JP2004214220A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2004214220A
JP2004214220A JP2004121589A JP2004121589A JP2004214220A JP 2004214220 A JP2004214220 A JP 2004214220A JP 2004121589 A JP2004121589 A JP 2004121589A JP 2004121589 A JP2004121589 A JP 2004121589A JP 2004214220 A JP2004214220 A JP 2004214220A
Authority
JP
Japan
Prior art keywords
coil
heating
wire
insulator
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004121589A
Other languages
Japanese (ja)
Inventor
Akira Kataoka
章 片岡
Motonari Hirota
泉生 弘田
Nobuyoshi Makio
信芳 槇尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004121589A priority Critical patent/JP2004214220A/en
Publication of JP2004214220A publication Critical patent/JP2004214220A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device equipped with a heating coil, whereof a coil resistance with respect to a high frequency current is reduced, by lessening the influence of proximity action of the high frequency current. <P>SOLUTION: This induction heating device is formed by winding a coil wire 16, and is provided with a heating coil to inductively heat an object to be heated. The coil wire 16 is formed by stranding a strand obtained by providing an insulating layer on the periphery of a conductor or aggregate wires formed by bundling the strands, and is also formed by providing an insulating material 17 of a fluororesin having a high melting point in the outer periphery of the coil wire and a fusible layer 22 of a fluororesin having a low melting point in its outside. The heating coil is made by winding the coil wire 16 provided with the insulating material on the outer periphery and by fusing and solidifying the fusible layer 22. Therefore, this induction heating device, whereby the influence of the skin effect and the proximity action is lessen, self-heating of the heating coil is not much, heating efficiency is therefore excellent, and heating adhesiveness is enhanced, can be provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は誘導加熱装置に関し、特に、高周波電流による損失を低減した加熱コイルに関する。   The present invention relates to an induction heating device, and more particularly, to a heating coil in which loss due to high-frequency current is reduced.

従来、誘導加熱装置の加熱できる金属は透磁率が高い鉄系のものだけであったが、近年、鉄以外の銅やアルミニウムといった金属の加熱も望まれている。とりわけ、加熱装置を調理器に応用した誘導加熱調理器は、近年鉄鍋以外に銅鍋やアルミニウム鍋なども使いたいという要望が高くなってきた。ところで、銅鍋やアルミニウム鍋を誘導加熱するには、透磁率が低いため鉄鍋に適した20〜30kHzよりも高い40〜100kHzの高周波電流を加熱コイルに流さなければならない。しかるに、周波数が高くなればなるほど、いわゆる表皮効果により高周波電流が導線の表面付近だけを流れるようになるため実効抵抗ははなはだしく増大する。そのため、表面積を増やし実効的に抵抗を減少する方法として、導線の径を細くし、例えば直径0.1mm以下の導線を数本ないし数十本束ねて用いる方法が行われてきた。しかし、この方法では、表皮効果による実効的な抵抗を下げることができても、導線を多数本用いているために近接作用が顕著となり必ずしも十分に抵抗を低減することができなかった。ここでいう近接作用とは、近接した導体に電流が流れるときに、磁界を介して相互に影響を与えあって、電流分布に偏りが生じる現象であり、導線表面の実効的な抵抗増大となる。近接作用は高周波電流の向きが導線間で揃っているほど、導線間の間隔が小さいほど大きくなる。   Conventionally, an induction heating device can heat only an iron-based metal having a high magnetic permeability. In recent years, however, it has been desired to heat a metal other than iron, such as copper or aluminum. In particular, in an induction heating cooker in which a heating device is applied to a cooker, there has recently been an increasing demand for using a copper pot or an aluminum pot in addition to an iron pot. By the way, in order to induction-heat a copper pan or an aluminum pan, a high-frequency current of 40 to 100 kHz, which is higher than 20 to 30 kHz suitable for an iron pan due to low magnetic permeability, must be passed through the heating coil. However, the higher the frequency, the more the so-called skin effect causes a high-frequency current to flow only near the surface of the conducting wire, so that the effective resistance remarkably increases. Therefore, as a method of increasing the surface area and effectively reducing the resistance, a method has been used in which the diameter of the conductive wire is reduced and, for example, several to several tens of conductive wires having a diameter of 0.1 mm or less are bundled. However, in this method, even if the effective resistance due to the skin effect can be reduced, the proximity effect becomes remarkable due to the use of many conductors, and the resistance cannot always be sufficiently reduced. The term “proximity effect” as used herein refers to a phenomenon in which when a current flows through a close conductor, they mutually affect each other via a magnetic field, causing a bias in the current distribution, and an effective increase in the resistance of the conductor surface. . The proximity effect increases as the direction of the high-frequency current is more uniform between the conductors and the spacing between the conductors is smaller.

前記課題を解決する方法としては、加熱コイルのコイル導線を、素線を束ねた集合線をさらに集合させる多段階集合構造と成すとともに、すくなくとも1の段階の集合線は編み上げにより形成することにより、集合線の向きが不揃いとなるとともに、相互に密着しなくなり、これにより近接効果を抑制できて加熱コイルの高周波電流に対するコイル抵抗を減少させ得るというものであった(例えば、特許文献1参照)。
特公平7−118377号公報
As a method for solving the above-mentioned problem, the coil conductor of the heating coil is formed as a multi-stage aggregate structure in which the aggregated wires obtained by bundling the wires are further aggregated, and at least the aggregate wire of one stage is formed by knitting. The orientations of the gathering wires are not uniform and do not adhere to each other, whereby the proximity effect can be suppressed and the coil resistance of the heating coil to high-frequency current can be reduced (for example, see Patent Document 1).
Japanese Patent Publication No. 7-118377

しかしながら、前記従来の構成では、加熱コイルの高周波電流に対するコイル抵抗を減少させることができるが、誘導加熱の効率をさらによくするためには、さらに高周波電流に対するコイル抵抗を低減する必要があった。   However, in the above-described conventional configuration, although the coil resistance of the heating coil with respect to the high-frequency current can be reduced, it is necessary to further reduce the coil resistance with respect to the high-frequency current in order to further improve the efficiency of induction heating.

本発明は、前記従来の課題を解決するもので、近接作用の影響を少なくし、加熱コイルの高周波電流に対するコイル抵抗を減少させ、加熱コイルの自己発熱が小さく加熱効率の良い誘導加熱装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides an induction heating apparatus that reduces the influence of proximity action, reduces coil resistance of a heating coil against high-frequency current, and has a small self-heating of the heating coil and high heating efficiency. The purpose is to do.

