage detection circuit 41. 5 shows the waveform relationship of the signal vc. The voltage phase difference signal φ between the voltage Va of the AC power supply 1 and the phase-advancing capacitor voltage Vc is detected from the time difference between the power supply phase signal va which is the output signal of the AC zero voltage detection circuit 42. Indicates that you can do it. When the rotation speed of the motor 3 is zero, the phase φ approaches zero, but when the rotation speed increases (when slippage decreases), the winding secondary impedance and the apparent secondary resistance change due to the secondary current of the rotor. As a result, the voltage phase difference signal φ becomes large, so that the rotation speed can be detected from the voltage phase difference signal φ.
[0021]
Here, the relationship between the motor rotation speed N and the voltage phase difference signal φ is substantially linear when the rotation speed is lower than the third rotation speed N3, as shown in FIG. 3, and the motor rotation speed N can be increased. For example, the voltage phase difference signal φ also increases, but when the rotation speed becomes higher than the third rotation speed N3, the relationship is broken, and when the rotation speed is further increased, the characteristics are reversed. Therefore, it can be seen that the rotation speed detection based on the voltage phase difference signal φ is more excellent in the low rotation region.
[0022]
Curve A shows the rotational speed-phase characteristic at the beginning of the operation, and curve B shows the rotational speed-phase characteristic when the motor temperature rises several tens of minutes after the low-speed rotation control of the motor. Shows a change in.
[0023]
FIG. 4 is a timing chart in the case where the thyristor is fully energized, the thyristor is turned off, the phase-advancing capacitor voltage pulse width tpw is detected, and the period of the motor winding induced voltage is detected to detect the rotation speed. Is shown.
[0024]
The voltage Vc is a capacitor voltage waveform, and the thyristor is turned off in the next half cycle of the AC power supply 1 when the gate signal vg of the thyristor is continuously applied to make full energization, and the gate signal vg is cut off at time toff. The voltage Vc oscillates attenuated according to the motor winding induced voltage.
[0025]
Since the initial voltage cycle of the damped oscillation depends on the motor rotation speed, the rotation speed of the motor 3 is determined by detecting the voltage cycle of the capacitor 30 immediately after the thyristor is turned off or the capacitor voltage pulse width tpw as shown in FIG. Can be detected.
[0026]
After the thyristor is fully energized, the relationship between the motor speed N and the capacitor voltage pulse width tpw immediately after the thyristor is turned off, as shown in FIG. 5, shows that the change in the capacitor pulse width tpw increases as the speed N increases. In addition, the rotation speed detection accuracy is improved. In addition, when the rotation speed is less than half of the synchronous rotation speed, the induced voltage hardly occurs, so that the rotation speed detection becomes impossible. Therefore, the rotation speed detection method based on the capacitor pulse width tpw (similarly for the capacitor voltage period) needs to be performed in a high rotation speed region.
[0027]
The control unit 5 performs full energization, off control, or phase control of the power switching unit 2, and controls conduction of the power switching unit 2 in synchronization with an output signal of the AC zero voltage detection circuit 42. The water supply valve 6 and the drain valve 7 are similarly fully energized and turned off by the power switching means 2.
[0028]
Here, the control means 5 controls the rotation speed of the motor 3 based on the output signal of the rotation speed detection means 4 and increases the rotation speed while repeatedly turning on and off the motor 3 for a predetermined time when the rotation of the motor 3 is started. Then, the rotation speed detecting means 4 detects a voltage phase difference signal corresponding to the first rotation speed N1 of the AC power supply 1 and the phase advance capacitor 30 when the motor 3 is fully energized, and an induced voltage pulse immediately after being turned off. The first rotation speed N1 of the motor 3 is detected from the width, and the second voltage level corresponding to the second rotation speed N2 is obtained from the first rotation speed signal and the voltage phase difference signal corresponding to the first rotation speed N1. The phase difference is obtained, and when the voltage phase difference signal when the motor 3 is fully energized reaches the second voltage phase difference, the motor 3 is turned off or the phase is controlled for a predetermined time.