前記従来の課題を解決するために、本発明の誘導加熱装置はコイル導線を巻回してなる加熱コイルを備え、前記コイル導線は、導体の周囲に絶縁層を設けた素線もしくは前記素線を束ねた集合線を撚り合わせて形成されるとともに、その外周の一部または全体に融点の異なるフッ素樹脂で構成され、かつ融点の低いフッ素樹脂が融点の高いフッ素樹脂の外側に構成されてなる絶縁体を設けてなり、前記加熱コイルは、前記コイル導線を巻回後加熱し前記外側に構成されたフッ素樹脂を溶融固化することにより隣接した前記絶縁体どうしあるいは前記絶縁体と前記素線とを固着して形状を安定化するとともに、前記加熱コイルに40〜100kHzの高周波電流を流して銅やアルミニウムのような金属の被加熱体を誘導加熱する構成とした。この構成により、コイル導線を用いて巻回し加熱コイルを作製したとき、コイル導線間に絶縁体が存在するのでコイル導線間の間隔が広がり、ひいては素線間の近接作用による高周波抵抗の増大を低減できるとともに、絶縁体として外側に融点の低いフッ素樹脂を用い、内側に融点の高いフッ素樹脂を用いて外側の融点の低いフッ素樹脂を溶融固化するのでコイル導線間の絶縁強度と加熱接着性が向上し、信頼性を高めることができる。   In order to solve the conventional problem, the induction heating device of the present invention includes a heating coil formed by winding a coil conductor, and the coil conductor includes a wire having an insulating layer provided around a conductor or the wire. Insulation that is formed by twisting bundled bundled wires, and is composed of a fluororesin with a different melting point on part or all of its outer circumference, and a fluororesin with a lower melting point is outside the fluororesin with a higher melting point The heating coil is formed by heating the coil conductor after winding and melting and solidifying the fluororesin formed on the outer side to form the adjacent insulators or the insulator and the element wire. The heating coil is fixed to stabilize the shape, and a high-frequency current of 40 to 100 kHz is applied to the heating coil to heat the object to be heated, such as copper or aluminum, by induction. With this configuration, when a coil is wound using a coil conductor to produce a heating coil, there is an insulator between the coil conductors, so the spacing between the coil conductors is widened, and the increase in high-frequency resistance due to the proximity action between the strands is reduced. It is possible to improve the insulation strength and heat adhesion between coil conductors by using a fluoropolymer with a low melting point on the outside as the insulator and using a fluoropolymer with a high melting point on the inside to melt and solidify the fluoropolymer with a low melting point on the outside. And reliability can be improved.

本発明によれば、表皮効果および近接作用の影響を少なくし、高周波電流に対するコイル抵抗を減少させた加熱コイルを得ることができ、銅やアルミニウムのような金属の被加熱体を加熱する場合に加熱コイルの自己発熱が小さく加熱効率の良いかつ、加熱コイルの絶縁性を安定させ加熱接着性を向上させて絶縁の信頼性を確保しさらに低コスト化を実現した誘導加熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the skin effect and the proximity effect can be reduced, and a heating coil having a reduced coil resistance to high-frequency current can be obtained. It is possible to provide an induction heating device in which the heating self-heating of the heating coil is small, the heating efficiency is good, the insulation of the heating coil is stabilized, the heating adhesion is improved, the reliability of the insulation is secured, and the cost is reduced. it can.

請求項1に記載の発明は、コイル導線を巻回してなる加熱コイルを備え、前記コイル導線は、導体の周囲に絶縁層を設けた素線もしくは前記素線を束ねた集合線を撚り合わせて形成されるとともに、その外周の一部もしくは全体に融点の異なるフッ素樹脂で構成され、かつ融点の低いフッ素樹脂が融点の高いフッ素樹脂の外側に構成されてなる絶縁体を設け、前記加熱コイルは、前記絶縁体を設けた前記コイル導線を巻回後加熱し前記外側に構成されたフッ素樹脂を溶融固化することにより隣接した前記絶縁体どうしあるいは前記絶縁体と素線とを固着して形状を安定化するとともに、前記加熱コイルに40〜100kHzの高周波電流を流して銅やアルミニウムのような金属の被加熱体を誘導加熱する構成とすることにより、コイル導線を用いて巻回し加熱コイルを作製したとき、コイル導線間に絶縁体が存在するのでコイル導線間の間隔が広がり、ひいては素線間の近接作用による高周波抵抗の増大を低減できるとともに、絶縁体として外側に融点の低いフッ素樹脂を用い、内側に融点の高いフッ素樹脂を用いて外側の融点の低いフッ素樹脂を溶融固化するのでコイル導線間の絶縁強度が向上し、信頼性を高めることができ、さらに加熱接着性を向上させ加熱コイルの形状を安定化させることができる。   The invention according to claim 1 is provided with a heating coil formed by winding a coil conductor, and the coil conductor is obtained by twisting an element wire provided with an insulating layer around a conductor or an assembly wire obtained by bundling the element wire. While being formed, an insulator made of a fluororesin having a different melting point is provided on a part of or the entire outer periphery thereof, and a fluororesin having a lower melting point is provided outside a fluororesin having a higher melting point, and the heating coil is After winding the coil conductor provided with the insulator, heating and melting and solidifying the fluororesin formed on the outside, the adjacent insulators or the insulator and the element wire are fixed to each other to form a shape. In addition to stabilizing the coil, a high-frequency current of 40 to 100 kHz is applied to the heating coil to inductively heat the object to be heated, such as copper or aluminum. When a wound heating coil is manufactured, the insulation between the coil conductors increases the spacing between the coil conductors, thereby reducing the increase in high-frequency resistance due to the proximity action between the strands, and as an insulator outside. Using low-melting-point fluororesin, inner high-melting-point fluororesin is used to melt and solidify the low-melting-point outer fluororesin, so insulation strength between coil conductors is improved, reliability can be improved, and heating is further improved. The adhesiveness can be improved and the shape of the heating coil can be stabilized.