[0029]
Referring to the rotation control flowchart shown in FIG. 6 in the above configuration, the operation in the case where the rotation of the motor is detected by detecting the motor rotation speed from the capacitor voltage phase when the thyristor is fully energized and the capacitor voltage cycle immediately after the thyristor is turned off. explain.
[0030]
Rotation control is started from step 100, rotation number setting or initial setting such as clearing of a timer is executed in step 101, and then, in step 102, while the thyristor is fully energized for a predetermined time, in step 103, the AC power source 1 is turned on. And a voltage phase difference signal φ corresponding to the first rotation speed N1 of the phase advance capacitor 30. At this time, since the rotation speed of the motor 3 increases, the voltage phase difference signal φ constantly changes. However, in step 104, the voltage phase difference signal corresponding to the rotation speed at the time when the thyristor has been fully energized for a predetermined time is output. The voltage phase difference signal corresponding to the first rotation speed N1 is temporarily determined to be φ1 = φ.
[0031]
Next, proceeding to step 105, the thyristor is turned off, and proceeding to step 106, the capacitor voltage cycle or the pulse width tpw shown in FIG. 4 is measured. If the pulse width tpw can be detected in step 107, the process proceeds to step 108. The voltage phase difference signal φ1 = φ corresponding to the rotation speed N1 of 1 is finally determined, and the pulse width is determined to be tpw1 = tpw. If the pulse width tpw cannot be detected, the process returns to step 102, and the thyristor is repeatedly turned on and off again for a predetermined period of time. After the tpw reaches the detectable rotation speed, φ1 and tpw1 are determined. In step 109, a voltage phase difference signal φ2 corresponding to the second rotation speed N2 is obtained from the voltage phase difference signal φ1 corresponding to the first rotation speed N1 and the pulse width tpw1.
[0032]
Next, after counting the operation time T in step 110, the process proceeds to step 111 to determine whether the operation time T has reached the set time Tmax. If it is equal to or longer than the set time Tmax, the process proceeds to step 112 to turn off the thyristor, and proceeds to step 113 to terminate the rotation control.
[0033]
If the operation time T is less than the set time Tmax, the routine proceeds to step 114, where the thyristor is fully energized, and then proceeds to step 115 to detect the voltage phase difference signal φ. Next, the routine proceeds to step 116, where it is determined whether or not the phase φ is greater than or equal to the voltage phase difference signal φ2 corresponding to the second rotation speed N2. If it is greater than or equal to φ2, the routine proceeds to step 117 to perform phase control for a predetermined time to reduce the motor current. Then, the rotational speed is reduced by reducing the motor driving torque, and the routine proceeds to step 110. If the phase φ does not reach the voltage phase difference signal φ2 corresponding to the second rotation speed N2 in Step 116, the process returns to Step 110, and the full energization of the thyristor is continued.
[0034]
As shown in FIG. 7, the control characteristic of the rotation control at this time is such that the full energizing section (full energizing section T1) and the phase control section (section T2) are alternately repeated, and the rotational speed N becomes the second rotational speed N2 ( In other words, when the voltage phase difference signal φ2) is reached, the control is shifted to the phase control, so that a control characteristic that does not exceed the rotation speed set value N2 is obtained.
[0035]
Here, as shown in FIG. 8, when the thyristor is fully energized and the rotation is controlled by phase control, the section T1 is fully energized, the section T2 is phase controlled, and Tφ ′ is the control phase of the phase control, as shown in FIG. The corner is shown. The control phase angle Tφ ′ is adjusted so that the clutch spring does not return. Further, by appropriately adjusting the period T2 and the control phase angle Tφ ′, it is possible to reduce the fluctuation of the rotation speed in the rotation control.
[0036]
The voltage phase difference signal φ changes depending on the secondary resistance, winding inductance, and rotation speed (slip) of the motor 3 and is affected not only by the rotation speed but also by the circuit impedance. Resistance) changes with temperature, so that the characteristics of the rotation speed and the voltage phase difference signal φ change every operation. That is, when the temperature of the motor rises, the secondary resistance increases for the same slip and the motor output decreases, resulting in a characteristic as shown by the curve B in FIG.
[0037]
Therefore, in order to correct the change of the voltage phase difference signal due to the temperature, the rotation speed is increased while repeatedly turning on and off the motor for a predetermined time when the rotation of the inner tank is started, and the capacitor pulse width tpw when the thyristor is off is reduced. After reaching the detectable rotation speed, the voltage phase difference signal is measured when the thyristor is fully energized, and when the thyristor is off, the rotation speed is detected from the capacitor voltage cycle, and the voltage phase difference corresponding to the second rotation speed N2 is detected. By correcting the signal φ2, it is possible to prevent a change in the set rotation speed due to a temperature change.
[0038]
As described above, the rotation speed detection unit 4 detects the rotation speed of the motor 3 from the phase voltage of the leading capacitor when the power switching unit 2 is fully energized and the induced voltage pulse width immediately after the power switching unit 2 is turned off. The rotation speed is detected by two signals, that is, the phase voltage of the leading capacitor during full energization and the pulse width of the induced voltage immediately after the power switching means 2 is turned off. Can be reduced, and highly accurate rotation control can be performed.
[0039]
Although the case where the phase control is performed in step 117 has been described, the rotation control can be performed even when the thyristor is completely turned off. The phase control may be performed at a predetermined phase, or the thyristor full energization time may be measured, and the phase angle of the phase control may be changed according to the full energization time.
[0040]
As described above, the feature of the present invention is to control the rotation by the thyristor by detecting the voltage phase difference signal between the AC power supply 1 and the phase-advancing capacitor 30, and to detect the rotation speed when the thyristor is fully energized. The rotation control method can be selected either by completely turning off the power switching means after reaching, or by reducing the motor current by phase control to reduce the acceleration.
[0041]
In particular, in the dehydration rotation control of a fully automatic washing machine, when the energization of the motor 3 is turned off, abnormal vibration of the clutch spring occurs due to the return of the clutch spring. The present invention, which can control the rotation by full energization and phase control, is an excellent method for controlling the spin-drying of a fully automatic washing machine, because of the problems of reduced spring wear and resilience.
[0042]
As described above, according to the present embodiment, the control unit 5 controls the rotation speed of the motor 3 based on the output signal of the rotation speed detection unit 4 for detecting the rotation speed of the motor 3. The control means 5 increases the rotation speed while repeatedly turning on and off the motor for a predetermined time when the inner tank starts rotating, and detects the rotation speed of the motor 3 from the induced voltage pulse width immediately after the motor 3 is turned off. After reaching the first rotation speed N1, the rotation speed of the motor 3 is detected based on the voltage phase difference signal of the AC power supply 1 and the phase advance capacitor 30 when the motor 3 is fully energized. After the rotation speed N1 has been reached, the detection of the rotation speed can be improved based on the voltage phase difference signal, so that the detection accuracy of the motor rotation speed in the low-speed rotation region can be improved. Control the rotation It can be, it is possible to realize a rotation control device for a wide range of rotation can be controlled laundry machine from a low speed to a high speed region.
[0043]
Further, the control means 5 performs full energization and off of the motor 3 when the rotation of the inner tank is started, and the first rotation of the AC power supply 1 and the phase advance capacitor 30 when the motor 3 is fully energized by the rotation speed detection means 4. In addition to detecting the voltage phase difference signal corresponding to the number N1, the first rotation number N1 of the motor 3 is detected from the induced voltage pulse width immediately after turning off, and the first rotation number signal and the first rotation number N1 are detected. A second voltage phase difference corresponding to the second rotation speed N2 is obtained from the corresponding voltage phase difference signal, and when the voltage phase difference signal at the time of full energization of the motor 3 reaches the second voltage phase difference, the motor 3 Is turned off or the phase is controlled, so that the rotation control after the first rotation speed N1 is reached can be detected while the motor 3 is being driven, so that the control that does not exceed the set rotation speed becomes possible. , Low speed of motor 3 with inexpensive configuration Can be a rolling control, it is possible to realize a rotation control device for a wide range of rotation can be controlled laundry machine from a low speed to a high speed region.