請求項2に記載の発明は、コイル導線を巻回してなる加熱コイルを備え、前記コイル導線は、導体の周囲に絶縁層を設けた素線もしくは前記素線を束ねた集合線を撚り合わせて上位集合線を形成し、少なくとも前記上位集合線の外周の一部もしくは全体に融点の低いフッ素樹脂が融点の高いフッ素樹脂の外側に構成されてなる絶縁体を設け、外周に前記絶縁体を設けた前記上位集合線をさらに撚り合わせてなる多段階重ね撚り構造とし、前記加熱コイルは、前記絶縁体が設けられた前記コイル導線を巻回後加熱し前記外側に構成されたフッ素樹脂を溶融固化することにより隣接した前記絶縁体どうしあるいは前記絶縁体と前記素線とを固着して形状を安定化させてなるとともに、前記加熱コイルに40〜100kHzの高周波電流を流して銅やアルミニウムのような金属の被加熱体を誘導加熱する構成とすることにより、コイル導線を用いて巻回し加熱コイルを作製したとき、上位集合線間に絶縁体が存在するので上位集合線間の間隔が広がり、ひいては素線間の近接作用による高周波抵抗の増大を低減できるとともに、上位集合線の全体に絶縁体を設ける構成にしてコイル導線を作成しておくと巻回したときコイル導線間に絶縁体が存在するので全体のの絶縁強度が向上し、信頼性を高めることができ、さらに加熱接着性を向上させ加熱コイルの形状を安定化させることができる。   The invention according to claim 2 is provided with a heating coil formed by winding a coil conductor, and the coil conductor is formed by twisting an element wire provided with an insulating layer around a conductor or an assembly wire obtained by bundling the element wire. Form an upper assembly line, at least a part or the entire outer periphery of the upper assembly line is provided with an insulator in which a fluororesin having a low melting point is formed outside the fluororesin having a high melting point, and the insulator is provided on the outer periphery. The heating coil is heated after winding the coil conductor on which the insulator is provided, and the fluorocarbon resin formed on the outside is melted and solidified. By stabilizing the shape by adhering the insulators or the insulator and the strand by adjoining each other, a high-frequency current of 40 to 100 kHz is passed through the heating coil to remove the copper. By using a configuration in which a metal to be heated such as aluminum is induction-heated, when a coil is wound using a coil conductor to produce a heating coil, there is an insulator between the upper assembly lines, so the spacing between the upper assembly lines In addition to reducing the increase in high-frequency resistance due to the proximity action between the wires, it is possible to reduce the increase in high-frequency resistance. Due to the presence of the body, the overall insulation strength is improved, the reliability can be improved, and the heat adhesion can be improved, and the shape of the heating coil can be stabilized.

請求項3に記載の発明は、特に、コイル導線を巻回してなる加熱コイルに高周波電流を流して被加熱体を誘導加熱するものにおいて、前記加熱コイルはその全体の空間体積に対し素線の導体部体積を50%以下となるように構成することにより、加熱コイル全体としてみた場合の素線間の距離が広がり、近接作用による抵抗の増大を抑制することができる。   The invention according to claim 3 is a device in which a high-frequency current is applied to a heating coil formed by winding a coil conductor to heat an object to be heated, wherein the heating coil has a wire volume with respect to its entire space volume. By configuring the conductor volume to be 50% or less, the distance between the wires as a whole of the heating coil is widened, and an increase in resistance due to the proximity action can be suppressed.

請求項4に記載の発明は、特に、素線の導体部の直径が0.1mm以下になると素線自体の絶縁層を厚く塗ることが製造的に困難になりコストも高くなるが、集合線もしくは/およびコイル導線の外周に絶縁体を設けることで容易に絶縁が強化でき、信頼性向上やコスト低減が図れる。   In particular, when the diameter of the conductor portion of the wire is 0.1 mm or less, it becomes difficult to apply a thick insulating layer of the wire itself in terms of manufacturing and the cost increases. Alternatively, by providing an insulator around the outer periphery of the coil conductor, insulation can be easily strengthened, thereby improving reliability and reducing costs.

(実施の形態1)
以下、本発明の第1の実施の形態について、誘導加熱装置の例として誘導加熱調理器をあげ、図面を参照しながら説明する。本実施の形態の特徴は、断面積の異なる素線を集合してコイル導線を作製し、このコイル導線を巻回して加熱コイルを設けたことを特徴としている。前述したように、銅鍋やアルミニウム鍋のように透磁率の低い加熱体を加熱するために40〜100kHzの高周波電流を加熱コイルに流すと、いわゆる表皮効果により加熱コイルの実効抵抗は増大する。そこで表皮効果の影響を低減するために断面積の小さい素線を用いるわけであるが、断面積の小さい素線を用いると巻線が密に、すなわち占有率が向上し素線間の実効的な間隔が小さくなり、近接作用による抵抗増大が顕著となる。本発明では、断面積の小さい素線を多く用いることにより表皮効果を低減するとともに、断面積の小さい素線と断面積の大きい素線とを混在させることにより、断面積の小さな素線間の間隔が実質的に大きくなり、近接作用による抵抗の増大を抑止することができ、加熱コイルの高周波抵抗を実質的に小さくし、加熱コイルの自己発熱を低減し、加熱効率を良くすることができる。以下、図面を用いて説明する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings, taking an induction heating cooker as an example of an induction heating device. A feature of the present embodiment is that a coil conductor is manufactured by assembling wires having different cross-sectional areas, and the coil conductor is wound to provide a heating coil. As described above, when a high-frequency current of 40 to 100 kHz is applied to a heating coil to heat a heating body having a low magnetic permeability such as a copper pot or an aluminum pot, the effective resistance of the heating coil increases due to a so-called skin effect. Therefore, in order to reduce the effect of the skin effect, wires with a small cross-sectional area are used, but if wires with a small cross-sectional area are used, the windings are denser, that is, the occupancy is improved, and the The distance is small, and the increase in resistance due to the proximity action becomes remarkable. In the present invention, the skin effect is reduced by using a large number of strands having a small cross-sectional area, and by mixing a strand having a small cross-sectional area with a strand having a large cross-sectional area, a strand having a small cross-sectional area is mixed. The spacing is substantially increased, and an increase in resistance due to proximity action can be suppressed, the high-frequency resistance of the heating coil can be substantially reduced, self-heating of the heating coil can be reduced, and heating efficiency can be improved. . Hereinafter, description will be made with reference to the drawings.

まず、誘導加熱調理器の概略構成について図2を用いて説明する。1は誘導加熱調理器の外郭を構成する本体、2は本体1上に設けたトッププレート、3は本発明に関わるコイル導線を用いて巻回して作製した加熱コイル、4は加熱コイル3を制御する制御部であり、5は加熱コイル3に対応してトッププレート2に設けた加熱部に載置した鍋等の加熱体である。この構成において、加熱コイル3に高周波電流を流すと磁束が発生し、この磁束の渦電流損による発熱により加熱体5が加熱される。   First, a schematic configuration of the induction heating cooker will be described with reference to FIG. 1 is a main body constituting an outer shell of the induction heating cooker, 2 is a top plate provided on the main body 1, 3 is a heating coil formed by winding using a coil conductor according to the present invention, and 4 is a heating coil 3 is controlled. Reference numeral 5 denotes a heating unit such as a pot placed on a heating unit provided on the top plate 2 corresponding to the heating coil 3. In this configuration, when a high-frequency current flows through the heating coil 3, a magnetic flux is generated, and the heating element 5 is heated by heat generated by eddy current loss of the magnetic flux.

以下、本実施の形態におけるコイル導線の構成について説明する。図1は本発明の第1の実施の形態における誘導加熱調理器に用いる加熱コイルの集合線の断面図である。図1において、集合線6は、断面積の小さい素線7、例えば直径0.05mmの素線と、断面積の大きい素線8、例えば直径0.1mmの素線とを混在させて、これを束ねまたは撚り合わせて集合したものである。図1では、表皮効果を低減するために用いた断面積の小さい素線7の近接作用を低減するために、断面積の小さい素線7と断面積の大きい素線8とを無作為に混在させた状態を示している。これにより断面積の小さい素線7間の実効的な間隔を大きくすることができる。このように、断面積の大きい素線8の間に断面積の小さい素線7を必ず介在させるようにして断面積の小さい素線7間の間隔を実効的に大きくなるようにすると近接作用を低減できる。また、断面積の小さい素線7どうしおよび断面積の大きい素線8どうしが偏らないようにするとさらに効果的である。   Hereinafter, the configuration of the coil conductor in the present embodiment will be described. FIG. 1 is a sectional view of an assembly line of a heating coil used in an induction heating cooker according to a first embodiment of the present invention. In FIG. 1, a collective wire 6 is formed by mixing a wire 7 having a small sectional area, for example, a wire having a diameter of 0.05 mm, and a wire 8 having a large sectional area, for example, a wire having a diameter of 0.1 mm. Are bundled or twisted together. In FIG. 1, in order to reduce the proximity effect of the wire 7 having a small sectional area used for reducing the skin effect, the wire 7 having a small sectional area and the wire 8 having a large sectional area are mixed at random. FIG. Thereby, the effective spacing between the strands 7 having a small cross-sectional area can be increased. As described above, when the strands 7 having a small cross-sectional area are always interposed between the strands 8 having a large cross-sectional area so that the spacing between the strands 7 having a small cross-sectional area is effectively increased, the proximity effect is obtained. Can be reduced. Further, it is more effective if the wires 7 having a small cross-sectional area and the wires 8 having a large cross-sectional area are not biased.

このようにして得られた集合線を第1段階として数束撚り合わせて上位集合線とし、さらに必要に応じて第2段階としてこの上位集合線を数束撚り合わせ高次の集合線としていく。このように上位集合線を複数回撚り合わせる多段階重ね撚り構造としたコイル導線を巻回して加熱コイルを作製すると、40〜100kHzの高周波電流を流しても近接作用によって加熱コイルの高周波抵抗が増大することを抑制でき、加熱コイルの自己発熱を低減し、加熱効率のよい加熱コイルを得る事ができる。つまり、直径0.05mmの素線と直径0.1mmの素線とを本数調整により断面積を同じにした場合、高周波抵抗は、直径0.05mmの素線の方が小さくなる。したがって、直径0.05mmの素線と直径0.1mmの素線とが混在する場合には、直径0.05mmの素線を主に高周波電流が流れ、直径0.1mmの素線にはあまり流れなくなる。ここで、直径0.1mmの素線が直径0.05mmの素線の間に入ることで、直径0.05mmと直径0.05mmとの空間を広げ、近接作用で加熱コイルの高周波抵抗を増大することを防止することができる。   As a first step, the bundles obtained in this manner are twisted in several bundles to form a higher rank collective line, and if necessary, in a second stage, the higher bundles are twisted into several bundles to form a higher-order collective line. When a heating coil is manufactured by winding a coil conductor having a multi-stage ply-twist structure in which a higher-level assembly wire is twisted a plurality of times as described above, the high-frequency resistance of the heating coil increases due to the proximity action even when a high-frequency current of 40 to 100 kHz flows. Can be suppressed, self-heating of the heating coil can be reduced, and a heating coil with good heating efficiency can be obtained. That is, when the cross-sectional area of the wire having a diameter of 0.05 mm and the wire having a diameter of 0.1 mm are made equal by adjusting the number of wires, the high-frequency resistance of the wire having a diameter of 0.05 mm is smaller. Therefore, when a wire with a diameter of 0.05 mm and a wire with a diameter of 0.1 mm are mixed, a high-frequency current mainly flows through the wire with a diameter of 0.05 mm, and the wire with a diameter of 0.1 mm is too small. It stops flowing. Here, the space between the 0.05 mm diameter and the 0.05 mm diameter is expanded by inserting the 0.1 mm diameter wire into the 0.05 mm diameter wire, and the high frequency resistance of the heating coil is increased by the proximity action. Can be prevented.

図3は本発明の第1の実施の形態における誘導加熱調理器に用いる他の例を示す加熱コイルの集合線の断面図である。図3において、断面積の小さい素線7を断面積の大きい素線8の周囲に、例えば0.05mmの素線9本を0.1mmの素線の周囲に配し、これを集合線9として撚り合わせている。さらにこの集合線9を撚り合わせ上位集合線10を形成している。このようにすることにより、バランス良く断面積の小さい素線7間の実効的な間隔を広げることができるので、近接作用による抵抗の増大をバランス良く抑えることができる。さらに必要に応じて、上位集合線10を撚り合わせさらに上位集合線とし、さらに必要に応じてこの工程を繰り返すことにより多段階重ね撚り構造としたコイル導線を得ることができる。   FIG. 3 is a sectional view of a collective line of a heating coil showing another example used for the induction heating cooker according to the first embodiment of the present invention. In FIG. 3, a wire 7 having a small cross-sectional area is arranged around a wire 8 having a large cross-sectional area, for example, nine wires of 0.05 mm are arranged around a wire of 0.1 mm. It is twisted as. Further, the collective wires 9 are twisted to form a higher collective wire 10. By doing so, the effective spacing between the strands 7 having a small cross-sectional area can be widened in a well-balanced manner, so that an increase in resistance due to the proximity action can be suppressed in a well-balanced manner. Further, if necessary, the upper assembly wire 10 is twisted to form a higher assembly wire, and this process is repeated as necessary, whereby a coil conductor having a multi-stage lap-twist structure can be obtained.

また、図4は本発明の第1の実施の形態における誘導加熱調理器に用いる他の加熱コイルの集合線を示す断面図である。図4において、断面積の小さい素線7を撚り合わせ集合線12とし、断面積の大きい素線8を撚り合わせた集合線11の周囲に配し、これらを撚り合わせて上位集合線13としている。例えば、図において、0.1mmの断面積の大きい素線を4本より合わせ集合線とし、その周囲に0.05mmの断面積の小さい素線を7本撚り合わせた集合線を8束配して撚り合わせ上位集合線としている。このようにすることにより、バランス良く断面積の小さい素線間の実効的な間隔を広げることができるので、近接作用による高周波抵抗の増大を安定して抑えることができる。   FIG. 4 is a sectional view showing an assembly line of another heating coil used for the induction heating cooker according to the first embodiment of the present invention. In FIG. 4, the strand 7 having a small cross-sectional area is a stranded collective wire 12, the strand 8 having a large cross-sectional area is arranged around the stranded collective wire 11, and these are stranded to form a higher collective wire 13. . For example, in the figure, eight bundles of strands each having a small cross-sectional area of 0.1 mm are twisted into four to form a bundle, and seven strands each having a small cross-section of 0.05 mm are twisted around the bundle. It is a high-ranked twisted assembly line. By doing so, the effective spacing between the strands having a small cross-sectional area can be widened in a well-balanced manner, so that an increase in high-frequency resistance due to the proximity action can be stably suppressed.