[0044]
The control means 5 performs full energization and off of the motor 3 a plurality of times at the time of starting rotation of the inner tub, and the rotation number detecting means 4 at least twice or more advances the AC power supply 1 when the motor 3 is fully energized. A voltage phase difference signal corresponding to the first rotation speed N1 of the capacitor 30 is detected, and the first rotation speed N1 of the motor 3 is detected from the induced voltage pulse width immediately after the capacitor 30 is turned off. By obtaining the second voltage phase difference corresponding to the second rotation speed N2 from the rotation speed signal of the second rotation speed N2 and the voltage phase difference signal corresponding to the first rotation speed N1, Since the second voltage phase difference is obtained from the above signal, the accuracy of rotation speed detection can be improved, and a stable rotation control device can be realized.
[0045]
Further, the control means 5 controls the rotational speed range in which the relationship between the rotational speed of the motor 3 and the voltage phase difference signal corresponding to the rotational speeds of the AC power supply 1 and the phase-advancing capacitor 30 is substantially linear. By calculating the phase difference corresponding to the second rotation speed N2 and controlling the rotation speed at the second rotation speed N2, the rotation speed can be reliably detected and a stable rotation control device can be realized.
[0046]
Further, as shown in FIG. 7, the control means 5 controls the second rotation speed N2 at a rotation speed higher than the resonance rotation speed N4 of the outer tub, thereby suppressing the vibration of the outer tub, and achieving low vibration and low vibration. It is possible to realize a noise laundry machine and prevent the occurrence of abnormal vibration and abnormal sound such as the outer tub hitting the housing.
[0047]
Further, as shown in FIG. 7, the control means 5 controls the second rotation speed N2 at a lower rotation speed than the resonance rotation speed N5 of the housing, thereby suppressing the vibration of the housing and reducing the low vibration and low vibration. The noise of laundry equipment can be realized.
[0048]
Further, when the operation is continued for a long time, such as during the drying operation, the characteristics of the rotation speed and the voltage phase difference signal are shifted due to the temperature rise of the motor 3. In such a case, the rotation of the inner tank may be stopped every predetermined time, and the voltage phase difference signal φ2 may be corrected again when the rotation of the inner tank is started.
[0049]
【The invention's effect】
As described above, according to the first aspect of the present invention, the control means controls the motor rotation speed based on the output signal of the rotation speed detection means for detecting the motor rotation speed. The number detecting means increases the number of revolutions by repeatedly turning on and off the motor for a predetermined time at the start of rotation of the inner tank by the control means, and increases the number of revolutions, and can detect the number of revolutions of the motor from the induced voltage pulse width immediately after the motor is turned off. After reaching the first rotation speed, the motor rotation speed is detected based on the voltage phase difference signal of the AC power supply and the phase-advancing capacitor when the motor is fully energized. The rotation speed detection after the detection is performed based on the voltage phase difference signal, so that the detection accuracy of the motor rotation speed in the low speed rotation speed region can be improved, and the low speed rotation control of the motor can be performed with an inexpensive configuration. Can, low From to a high-speed region can be realized rotation control apparatus for a wide range of rotation can be controlled laundry machine.
[Brief description of the drawings]
FIG. 1 is a partially block diagram of a laundry device rotation control device according to an embodiment of the present invention; FIG. 2 is a main part waveform diagram of the laundry device rotation control device; FIG. Characteristic diagram of the rotation speed of the control device and the voltage phase difference signal. [FIG. 4] Waveform diagram of the main part of the rotation control device of the laundry device. [FIG. 5] Rotation speed of the rotation control device of the laundry device and phase advance when the thyristor is off. Characteristic diagram of capacitor voltage pulse width [Fig. 6] Rotation control flowchart of rotation control device of the laundry device [Fig. 7] Rotation control characteristic diagram by rotation control device of the laundry device [Fig. 8] Rotation control device of the laundry device Current waveform diagram of rotation control by full energization and phase control [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Power switching means 3 Motor 4 Revolution number detecting means 5 Control means 30 Phase advance capacitor

Claims (6)