なお、本第1の実施の形態においては図3、図4に示すように断面積の大きい素線の周囲に断面積の小さい素線を配置したが、逆に断面積の小さい素線の周囲に断面積の大きい素線を配置しても良い、要はバランス良く断面積の小さい素線と断面積の大きい素線とを配置すれば良い。   In the first embodiment, as shown in FIGS. 3 and 4, a wire having a small cross-sectional area is disposed around a wire having a large cross-sectional area. A wire having a large cross-sectional area may be arranged on the wire. In short, a wire having a small cross-sectional area and a wire having a large cross-sectional area may be arranged in a well-balanced manner.

(実施の形態2)
本実施の形態は細い素線を撚り合わせた集合線を複数よりあわせたものをさらに複数撚り合わせる工程を必要に応じて複数回行って構成される多段階重ね撚り構造を有するコイル導線に関し、特に、コイル導線もしくは集合線の少なくとも一部に絶縁体を配し、線間の実効的な距離を大きくし近接作用による抵抗の増大を抑制したものである。以下図面により説明する。
(Embodiment 2)
The present embodiment relates to a coil conductor having a multi-stage lap-twisted structure constituted by performing a plurality of twisting steps as needed, further twisting a plurality of assembled wires obtained by twisting thin strands, particularly An insulator is provided on at least a part of the coil conductor or the assembly wire to increase the effective distance between the wires and suppress an increase in resistance due to the proximity action. This will be described below with reference to the drawings.

図5は、本発明の第2の実施の形態における誘導加熱調理器のコイル導線の断面図である。図において、細い素線、例えば直径0.05mmの素線60本を束ねた集合線14を7束撚り合わせこれを上位集合線15とし、さらにこの上位集合線15を3束撚り合わせ多段階重ね撚り構造のコイル導線16としている。このコイル導線16に熱を加え、コイル導線16自体に有している揮発成分を低減した後、コイル導線16の外周の少なくとも一部に絶縁体17を設ける構成としている。この構成のコイル導線16を巻回して加熱コイルを作製したとき、コイル導線16間の少なくとも一部には絶縁体が存在するので、コイル導線16間の間隔が大きくなり、ひいては素線間の間隔が大きくなるので近接作用による高周波抵抗の増大を抑制することができる。また、コイル導線16の全体に絶縁体を設ける構成にすると、巻回したときコイル導線16間の全体の絶縁強度が増加し信頼性を高めることができる。また、コイル導線16の巻回したターン間の電圧差は大きいため、結果として絶縁体17をターン間に設けるこの方式は絶縁の信頼性が高い。さらに、本実施の形態のように素線の直径が0.05mm程度になると素線自体の絶縁層を厚くすることが製造的に困難になりコスト高となる。したがって、この方式はコイル素線の直径が小さいもの(0.1mm以下のもの)を使用する場合に、特に絶縁の信頼性を確保し、低コスト化を実現するのに優れている。   FIG. 5 is a cross-sectional view of the coil conductor of the induction heating cooker according to the second embodiment of the present invention. In the figure, 7 bundles of bundled thin wires, for example, 60 bundles of wires having a diameter of 0.05 mm, are twisted into 7 bundles, which is referred to as an upper bundle 15, and this upper bundle 15 is further bundled into 3 bundles in a multi-stage stack. The coil conductor 16 has a twisted structure. After applying heat to the coil conductor 16 to reduce volatile components contained in the coil conductor 16 itself, an insulator 17 is provided on at least a part of the outer periphery of the coil conductor 16. When a heating coil is manufactured by winding the coil conductors 16 having this configuration, an insulator is present in at least a part between the coil conductors 16, so that the interval between the coil conductors 16 is increased, and as a result, the interval between the element wires is increased. Is increased, so that an increase in high-frequency resistance due to proximity action can be suppressed. In addition, when an insulator is provided on the entire coil conductor 16, the entire insulation strength between the coil conductors 16 when the coil conductor 16 is wound increases, and the reliability can be improved. Further, since the voltage difference between the turns of the coil conductor 16 is large, as a result, this method of providing the insulator 17 between the turns has high insulation reliability. Further, when the diameter of the wire is about 0.05 mm as in the present embodiment, it is difficult to increase the thickness of the insulating layer of the wire itself in terms of manufacturing, and the cost is increased. Therefore, this method is excellent in securing insulation reliability and realizing cost reduction particularly when a coil wire having a small diameter (0.1 mm or less) is used.

また、図6は本実施の形態における誘導加熱調理器の他のコイル導線を示す断面図である。図6では、上位集合線15に熱を加え、上位集合線15自体に有している揮発成分を低減した後、上位集合線15外周の少なくとも一部を絶縁体17で覆う構成としている。そして絶縁体17で覆った上位集合線17を3束撚り合わせてコイル導線18としている。この構成では上位集合線15間の少なくとも一部には絶縁体が存在するので、上位集合線15間の間隔が大きくなり、ひいては素線間の間隔が大きくなるので近接作用による抵抗の増大を抑制することができる。また、上位集合線15の全体に絶縁体を設ける構成にしてコイル導線18を作製しておくと、巻回したときコイル導線18間に絶縁体が存在するので全体の絶縁強度が増加し信頼性を高めることができる。   FIG. 6 is a sectional view showing another coil conductor of the induction heating cooker according to the present embodiment. In FIG. 6, at least a part of the outer periphery of the upper assembly line 15 is covered with the insulator 17 after applying heat to the upper assembly line 15 to reduce the volatile component of the upper assembly line 15 itself. The upper bundle 17 covered with the insulator 17 is twisted into three bundles to form a coil conductor 18. In this configuration, an insulator is present at least in a part between the upper collective lines 15, so that the interval between the upper collective lines 15 is increased, and the interval between the element wires is increased, so that an increase in resistance due to the proximity action is suppressed. can do. In addition, if the coil conductor 18 is manufactured in such a manner that an insulator is provided on the entire upper assembly wire 15, the insulator is present between the coil conductors 18 when the coil is wound, so that the overall insulation strength increases and the reliability increases. Can be increased.

コイル導線16に絶縁体を設ける方法としては、コイル導線16にテープ、または糸状体を巻回しても良いし、巻回時にフイルム状の絶縁体を挟み込むようにしても良い。また、液状物質を塗布し硬化するような方法を用いても良い。   As a method of providing an insulator on the coil conductor 16, a tape or a thread may be wound around the coil conductor 16, or a film-like insulator may be sandwiched at the time of winding. Alternatively, a method of applying and curing a liquid substance may be used.

絶縁体としては耐熱性を有する無機系としてガラス繊維、マイカ、有機系としてフッ素樹脂、ポリイミド樹脂、ポリアミドイミド樹脂などからなるテープまたはフイルムなどが用いられる。これらのうちガラステープは低価格であり、作業性が良いため適している。さらにガラステープは加熱コイルを作製後、樹脂を含浸し加熱コイル装置の形状を安定化するとき、樹脂が透過するので樹脂を内部まで含浸するのに適している。   As the insulator, glass fiber or mica is used as an inorganic material having heat resistance, and a tape or film made of a fluorine resin, a polyimide resin, a polyamideimide resin, or the like is used as an organic material. Of these, glass tape is suitable because of its low price and good workability. Further, the glass tape is suitable for impregnating the inside of the resin because the resin penetrates when the shape of the heating coil device is stabilized by impregnating the resin after manufacturing the heating coil.

樹脂含浸工程を省略する方法としては、図7に示す自己融着線を用いる方法が一般的に行われている。すなわち、導体19の周囲に絶縁層20を設けさらにその外側に融着層21を設けた素線を用いて加熱コイルを作製し、その後加熱することにより融着層21を溶融固化することにより、素線間を固着して加熱コイルの形状を安定に保持できるようにする方法である。   As a method of omitting the resin impregnation step, a method using a self-fusion line shown in FIG. 7 is generally performed. That is, a heating coil is produced using a wire provided with an insulating layer 20 around the conductor 19 and further provided with a fusion layer 21 outside thereof, and then the fusion layer 21 is melted and solidified by heating. This is a method in which the wires are fixed so that the shape of the heating coil can be stably maintained.

本実施の形態ではコイル導線の外周もしくは上位集合線の外周に絶縁体を設けているので、この絶縁体を利用することにより素線の融着層21を用いないで加熱コイルの形状を安定に保持するようにすることができる。すなわち、絶縁体としてポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、フッ素樹脂などの熱可塑性樹脂を用い、加熱コイルを作製の途中段階において、もしくは加熱コイルを巻回後、熱可塑性樹脂を加熱して溶融させ固化させることにより、絶縁体と絶縁体あるいは絶縁体と素線とを固着させ加熱コイルの形状を安定化させることができる。また、絶縁体を融点の異なる2種類の樹脂から構成し、融点の低い樹脂を融点の高い樹脂の外側に構成することで加熱接着性を向上することができる。例えば、絶縁体にフッ素樹脂を用い、外側に融点の低いフッ素樹脂(ETFEやFEP)を用い、内側に融点の高いフッ素樹脂(PFA)を用いると安定した絶縁性と加熱接着性を向上させることができる。   In the present embodiment, since an insulator is provided on the outer periphery of the coil conductor or the outer periphery of the upper assembly wire, the shape of the heating coil can be stabilized by using this insulator without using the fusion layer 21 of the strand. Can be kept. That is, a thermoplastic resin such as a polyamide resin, a polyamide-imide resin, a polyester resin, or a fluororesin is used as an insulator, and the thermoplastic resin is heated and melted in the middle of manufacturing a heating coil or after winding the heating coil. By solidifying the insulator, the insulator and the insulator or the insulator and the element wire are fixed, and the shape of the heating coil can be stabilized. Further, by forming the insulator from two kinds of resins having different melting points and forming the resin having a lower melting point outside the resin having a higher melting point, the heat adhesion can be improved. For example, if a fluororesin is used for the insulator, a fluororesin (ETFE or FEP) having a low melting point is used on the outside, and a fluororesin (PFA) having a high melting point is used on the inside, it is possible to improve the stable insulation and the heat adhesion. Can be.

さらに、絶縁体として未硬化もしくは半硬化のゴムまたは熱硬化性の樹脂を用い、加熱コイルを作製の途中段階において、もしくは加熱コイルを巻回後、加熱固化させることにより、絶縁体と絶縁体あるいは絶縁体と素線とを固着させ加熱コイルの形状を安定化させることができる。なお、ゴムとしてはシリコン系、フッ素系などのものが、また、熱効果樹脂としてはエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂などが用いられる。   Furthermore, by using an uncured or semi-cured rubber or a thermosetting resin as the insulator, and heating and solidifying the heating coil in the middle of the manufacturing process or after winding the heating coil, the insulator and the insulator or The shape of the heating coil can be stabilized by fixing the insulator and the wire. Silicone or fluorine rubber is used as the rubber, and epoxy resin, unsaturated polyester resin, phenol resin, or the like is used as the heat effect resin.

また、絶縁体として未硬化もしくは半硬化のゴムまたは樹脂、特に半硬化のゴムまたは樹脂を織布もしくは不織布に塗布もしくは含浸し、前述のように加熱硬化させることにより加熱コイルの形状を安定化させることができる。特にテープ状の織布もしくは不織布を用いた場合、集合線もしくはコイル導線の外周の一部または全体を容易に巻回できるので取り扱いが容易であり、かつ安定した絶縁層を設けることができる。なお、ゴムまたは樹脂は上述のものと同種のものが一般に用いられる。   In addition, uncured or semi-cured rubber or resin, particularly semi-cured rubber or resin, is applied or impregnated to a woven or non-woven fabric as an insulator, and heated and cured as described above to stabilize the shape of the heating coil. be able to. In particular, when a tape-shaped woven or nonwoven fabric is used, a part or the whole of the outer periphery of the collecting wire or the coil conductor can be easily wound, so that the handling is easy and a stable insulating layer can be provided. Note that the same type of rubber or resin as described above is generally used.

また、図8に示すように予め熱を加えコイル導線16自体に有している揮発成分を低減した後、コイル導線16の外周に絶縁体17を設け、さらにその外側に接着層22を設けるようにしてもよい。ここでいう接着層は融着層を含む。この構成のコイル導線16を巻回後、加熱することによりコイル導線とコイル導線とが固着し形状の安定した加熱コイルを得ることができる。   Also, as shown in FIG. 8, after applying heat in advance to reduce the volatile components contained in the coil conductor 16 itself, an insulator 17 is provided around the coil conductor 16 and an adhesive layer 22 is further provided outside the insulator 17. It may be. The adhesive layer here includes a fusion layer. After winding the coil conductor 16 having this configuration, the coil conductor is heated to fix the coil conductor and the coil conductor, so that a heating coil having a stable shape can be obtained.

この他、熱収縮テープを用いてもよい。すなわち、上位集合線もしくは/およびコイル導線に熱収縮テープを巻回後、加熱することによりテープが収縮し上位集合線もしくは/およびコイル導線を締め付け、加熱コイルを安定にした形状にすることができる。   In addition, a heat shrink tape may be used. That is, after winding the heat-shrinkable tape around the upper collective wire or / and the coil conductor, the tape shrinks by heating, and the upper collective wire or / and the coil conductor is tightened, so that the heating coil can be formed into a stable shape. .

以上述べた構成により、素線の融着層を用いないでも加熱コイルの形状を安定化することができる。ただし、融着層を用いないと素線間の間隔が小さくなり近接作用により抵抗増大が問題になることがある。このときは融着層に相当する分の絶縁厚みを増加すればよい。これにより素線の製造工程が簡略化され価格を低減することができる。   With the configuration described above, the shape of the heating coil can be stabilized without using the fusion layer of the strand. However, if the fusion layer is not used, the distance between the wires becomes small, and the proximity effect may cause a problem of an increase in resistance. In this case, the thickness of the insulation corresponding to the fusion layer may be increased. This simplifies the manufacturing process of the wire and reduces the cost.

なお、絶縁材料の耐熱性は設計により必要とする耐熱区分の中から選択すればよい。   Note that the heat resistance of the insulating material may be selected from heat resistance categories required by design.

以上述べたように、本実施の形態によれば、近接作用による高周波抵抗の増大を抑制することができるとともに、絶縁性能が向上し信頼性を高めることができる。さらに接着性を有する絶縁構成にすることにより、コイル形状の安定性を図ることができる。また、コイル導線や上位集合線の揮発成分を熱で低減した後、コイル導線や上位集合線の外周に絶縁体を設けているので、使用時に加熱コイルに熱が加わった場合や絶縁体間の接着に際して加熱コイルに熱を加えた時、加熱コイル内部から発生する揮発成分が上位集合線と絶縁体との間やコイル導線と絶縁体との間に溜ることがなくなり、揮発成分が加熱コイルを変形させることを防止できる。   As described above, according to the present embodiment, it is possible to suppress the increase in the high-frequency resistance due to the proximity action, and to improve the insulation performance and the reliability. Further, by using an insulating structure having adhesiveness, the stability of the coil shape can be achieved. In addition, after the volatile components of the coil conductor and the upper assembly wire are reduced by heat, an insulator is provided around the outer periphery of the coil conductor and the upper assembly wire. When heat is applied to the heating coil at the time of bonding, volatile components generated from inside the heating coil do not accumulate between the upper assembly line and the insulator or between the coil conductor and the insulator. Deformation can be prevented.

なお、第1および第2の実施の形態で述べたように、近接作用による高周波抵抗の増大を抑制するために、素線の断面積を大きくしたり、上位集合線またはコイル導線に絶縁体を設けたりすると効果的である。そこで、素線の断面積を変えたり、絶縁体の厚みおよび量を変えたりするなどの実験により加熱コイル全体での近接作用の影響を調べた。その結果、加熱コイルの外周に絶縁体を巻回したとき、外周の絶縁体を含まない絶縁体内の断面積、すなわち、加熱コイルとして占有する全空間断面積に対して素線の絶縁層部分を除く導体部体積が50%を超えないような構成にすると近接作用による高周波抵抗の増大を抑えることができ、この比率が50%を超えると近接作用による高周波抵抗が著しく増大してくるという結果が得られた。これにより、近接作用を考慮した設計がしやすくなるという効果が得られる。   As described in the first and second embodiments, in order to suppress the increase in the high-frequency resistance due to the proximity action, the cross-sectional area of the strand is increased, or the insulator is provided on the upper assembly line or the coil conductor. It is effective to provide them. Therefore, the influence of the proximity action on the entire heating coil was examined by experiments such as changing the cross-sectional area of the wire and changing the thickness and amount of the insulator. As a result, when the insulator is wound around the outer periphery of the heating coil, the cross-sectional area of the insulator that does not include the outer insulator, that is, the insulating layer portion of the element wire with respect to the entire space cross-sectional area occupied by the heating coil. If the configuration is such that the volume of the conductor portion does not exceed 50%, an increase in high-frequency resistance due to proximity action can be suppressed, and if this ratio exceeds 50%, the high-frequency resistance due to proximity action significantly increases. Obtained. As a result, an effect is obtained that the design in consideration of the proximity effect is facilitated.

また、第1および第2の実施の形態の効果は、銅鍋やアルミニウム鍋のような被加熱体を40〜100kHzの高周波電流で誘導加熱する場合に特に有効である。   The effects of the first and second embodiments are particularly effective when induction heating is performed on an object to be heated such as a copper pan or an aluminum pan with a high-frequency current of 40 to 100 kHz.

なお、本実施の形態は誘導加熱装置の例として誘導加熱調理器にて説明したが、その他各種誘導加熱装置においても同様の効果が得られる。   Although the present embodiment has been described using an induction heating cooker as an example of the induction heating device, the same effect can be obtained with other various induction heating devices.

以上のように、本発明にかかる誘導加熱装置は、加熱コイルにおける高周波電流の表皮効果および近接作用の影響を少なくし、高周波電流に対するコイル抵抗を減少させることができ、かつ加熱コイルの絶縁性を安定させ加熱接着性を向上させて絶縁の信頼性を確保しさらに低コスト化を実現できるので、銅鍋やアルミニウム鍋のような被加熱体を40〜100kHzの高周波電流で誘導加熱する場合に特に有効である。   As described above, the induction heating device according to the present invention can reduce the skin effect and the proximity effect of the high-frequency current in the heating coil, reduce the coil resistance to the high-frequency current, and improve the insulation of the heating coil. It is possible to stabilize and improve the heat adhesion to secure insulation reliability and to further reduce the cost. Therefore, when the object to be heated such as a copper pan or an aluminum pan is induction-heated with a high-frequency current of 40 to 100 kHz, particularly, It is valid.

本発明の第1の実施の形態における誘導加熱調理器に用いる加熱コイルの集合線の断面図Sectional drawing of the assembly line of the heating coil used for the induction heating cooker in the 1st Embodiment of this invention 同誘導加熱調理器の構成断面図Configuration sectional view of the induction heating cooker 同誘導加熱調理器に用いる加熱コイルの他の例における集合線の断面図Sectional view of the assembly line in another example of the heating coil used in the induction heating cooker 同誘導加熱調理器に用いる加熱コイルの他の例における集合線の断面図Sectional view of the assembly line in another example of the heating coil used in the induction heating cooker 本発明の第2の実施の形態における誘導加熱調理器に用いる加熱コイルの集合線の断面図Sectional drawing of the assembly line of the heating coil used for the induction heating cooker in the second embodiment of the present invention. 同誘導加熱調理器に用いる加熱コイルの他の例における集合線の断面図Sectional view of the assembly line in another example of the heating coil used in the induction heating cooker 素線の構成断面図Cross section of the configuration of the strand 本発明の第2の実施の形態における誘導加熱調理器に用いる加熱コイルの他の例の集合線の断面図Sectional drawing of the assembly line of another example of the heating coil used for the induction heating cooker according to the second embodiment of the present invention.

符号の説明Explanation of reference numerals

3 加熱コイル
6、9、11、12、14 集合線
7 断面積の小さい素線
8 断面積の大きい素線
10、13、15 上位集合線
16、18 コイル導線
17 絶縁体
22 接着層(接着部)
3 Heating coil 6, 9, 11, 12, 14 Assembly wire 7 Element wire with small cross-sectional area 8 Element wire with large cross-sectional area 10, 13, 15 Upper assembly wire 16, 18 Coil conductor 17 Insulator 22 Adhesive layer (adhesive part) )

Claims (4)

コイル導線を巻回してなる加熱コイルを備え、前記コイル導線は、導体の周囲に絶縁層を設けた素線もしくは前記素線を束ねた集合線を撚り合わせて形成されるとともに、その外周の一部もしくは全体に融点の異なるフッ素樹脂で構成され、かつ融点の低いフッ素樹脂が融点の高いフッ素樹脂の外側に構成されてなる絶縁体を設け、前記加熱コイルは、前記コイル導線を巻回後加熱し前記外側に構成されたフッ素樹脂を溶融固化することにより隣接した前記絶縁体どうしあるいは前記絶縁体と素線とを固着して形状を安定化するとともに、前記加熱コイルに40〜100kHzの高周波電流を流して銅やアルミニウムのような金属の被加熱体を誘導加熱する構成とした誘導加熱装置。 A heating coil formed by winding a coil conductor, wherein the coil conductor is formed by twisting an element wire provided with an insulating layer around a conductor or an assembly wire obtained by bundling the element wire; A part or the whole is made of a fluororesin having a different melting point, and an insulator made of a fluororesin having a lower melting point is provided outside the fluororesin having a higher melting point, and the heating coil is heated after winding the coil conductor. By melting and solidifying the fluororesin formed on the outside, the insulators adjacent to each other or the insulator and the element wire are fixed to stabilize the shape, and a high-frequency current of 40 to 100 kHz is applied to the heating coil. And an induction heating device configured to induction-heat an object to be heated of a metal such as copper or aluminum. コイル導線を巻回してなる加熱コイルを備え、前記コイル導線は、導体の周囲に絶縁層を設けた素線もしくは前記素線を束ねた集合線を撚り合わせて上位集合線を形成し、少なくとも前記上位集合線の外周の一部もしくは全体に融点の低いフッ素樹脂が融点の高いフッ素樹脂の外側に構成されてなる絶縁体を設け、外周に前記絶縁体を設けた前記上位集合線をさらに撚り合わせてなる多段階重ね撚り構造とし、前記加熱コイルは、前記絶縁体が設けられた前記コイル導線を巻回後加熱し前記外側に構成されたフッ素樹脂を溶融固化することにより隣接した前記絶縁体どうしあるいは前記絶縁体と前記素線とを固着して形状を安定化させてなるとともに、前記加熱コイルに40〜100kHzの高周波電流を流して銅やアルミニウムのような金属の被加熱体を誘導加熱する構成とした誘導加熱装置。 A heating coil formed by winding a coil conductor is provided, and the coil conductor is formed by twisting an element wire provided with an insulating layer around a conductor or an assembly wire obtained by bundling the element wires to form a higher-order assembly wire, and at least the Provide an insulator in which a fluororesin having a low melting point is formed outside of a fluororesin having a high melting point on a part or the whole of the outer periphery of the upper assembly line, and further twist the upper assembly line provided with the insulator on the outer periphery. The heating coil is formed by winding the coil conductor on which the insulator is provided, and then heating the coil to melt and solidify the fluororesin formed on the outside. Alternatively, the insulator and the strand are fixed to each other to stabilize the shape, and a high-frequency current of 40 to 100 kHz is supplied to the heating coil to form a metal such as copper or aluminum. Induction heating apparatus configured to inductively heat the object to be heated in. 加熱コイルはその全体の空間体積に対し素線の導体部体積を50%以下となるように構成した請求項1または2に記載の誘導加熱装置。 The induction heating device according to claim 1, wherein the heating coil is configured such that a conductor portion volume of the element wire is 50% or less of an entire space volume. 少なくともコイル導線の一部に導体部の直径が0.1mm以下の素線を用いた請求項1〜3のいずれか1項に記載の誘導加熱装置。 The induction heating device according to any one of claims 1 to 3, wherein a wire having a diameter of a conductor portion of 0.1 mm or less is used for at least a part of the coil conductor.
JP2004121589A 2004-04-16 2004-04-16 Induction heating device Pending JP2004214220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121589A JP2004214220A (en) 2004-04-16 2004-04-16 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121589A JP2004214220A (en) 2004-04-16 2004-04-16 Induction heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003312467A Division JP3601533B2 (en) 2003-09-04 2003-09-04 Induction heating device

Publications (1)

Publication Number Publication Date
JP2004214220A true JP2004214220A (en) 2004-07-29

Family

ID=32822434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121589A Pending JP2004214220A (en) 2004-04-16 2004-04-16 Induction heating device

Country Status (1)

Country Link
JP (1) JP2004214220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227035A (en) * 2006-02-22 2007-09-06 Swcc Showa Device Technology Co Ltd Litz wire coil
JP2009140708A (en) * 2007-12-05 2009-06-25 Meleagros Corp Induction heating device and heating container used in the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227035A (en) * 2006-02-22 2007-09-06 Swcc Showa Device Technology Co Ltd Litz wire coil
JP2009140708A (en) * 2007-12-05 2009-06-25 Meleagros Corp Induction heating device and heating container used in the same

Similar Documents

Publication Publication Date Title
KR100975158B1 (en) Induction heating coil
JP3601533B2 (en) Induction heating device
JP5393097B2 (en) Alpha winding coil
JP2020514960A (en) Continuous dislocation conductors and assemblies
JP5391298B2 (en) Litz wire coil and heating device
JP2004047482A5 (en)
JP5205792B2 (en) Induction heating apparatus and method of manufacturing flat coil conductor
US10510464B1 (en) Continuously transposed conductors and assemblies
JP6785702B2 (en) Wires, coils and coil manufacturing methods
JP3941500B2 (en) Induction heating device
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
JP2003151754A (en) Induction heating apparatus
JP2003151754A5 (en)
JP2004214220A (en) Induction heating device
JP4096712B2 (en) Induction heating coil and induction heating apparatus using the same
JP2008010328A (en) Insulated electric wire, composite wire having the same, and shield wire
JP5159269B2 (en) Composite wires and coils
RU2657291C2 (en) Rotor of electric motor, with outer sleeve formed by winding, method for producing such rotor and electric motor comprising such rotor
JP2009021127A (en) Cluster conductor
JP4060557B2 (en) Manufacturing method and manufacturing apparatus for laminated flat rectangular enameled wire for high frequency
JP2597551B2 (en) Superconducting stranded wire
JP2010135157A (en) Induction heating cooker
JP2009093978A (en) Coil conductor, induction-heating coil, and induction-heating cooking oven
JP2009158147A (en) Induction heating coil
JP2011060436A (en) Induction heating coil

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219