交流電源と、前記交流電源に接続したパワースイッチング手段と、前記パワースイッチング手段に直列に接続しパルセータまたは内槽を駆動するモータと、前記モータに接続した進相コンデンサと、前記モータの回転数を検知する回転数検知手段と、前記回転数検知手段の出力信号により前記パワースイッチング手段を制御し前記モータの回転数を制御する制御手段とを備え、前記回転数検知手段は、前記制御手段により内槽の回転起動時に所定時間前記モータをフル通電、オフを繰返しながら回転数を上げていき、前記モータをオフした直後の誘起電圧パルス幅から前記モータの回転数を検知できる第1の回転数に達した後、前記モータをフル通電したときの前記交流電源と進相コンデンサの電圧位相差信号を基に前記モータの回転数を検知するようにしたランドリー機器の回転制御装置。An AC power supply, a power switching means connected to the AC power supply, a motor connected in series to the power switching means to drive a pulsator or an inner tank, a phase-advancing capacitor connected to the motor, and a rotation speed of the motor. A rotational speed detecting means for detecting, and a control means for controlling the power switching means based on an output signal of the rotational speed detecting means to control the rotational speed of the motor, wherein the rotational speed detecting means is internally controlled by the control means. At the start of the rotation of the tank, the motor is fully energized for a predetermined time, the rotation speed is increased while repeating the turning off, and the first rotation speed at which the motor rotation speed can be detected from the induced voltage pulse width immediately after the motor is turned off. After that, the rotation speed of the motor is detected based on the voltage phase difference signal between the AC power supply and the phase-advancing capacitor when the motor is fully energized. Rotation control device of the laundry machine which is adapted to. 制御手段は、内槽の回転起動時にモータのフル通電、オフを行い、回転数検知手段により前記モータをフル通電したときの交流電源と進相コンデンサの第1の回転数に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅から前記モータの第1の回転数を検知し、第1の回転数信号と第1の回転数に対応した電圧位相差信号から第2の回転数に対応した第2の電圧位相差を求め、前記モータのフル通電時の電圧位相差信号が第2の電圧位相差に達すると所定時間前記モータをオフ、または位相制御するようにした請求項1記載のランドリー機器の回転制御装置。The control means performs full energization and off of the motor at the start of rotation of the inner tank, and the voltage phase difference corresponding to the first rotation number of the AC power supply and the phase advance capacitor when the motor is fully energized by the rotation number detection means. A first rotation speed of the motor from the induced voltage pulse width immediately after the signal is turned off, and a second rotation speed signal and a voltage phase difference signal corresponding to the first rotation speed to obtain a second rotation speed signal. A second voltage phase difference corresponding to a rotation speed is obtained, and when the voltage phase difference signal when the motor is fully energized reaches the second voltage phase difference, the motor is turned off or the phase is controlled for a predetermined time. Item 4. A rotation control device for a laundry machine according to Item 1. 制御手段は、内槽の回転起動時にモータのフル通電、オフを複数回行い、回転数検知手段により少なくとも2回以上、前記モータをフル通電したときの交流電源と進相コンデンサの第1の回転数に対応した電圧位相差信号を検知するとともに、オフした直後の誘起電圧パルス幅から前記モータの第1の回転数を検知し、少なくとも2個以上の第1の回転数信号と第1の回転数に対応した電圧位相差信号から第2の回転数に対応した第2の電圧位相差を求め、第2の回転数で制御するようにした請求項2記載のランドリー機器の回転制御装置。The control means performs full energization and off of the motor a plurality of times when the inner tank starts rotating, and at least two times or more by the rotation speed detection means, the first rotation of the AC power supply and the phase advance capacitor when the motor is fully energized. And a first rotation speed of the motor is detected from an induced voltage pulse width immediately after the voltage is turned off, and at least two or more first rotation speed signals and a first rotation speed signal are detected. 3. The rotation control device for a laundry machine according to claim 2, wherein a second voltage phase difference corresponding to the second rotation speed is obtained from the voltage phase difference signal corresponding to the number, and the second rotation speed is controlled. 制御手段は、回転数検知手段によりモータの回転数と、交流電源と進相コンデンサの回転数に対応した電圧位相差信号との関係が略線形となる回転数の範囲内で第2の回転数に対応した位相差を求め、第2の回転数で制御するようにした請求項2または3記載のランドリー機器の回転制御装置。The control means controls the second rotation speed within a rotation speed range in which the relationship between the rotation speed of the motor and the voltage phase difference signal corresponding to the rotation speeds of the AC power supply and the phase-advancing capacitor is substantially linear by the rotation speed detection means. 4. The rotation control device for a laundry machine according to claim 2, wherein a phase difference corresponding to the rotation speed is obtained and the control is performed at the second rotation speed. 内槽を回転自在に配設した外槽を備え、制御手段は、第2の回転数を前記外槽の共振回転数よりも高い回転数で制御するようにした請求項1〜4のいずれか1項に記載のランドリー機器の回転制御装置。5. The apparatus according to claim 1, further comprising an outer tank having an inner tank rotatably disposed therein, wherein the control means controls the second rotation speed at a rotation speed higher than the resonance rotation speed of the outer tank. The rotation control device for a laundry machine according to claim 1. 内部に外槽を弾性支持する筐体を備え、制御手段は、第2の回転数を前記筐体の共振回転数よりも低い回転数で制御するようにした請求項1〜5のいずれか1項に記載のランドリー機器の回転制御装置。6. A device according to claim 1, further comprising a housing for elastically supporting the outer tub therein, wherein the control means controls the second rotation speed at a lower rotation speed than the resonance rotation speed of the housing. A rotation control device for a laundry machine according to item 9.
JP2003005697A 2003-01-14 2003-01-14 Rotation control device for washing machine Expired - Fee Related JP4203641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005697A JP4203641B2 (en) 2003-01-14 2003-01-14 Rotation control device for washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005697A JP4203641B2 (en) 2003-01-14 2003-01-14 Rotation control device for washing machine

Publications (2)

Publication Number Publication Date
JP2004215826A true JP2004215826A (en) 2004-08-05
JP4203641B2 JP4203641B2 (en) 2009-01-07

Family

ID=32896295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005697A Expired - Fee Related JP4203641B2 (en) 2003-01-14 2003-01-14 Rotation control device for washing machine

Country Status (1)

Country Link
JP (1) JP4203641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616232A (en) * 2018-07-04 2018-10-02 青岛海信电子设备股份有限公司 A kind of speed Control of Induction Motor device and speed Control of Induction Motor method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130403B (en) * 2019-12-30 2021-05-18 四川虹美智能科技有限公司 Permanent magnet synchronous motor control method and device and electrical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616232A (en) * 2018-07-04 2018-10-02 青岛海信电子设备股份有限公司 A kind of speed Control of Induction Motor device and speed Control of Induction Motor method
CN108616232B (en) * 2018-07-04 2024-01-09 青岛海信网络能源股份有限公司 Asynchronous motor rotating speed controller and asynchronous motor rotating speed control method

Also Published As

Publication number Publication date
JP4203641B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
RU2303668C2 (en) Washing machine
US6842928B2 (en) Apparatus and method for detecting laundry weight in washing machine employing sensorless BLDC motor
JP6274466B1 (en) Driving method of sensorless motor
KR20000069295A (en) Laundry treating gqupment with a driving motor mounted on the drum shaft
JP4633433B2 (en) Method for commutation of brushless DC motor
KR20090053232A (en) Motor for washer, controlling method for a motor for a washer, and controlling method for a washer
JPH0420379A (en) Washing machine
JP4203641B2 (en) Rotation control device for washing machine
JP4271860B2 (en) In particular, a method for starting and steady-state supplying a permanent magnet synchronous motor for operating a hydraulic pump
Lim et al. Single phase switched reluctance motor for vacuum cleaner
JP4157460B2 (en) Washing machine
JP2004159975A (en) Revolution speed controller for washing machine
CN106452214A (en) Phase change control method of direct current brushless motor and phase change controller and direct current brushless motor
JP2005279309A (en) Washing machine
JP2008284405A (en) Washing machine
JP3861967B2 (en) Washing machine control device
JP2001120881A (en) Drum type washing machine
KR100370429B1 (en) Switched reluctance motor for an electric cleaning machine and control method thereof
KR101041101B1 (en) method for correcting position of hole sensors of washing machine
JP4158295B2 (en) Washing machine
JP3125308B2 (en) Washing machine load detection device
JP4016487B2 (en) Washing machine
JP4947087B2 (en) Washing machine
JP2532441B2 (en) Load detection device for washing machine
KR100301471B1 (en) Method of detecting the weight of laundary in washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees