JP2004213951A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2004213951A
JP2004213951A JP2002379877A JP2002379877A JP2004213951A JP 2004213951 A JP2004213951 A JP 2004213951A JP 2002379877 A JP2002379877 A JP 2002379877A JP 2002379877 A JP2002379877 A JP 2002379877A JP 2004213951 A JP2004213951 A JP 2004213951A
Authority
JP
Japan
Prior art keywords
current collector
lead
acid battery
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002379877A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Tomonobu Tsujikawa
知伸 辻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Power and Building Facilities Inc
Original Assignee
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Power and Building Facilities Inc filed Critical NTT Power and Building Facilities Inc
Priority to JP2002379877A priority Critical patent/JP2004213951A/en
Publication of JP2004213951A publication Critical patent/JP2004213951A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure high reliability without causing battery jar breakage or the like even if a lead-acid battery is used over a long time. <P>SOLUTION: A bone part 1 is disposed inside a collector. The collector is manufactured by using a lead-calcium (0.05%)-tin (1.0%)-aluminum (0.02%) alloy, and by a book-mold casting method. It is confirmed that the elongation of the collector generated in using the sealed lead-acid battery over a long time is absorbed, and 70% of its capacity is kept. That is to say, the service life thereof is improved by 20% as compared with a sealed lead-acid battery using a collector of a conventional technique. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数枚の正極板と負極板とをセパレータを介して組み立てた極板群が硫酸と共に電槽に収納された鉛蓄電池に関する。
【0002】
【従来の技術】
シール鉛蓄電池は、複数枚の正極板と負極板とをセパレータを介して組み立てた極板群が硫酸と共に電槽に収納されることで構成される。正・負極板は、障子の桟部のような格子状の開口部を有する集電体に、電池反応に関わる活物質が塗り込まれて形成されている。集電体の役割は、反応に関与する活物質の保持と充放電に伴う電流の通路の確保とにある。
【0003】
図7(a)は、従来技術による鉛蓄電池の集電体の構造例を示す平面図であり、同図(b)は、その断面図である。図7(a)において、集電体全体の補強を兼ねて、骨部1が集電体の外周部を構成し、その内部に縦方向に延びる縦桟部2、横方向に延びる横桟部3とが配置されている。骨部1と縦桟部2、横桟部3との太さは、図7(b)に示すように、前者の方が大きくなっている。電極は、この様な集電体に活物質を塗布することで構成されている。
【0004】
一方、正極においては、通常、予備電源として使用されると、常時、充電反応下に置かれるため、集電体は、電気化学的な酸化を受ける。このため、集電体表面が酸化し、長期間使用した場合には、活物質の保持が困難になり、電池としての機能が不可能となる。このため、集電体に使用される合金の検討が行われ、シール鉛蓄電池では、集電体に、鉛とカルシウムとスズの鉛合金が使用されている(例えば、非特許文献1参照)。
【0005】
【特許文献1】
GS News technical Report,1998年6月第57巻第1号、p.16
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来技術による鉛蓄電池では、カルシウムとスズを含有する鉛合金を用いて鋳造法で集電体を作製しているため、合金内に「粒」が形成され、各「粒」間には界面が形成される。集電体は、電池の使用中、充電状態にあるので、酸化を受けるが、この酸化によって上記「粒」の界面で酸化(腐食)が進行しやすい。このため、粒界に酸化による生成物である硫酸鉛が生成し、集電体合金全体に伸びが生じ、活物質の保持が困難になり、放電時間の短縮や最悪、放電不可能という事態に陥る。集電体の外周部方向への伸びは、10%にも達することがあり、このため、極板群を収容する電槽が伸びた正極板によって圧迫されて破損し、電解液が漏れたり、さらに、漏れた電解液による周囲の腐食・火災等の2次災害の恐れがあった。
【0007】
この発明は上述した事情に鑑みてなされたもので、長期間にわたって使用しても電槽破壊等を発生することなく、高い信頼性を確保することができる鉛蓄電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した問題点を解決するために、請求項1記載の発明では、正極板と負極板を、骨部と桟部とによって交互に組み合わせた集電体の全面に電極活物質が塗布されて極板が形成された鉛蓄電池であって、前記骨部を前記集電体の内側に配置したことを特徴とする。
【0009】
また、請求項2記載の発明では、請求項1記載の鉛蓄電池において、前記骨部は、前記集電体の内側に方形状に形成されていることを特徴とする。
【0010】
また、請求項3記載の発明では、請求項1記載の鉛蓄電池において、前記骨部は、前記集電体の内側に放射状に形成されていることを特徴とする。
【0011】
また、請求項4記載の発明では、請求項2記載の鉛蓄電池において、前記骨部は、少なくとも縦方向か横方向のいずれか一方の一部に、曲線状に形成された伸び吸収部を有することを特徴とする。
【0012】
また、請求項5記載の発明では、請求項2記載の鉛蓄電池において、前記骨部は、前記集電体の内側に分割して形成され、それぞれの位置をずらして配置されていることを特徴とする。
【0013】
また、請求項6記載の発明では、請求項1ないし5のいずれかに記載の鉛蓄電池において、前記集電体は、カルシウム(0.04〜0.1重量%)とスズ(0.1〜2.5重量%)と、アルミニウムもしくは銀(0.005〜0.05重量%)とを含有する鉛合金を主成分とすることを特徴とする。
【0014】
また、請求項7記載の発明では、請求項1ないし5のいずれかに記載の鉛蓄電池において、前記集電体を電槽内に収納した状態において、前記正極板の側部および底部と前記電槽の内壁との離隔距離が前記正極板の幅、高さ寸法の5%以下であることを特徴とする。
【0015】
この発明では、骨部と桟部とによって正極板と負極板を交互に組み合わせ、全面に電極活物質が塗布されて極板が形成された集電体の前記骨部を前記集電体の内側に配置する。したがって、使用した際に生じる集電体の伸びが吸収され、長期間にわたって使用しても電槽破壊等を発生することなく、高い信頼性を確保することが可能となる。
【0016】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
【0017】
A.第1実施形態
図1(a)は、本発明の第1実施形態によるシール鉛蓄電池の集電体の構成を示す平面図であり、同図(b)は、その断面図である。図1において、図7に示される従来の集電体構造を基本として、縦桟部2、横桟部3より断面積が大きい骨部1の位置を集電体の最外部から内側の位置に移動させた構造を有する。
【0018】
次に、図1(a),(b)に示す構造の集電体によって極板作製と電池の組み立てを行なった場合の電池特性に対する効果について説明する。具体的には、鉛−カルシウム(0.05%)−スズ(1.0%)−アルミニウム(0.02%)合金を用い、ブックモールド鋳造法によって集電体を製造した。作製した集電体は、タブ4を含まない有効部の寸法が13×10cm(高さ×幅)で、厚みは骨部1で4mmである。鋳造法による場合、鋳造体の全体寸法や集電体の骨のサイズは、鋳型全体の彫り込みで決定されるので、鋳型の調整で本第1実施形態による構造を有する集電体の製造が容易に行なえた。また、比較用として、同様の方法で、図7(a),(b)に示す従来技術による集電体も作製した。
【0019】
このような集電体に活物質を塗布して正極板を作製し、正極板4枚/負極板5枚からなるシール鉛蓄電池を組み立てた。組み立てたシール鉛蓄電池は、定格電圧2V、10時間率定格容量は30Ahである。これらのシール鉛蓄電池について、高温下で連続充電を行ない、容量変化や試験終了後の極板の伸び状況の確認を行った。
【0020】

Figure 2004213951
【0021】
この結果、図6に示すように、従来技術による集電体を使用したシール鉛蓄電池では、60℃環境下で約10ヶ月放置した後の容量が初期の70%以下まで低下したのに対し、本第1実施形態によるシール鉛蓄電池では、12ヶ月後にも70%の容量が保たれていることが確認された。すなわち、本第1実施形態では、従来技術の集電体を使用したシール鉛蓄電池に比べて、寿命が20%改善されていることが分かる。また、上記期間終了後のシール鉛蓄電池を解体し、正極板の寸法変化を測定した結果、以下のように本第1実施形態によるシール鉛蓄電池における伸びが抑制されていた。
【0022】
従来品:9%(60℃、10ヶ月後)
第1実施形態:5%(60℃、12ヶ月後)
【0023】
上述したように、本第1実施形態によれば、長期にわたってシール鉛蓄電池を使用した際に生じる集電体の伸びの吸収が図られ、電槽破壊やこれによる電解液の漏れといった二次的な問題の発生も抑えることができる。この結果、電池寿命が延伸されると共に、正極板の伸び量も抑制され、電槽内壁との離隔距離としては5%程度で十分であることが分かる。すなわち、同一サイズの集電体を使用した場合、電槽の小型化が可能ということになり、電池のコンパクト化を図ることができる。
【0024】
B.第2実施形態
次に、図2は、本発明の第2実施形態によるシール鉛蓄電池の集電体の構成を示す平面図である。図において、集電体内における骨部1は、タブ4の部分から周辺部に向かって延びた、いわゆるラジアル構造を有する。従来技術による集電体は、骨部1の集電体上部と左端に位置する部分が最も外側に有り、その他の部分は、集電体の末端まで延びていた。これに対して、本第2実施形態では、集電体の内側の部分に全ての骨部1が配置されるようになっている。
【0025】
C.第3実施形態
次に、図3(a)は、本発明の第3実施形態によるシール鉛蓄電池の集電体の構成を示す平面図であり、同図(b)は、その断面図である。本第3実施形態では、図示するように、前述した第1実施形態による集電体の構造において、骨部1の途中に伸び吸収部41を設けている。既に説明したように、シール鉛蓄電池の正極板は、使用中に酸化を受け、集電体の骨部1や縦桟部2、横桟部3に伸びが生じる。本第3実施形態では、集電体の骨部1が、この酸化による伸びに大きなウェイトを占めている点に着目し、集電体の強度や導電性等に影響を及ぼさない条件で、骨部1を集電体の周辺部から内側に移動させている。
【0026】
本第3実施形態では、骨部1の伸びを吸収するための伸び吸収部41を設けることで、伸び対策の効果をより確実なものとしている。なお、本第3実施形態では、集電体の全体寸法に変化をもたらすことがないので、活物質を塗布して極板を作製した際の塗布量にほとんど変化は無い。この結果、シール鉛蓄電池を構成した際の電気量への影響は無い。むしろ、集電体の伸びが抑制された分だけ、電槽と極板側部との離隔距離を小さくすることが可能となる。ゆえに、同一サイズの電槽に収納できる極板の大きさを大きくすることもできる。すなわち、同一の外形寸法のシール鉛蓄電池において、電池容量が向上するという効果もある。
【0027】
次に、図3(a)、(b)に示す構造の集電体によって極板作製と電池の組み立てを行なった場合の電池特性に対する効果について説明する。合金には、第1実施形態と同様に、鉛−カルシウム(0.05%)−スズ(1.0%)−アルミニウム(0.02%)合金を用い、ブックモールド鋳造法によって集電体を製造した。作製した集電体は、タブ4を含まない有効部の寸法が13×10cm(高さ×幅)で、厚みは骨部1で4mmである。これらは、鋳型の溝加工部の形状を変えただけなので、骨部1の一部に吸収部41が設けられる点を除き、ほとんど第1実施形態と同一の集電体になる。
【0028】
このような集電体に活物質を塗布して正極板を作製し、正極板4枚/負極板5枚からなるシール鉛蓄電池を組み立てた。組み立てたシール鉛蓄電池は、定格電圧2V、10時間率定格容量は30Ahである。吸収部41が設けられているものの、集電体全体サイズと活物質塗布面積とには違いが無いので、作製したシール鉛蓄電池の容量も替わらない。このシール鉛蓄電池について、高温下で連続充電を行ない、容量変化や試験終了後の極板の伸び状況の確認を行った。
【0029】
Figure 2004213951
【0030】
この結果、図6に示すように、本第3実施形態によるシール鉛蓄電池では、14ヶ月後にも70%の容量が保たれた。すなわち、吸収部41の配置によって伸びの抑制効果が向上していることが分かる。従来技術による集電体を使用したシール鉛蓄電池に比べると、寿命が40%改善されていることになる。なお、14ヶ月試験した後のシール鉛蓄電池を解体し、正極板の寸法変化を測定した結果、本第3実施形態によるシール鉛蓄電池における伸びが抑制されていた。
【0031】
従来品:9%(60℃、10ヶ月後)
第3実施形態:4%(60℃、14ヶ月後)
【0032】
上述したように、本第3実施形態によれば、第1実施形態と同様に、長期にわたってシール鉛蓄電池を使用した際に生じる集電体の伸びの吸収が図られ、電槽破壊やこれによる電解液の漏れといった二次的な問題の発生も抑えることができるという利点が得られる。この結果、電池寿命の延伸と正極板の伸び抑制が可能となり、より大きな効果を得ることができる。すなわち、本第3実施形態においては、シール鉛蓄電池のコンパクト化に対して一層の効果を得ることができる。ゆえに、同一サイズの極板を使用しても電池全体の寸法を小さくすることができ、単位体積あたりのエネルギー(放電電気量)密度の高い電池の実現することができる。
【0033】
D.第3実施形態の変形例
なお、上述した第3実施形態による集電体における伸び吸収部41に関しては、図3(a)、(b)に示したような連続した骨部1の途中に曲線状の吸収部41を設ける方法以外でも対応することができる。この例を図4、図5に示した。これらの図においては、骨部1を連続した一体型で作製するのではなく、骨部1を分割し、敢えて位置をずらして配置し、食い違い部42を形成している。鉛合金に生じる応力は、物体の断面積に応じた値になるので、断面積が大きい骨部1では、縦桟部2、横桟部3に比べて応力が大きくなる。そこで、図4、図5に示すの集電体では、縦方向か横方向のいずれかに食い違い部42を設けている。該食い違い部42によって、骨部1に生じた大きな応力を途中で分断し、集電体全体に生じる伸びの力の低減化を図っている。
【0034】
したがって、第3実施形態の変形例によれば、長期にわたってシール鉛蓄電池を使用した際に生じる集電体の伸びの吸収が図られ、電槽破壊やこれによる電解液の漏れといった二次的な問題の発生も抑えることができる。また、同一サイズの極板を使用しても電池全体の寸法を小さくすることができ、単位体積あたりのエネルギー(放電電気量)密度の高い電池の実現することができる。
【0035】
以上の述べたように、本発明は、シール鉛蓄電池のこれまでの問題であった正極板の伸び抑制と電池サイズの小型に寄与するものであり、各種用途用の小型シール鉛蓄電池や産業用大型シール鉛蓄電池に適用可能であり、産業上、極めて大きな効果を有している。
【0036】
【発明の効果】
以上説明したように、本発明によれば、骨部と桟部とによって正極板と負極板を交互に組み合わせ、全面に電極活物質が塗布されて極板が形成された集電体の前記骨部を前記集電体の内側に配置するようにしたので、使用した際に生じる集電体の伸びが吸収され、長期間にわたって使用しても電槽破壊等を発生することなく、高い信頼性を確保することができるという利点が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるシール鉛蓄電池の集電体の構成を示す平面図および断面図である。
【図2】本発明の第2実施形態によるシール鉛蓄電池の集電体の構成を示す平面図である。
【図3】本発明の第3実施形態によるシール鉛蓄電池の集電体の構成を示す平面図および断面図である。
【図4】本発明の変形例によるシール鉛蓄電池の集電体の構成を示す平面図である。
【図5】本発明の変形例によるシール鉛蓄電池の集電体の構成を示す平面図である。
【図6】従来技術による集電体と本発明による集電体を適用したシール鉛蓄電池の容量推移の比較例を示す概念図である。
【図7】従来技術によるシール鉛蓄電池の集電体の構造例を示す平面図および断面図である。
【符号の説明】
1 骨部
2 縦桟部(桟部)
3 横桟部(桟部)
4 タブ
41 伸び吸収部
42 食い違い部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead-acid battery in which an electrode group in which a plurality of positive and negative electrode plates are assembled via a separator is housed in a battery case together with sulfuric acid.
[0002]
[Prior art]
A sealed lead-acid battery is configured by storing a group of electrode plates in which a plurality of positive and negative electrode plates are assembled via a separator together with sulfuric acid in a battery case. The positive / negative electrode plate is formed by applying an active material involved in a battery reaction to a current collector having a lattice-shaped opening such as a bar of a shoji. The role of the current collector is to retain the active material involved in the reaction and to secure a path for the current accompanying charge and discharge.
[0003]
FIG. 7A is a plan view showing a structural example of a current collector of a lead storage battery according to the related art, and FIG. 7B is a cross-sectional view thereof. In FIG. 7 (a), a bone portion 1 constitutes an outer peripheral portion of the current collector, also serving as reinforcement of the entire current collector, and has a vertical beam portion 2 extending vertically therein and a horizontal beam portion extending horizontally. 3 are arranged. As shown in FIG. 7B, the thickness of the bone 1, the vertical bar 2, and the horizontal bar 3 is larger in the former. The electrode is formed by applying an active material to such a current collector.
[0004]
On the other hand, in the positive electrode, when used as a standby power source, the current collector is always subjected to a charging reaction, so that the current collector is subjected to electrochemical oxidation. For this reason, the surface of the current collector is oxidized, and when the current collector is used for a long period of time, it becomes difficult to hold the active material, and the function as a battery becomes impossible. For this reason, an alloy used for the current collector has been studied. In a sealed lead-acid battery, a lead alloy of lead, calcium, and tin is used for the current collector (for example, see Non-Patent Document 1).
[0005]
[Patent Document 1]
GS News technical Report, June 1998, Vol. 57, No. 1, p. 16
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional lead-acid battery, since the current collector is manufactured by a casting method using a lead alloy containing calcium and tin, “grain” is formed in the alloy, and the “grain” is formed between each “grain”. Forms an interface. Since the current collector is in a charged state during use of the battery, the current collector is oxidized. Oxidation (corrosion) easily proceeds at the interface between the “grain” due to the oxidation. For this reason, lead sulfate, which is a product of oxidation at the grain boundaries, is generated, and the entire current collector alloy is elongated, making it difficult to retain the active material. Fall into. The elongation of the current collector in the outer peripheral direction may reach as much as 10%. Therefore, the battery case accommodating the electrode group is damaged by being squeezed by the elongated positive electrode plate, leaking the electrolyte, Furthermore, there was a risk of secondary disaster such as surrounding corrosion and fire due to the leaked electrolyte.
[0007]
The present invention has been made in view of the above-described circumstances, and has as its object to provide a lead storage battery that can ensure high reliability without causing battery case breakdown or the like even when used for a long period of time. .
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the invention according to claim 1, the electrode active material is applied to the entire surface of a current collector in which a positive electrode plate and a negative electrode plate are alternately combined by a skeleton and a crosspiece. A lead-acid battery having a plate formed therein, wherein the skeleton is arranged inside the current collector.
[0009]
According to a second aspect of the present invention, in the lead storage battery according to the first aspect, the skeleton is formed in a rectangular shape inside the current collector.
[0010]
According to a third aspect of the present invention, in the lead storage battery according to the first aspect, the bone is radially formed inside the current collector.
[0011]
According to a fourth aspect of the present invention, in the lead-acid battery according to the second aspect, the bone portion has a stretch-absorbing portion formed in a curved shape at least in a part of either the longitudinal direction or the lateral direction. It is characterized by the following.
[0012]
According to a fifth aspect of the present invention, in the lead-acid battery according to the second aspect, the skeleton is formed by being divided inside the current collector, and is arranged so as to be shifted from each other. And
[0013]
Further, in the invention according to claim 6, in the lead-acid battery according to any one of claims 1 to 5, the current collector includes calcium (0.04 to 0.1% by weight) and tin (0.1 to 0.1% by weight). 2.5% by weight) and a lead alloy containing aluminum or silver (0.005 to 0.05% by weight) as a main component.
[0014]
According to a seventh aspect of the present invention, in the lead storage battery according to any one of the first to fifth aspects, when the current collector is housed in a battery case, the side and bottom portions of the positive electrode plate are connected to the battery. The distance from the inner wall of the tank is 5% or less of the width and height of the positive electrode plate.
[0015]
In the present invention, the positive electrode plate and the negative electrode plate are alternately combined by the skeleton and the crosspiece, and the skeleton of the current collector in which the electrode active material is applied over the entire surface to form the electrode plate is placed inside the current collector. To place. Therefore, the elongation of the current collector that occurs during use is absorbed, and high reliability can be ensured without causing battery case destruction or the like even when used for a long period of time.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
A. First Embodiment FIG. 1A is a plan view showing a configuration of a current collector of a sealed lead-acid battery according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view thereof. In FIG. 1, based on the conventional current collector structure shown in FIG. 7, the position of the bone 1 having a larger cross-sectional area than the vertical bar 2 and the horizontal bar 3 is shifted from the outermost side of the current collector to the inside. It has a moved structure.
[0018]
Next, the effect on the battery characteristics when the electrode plate is manufactured and the battery is assembled using the current collector having the structure shown in FIGS. 1A and 1B will be described. Specifically, a current collector was manufactured by a book mold casting method using a lead-calcium (0.05%)-tin (1.0%)-aluminum (0.02%) alloy. The produced current collector has an effective portion that does not include the tab 4, has a size of 13 × 10 cm (height × width), and has a thickness of 4 mm at the bone portion 1. In the case of using the casting method, since the overall size of the cast body and the size of the bone of the current collector are determined by engraving the entire mold, it is easy to manufacture the current collector having the structure according to the first embodiment by adjusting the mold. I was able to Further, for comparison, a current collector according to the prior art shown in FIGS. 7A and 7B was prepared in the same manner.
[0019]
An active material was applied to such a current collector to produce a positive electrode plate, and a sealed lead-acid battery including four positive electrode plates / five negative electrode plates was assembled. The assembled sealed lead-acid battery has a rated voltage of 2 V and a rated capacity of 10 hours at 30 Ah. These sealed lead-acid batteries were continuously charged at a high temperature, and the change in capacity and the elongation of the electrode plate after the test were confirmed.
[0020]
Figure 2004213951
[0021]
As a result, as shown in FIG. 6, in the sealed lead-acid battery using the current collector according to the conventional technique, the capacity after being left for about 10 months in a 60 ° C. environment was reduced to 70% or less of the initial value. In the sealed lead storage battery according to the first embodiment, it was confirmed that 70% of the capacity was maintained even after 12 months. That is, in the first embodiment, it can be seen that the life is improved by 20% as compared with the sealed lead-acid battery using the conventional current collector. In addition, as a result of disassembling the sealed lead-acid battery after the end of the above-mentioned period and measuring the dimensional change of the positive electrode plate, elongation in the sealed lead-acid battery according to the first embodiment was suppressed as described below.
[0022]
Conventional product: 9% (after 60 months at 60 ° C)
1st Embodiment: 5% (after 60 months, 12 months)
[0023]
As described above, according to the first embodiment, absorption of the elongation of the current collector that occurs when the sealed lead storage battery is used for a long period of time is achieved, and secondary damage such as battery case destruction and leakage of the electrolyte due to this is achieved. Problems can be suppressed. As a result, it is understood that the battery life is extended and the elongation of the positive electrode plate is suppressed, and that the separation distance from the inner wall of the battery case is about 5% is sufficient. That is, when current collectors of the same size are used, the size of the battery case can be reduced, and the size of the battery can be reduced.
[0024]
B. Second Embodiment Next, FIG. 2 is a plan view showing a configuration of a current collector of a sealed lead-acid battery according to a second embodiment of the present invention. In the figure, the bone portion 1 in the current collector has a so-called radial structure extending from the portion of the tab 4 toward the peripheral portion. In the current collector according to the prior art, a portion located at the upper end and the left end of the bone portion 1 is located on the outermost side, and the other portions extend to the end of the current collector. On the other hand, in the second embodiment, all the bones 1 are arranged in a portion inside the current collector.
[0025]
C. Third Embodiment Next, FIG. 3A is a plan view showing a configuration of a current collector of a sealed lead storage battery according to a third embodiment of the present invention, and FIG. 3B is a sectional view thereof. . In the third embodiment, as shown in the drawing, in the structure of the current collector according to the above-described first embodiment, a stretch absorbing part 41 is provided in the middle of the bone 1. As described above, the positive electrode plate of the sealed lead-acid battery is oxidized during use, and the skeleton 1, the vertical bar 2, and the horizontal bar 3 of the current collector expand. In the third embodiment, attention is paid to the fact that the bone portion 1 of the current collector occupies a large weight in the elongation due to the oxidation, and is performed under the condition that the strength and the conductivity of the current collector are not affected. The part 1 is moved inward from the peripheral part of the current collector.
[0026]
In the third embodiment, the effect of the measure against elongation is made more reliable by providing the elongation absorbing part 41 for absorbing the elongation of the bone part 1. In the third embodiment, since there is no change in the overall dimensions of the current collector, there is almost no change in the amount of application when the active material is applied to produce the electrode plate. As a result, there is no effect on the quantity of electricity when the sealed lead storage battery is configured. Rather, the distance between the battery case and the side of the electrode plate can be reduced by the amount by which the elongation of the current collector is suppressed. Therefore, the size of the electrode plates that can be stored in the same size battery case can be increased. That is, there is also an effect that the battery capacity is improved in the sealed lead storage batteries having the same external dimensions.
[0027]
Next, the effect on battery characteristics when the electrode plate is manufactured and the battery is assembled using the current collector having the structure shown in FIGS. 3A and 3B will be described. Similar to the first embodiment, a lead-calcium (0.05%)-tin (1.0%)-aluminum (0.02%) alloy is used for the alloy, and the current collector is formed by book mold casting. Manufactured. The produced current collector has an effective portion that does not include the tab 4, has a size of 13 × 10 cm (height × width), and has a thickness of 4 mm at the bone portion 1. These are merely the same current collectors as those of the first embodiment except that the shape of the grooved portion of the mold is changed, so that the absorbing portion 41 is provided in a part of the bone portion 1.
[0028]
An active material was applied to such a current collector to produce a positive electrode plate, and a sealed lead-acid battery including four positive electrode plates / five negative electrode plates was assembled. The assembled sealed lead-acid battery has a rated voltage of 2 V and a rated capacity of 10 hours at 30 Ah. Although the absorber 41 is provided, there is no difference between the current collector overall size and the active material application area, so the capacity of the manufactured sealed lead storage battery does not change. The sealed lead-acid battery was continuously charged at a high temperature, and the change in capacity and the elongation of the electrode plate after the test were confirmed.
[0029]
Figure 2004213951
[0030]
As a result, as shown in FIG. 6, in the sealed lead storage battery according to the third embodiment, the capacity of 70% was maintained even after 14 months. That is, it can be seen that the effect of suppressing the elongation is improved by the arrangement of the absorbing portions 41. The service life is improved by 40% as compared with the sealed lead storage battery using the current collector according to the prior art. The sealed lead-acid battery after the 14-month test was disassembled and the dimensional change of the positive electrode plate was measured. As a result, the elongation of the sealed lead-acid battery according to the third embodiment was suppressed.
[0031]
Conventional product: 9% (after 60 months at 60 ° C)
Third Embodiment: 4% (after 60 months at 60 ° C.)
[0032]
As described above, according to the third embodiment, as in the first embodiment, absorption of the elongation of the current collector that occurs when the sealed lead-acid battery is used for a long period of time is achieved, and the battery case is broken and This has the advantage that secondary problems such as electrolyte leakage can be suppressed. As a result, it is possible to extend the battery life and suppress the elongation of the positive electrode plate, and a greater effect can be obtained. That is, in the third embodiment, a further effect can be obtained with respect to downsizing of the sealed lead storage battery. Therefore, even if the same size electrode plates are used, the overall size of the battery can be reduced, and a battery having a high energy (discharge electricity) density per unit volume can be realized.
[0033]
D. Modification of Third Embodiment The stretch absorbing portion 41 of the current collector according to the third embodiment described above has a curved portion in the middle of the continuous bone portion 1 as shown in FIGS. 3 (a) and 3 (b). It is possible to cope with any method other than the method of providing the absorption portion 41 having the shape of a circle. This example is shown in FIGS. In these figures, the bone part 1 is not manufactured as a continuous and integral type, but the bone part 1 is divided and deliberately shifted in position to form the staggered part 42. Since the stress generated in the lead alloy is a value corresponding to the cross-sectional area of the object, the stress is larger in the bone 1 having a large cross-sectional area than in the vertical bar 2 and the horizontal bar 3. Therefore, in the current collector shown in FIGS. 4 and 5, the staggered portion 42 is provided in either the vertical direction or the horizontal direction. The staggered portion 42 divides a large stress generated in the bone portion 1 on the way to reduce the elongation force generated in the entire current collector.
[0034]
Therefore, according to the modification of the third embodiment, absorption of the elongation of the current collector caused when the sealed lead-acid battery is used for a long period of time is achieved, and secondary damage such as battery case destruction and leakage of the electrolyte due to this is achieved. Problems can be suppressed. In addition, even if the same size electrode plates are used, the overall dimensions of the battery can be reduced, and a battery having a high energy (discharge electricity) density per unit volume can be realized.
[0035]
As described above, the present invention contributes to suppressing the elongation of the positive electrode plate and reducing the size of the battery, which have been problems of the sealed lead-acid battery so far. It is applicable to large sealed lead-acid batteries, and has an extremely large industrial effect.
[0036]
【The invention's effect】
As described above, according to the present invention, a positive electrode plate and a negative electrode plate are alternately combined by a bone portion and a bar portion, and an electrode active material is applied on the entire surface to form an electrode plate. The portion is arranged inside the current collector, so that the elongation of the current collector generated when used is absorbed, and even if the device is used for a long period of time, the battery case is not broken, and high reliability is obtained. Is obtained.
[Brief description of the drawings]
FIGS. 1A and 1B are a plan view and a cross-sectional view illustrating a configuration of a current collector of a sealed lead storage battery according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a configuration of a current collector of a sealed lead storage battery according to a second embodiment of the present invention.
FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating a configuration of a current collector of a sealed lead storage battery according to a third embodiment of the present invention.
FIG. 4 is a plan view showing a configuration of a current collector of a sealed lead storage battery according to a modification of the present invention.
FIG. 5 is a plan view showing a configuration of a current collector of a sealed lead storage battery according to a modification of the present invention.
FIG. 6 is a conceptual diagram showing a comparative example of a change in capacity of a sealed lead storage battery to which a current collector according to the prior art and a current collector according to the present invention are applied.
FIG. 7 is a plan view and a cross-sectional view showing a structural example of a current collector of a sealed lead storage battery according to the related art.
[Explanation of symbols]
1 Bone 2 Vertical cross section (cross section)
3 horizontal cross section (cross section)
4 Tab 41 Elongation absorption part 42 Staggered part

Claims (7)

正極板と負極板を、骨部と桟部とによって交互に組み合わせた集電体の全面に電極活物質が塗布されて極板が形成された鉛蓄電池であって、
前記骨部を前記集電体の内側に配置したことを特徴とする鉛蓄電池。
A positive electrode plate and a negative electrode plate, a lead-acid battery in which an electrode active material is applied to the entire surface of a current collector obtained by alternately combining a bone portion and a bar portion to form an electrode plate,
The lead storage battery, wherein the bone part is arranged inside the current collector.
前記骨部は、前記集電体の内側に方形状に形成されていることを特徴とする請求項1記載の鉛蓄電池。The lead-acid battery according to claim 1, wherein the skeleton is formed in a rectangular shape inside the current collector. 前記骨部は、前記集電体の内側に放射状に形成されていることを特徴とする請求項1記載の鉛蓄電池。The lead storage battery according to claim 1, wherein the skeleton is formed radially inside the current collector. 前記骨部は、少なくとも縦方向か横方向のいずれか一方の一部に、曲線状に形成された伸び吸収部を有することを特徴とする請求項2記載の鉛蓄電池。3. The lead-acid battery according to claim 2, wherein the skeleton has a stretch-absorbing portion formed in a curved shape at least in a part of one of a vertical direction and a horizontal direction. 前記骨部は、前記集電体の内側に分割して形成され、それぞれの位置をずらして配置されていることを特徴とする請求項2記載の鉛蓄電池。3. The lead-acid battery according to claim 2, wherein the skeleton is formed by being divided inside the current collector, and is arranged so as to be shifted from each other. 前記集電体は、カルシウム(0.04〜0.1重量%)とスズ(0.1〜2.5重量%)と、アルミニウムもしくは銀(0.005〜0.05重量%)とを含有する鉛合金を主成分とすることを特徴とする請求項1ないし5のいずれかに記載の鉛蓄電池。The current collector contains calcium (0.04 to 0.1% by weight), tin (0.1 to 2.5% by weight), and aluminum or silver (0.005 to 0.05% by weight). The lead-acid battery according to any one of claims 1 to 5, wherein the lead-acid battery contains a lead alloy as a main component. 前記集電体を電槽内に収納した状態において、前記正極板の側部および底部と前記電槽の内壁との離隔距離が前記正極板の幅、高さ寸法の5%以下であることを特徴とする請求項1ないし5のいずれかに記載の鉛蓄電池。In a state where the current collector is accommodated in the battery case, a separation distance between a side portion and a bottom portion of the positive electrode plate and an inner wall of the battery case is 5% or less of a width and a height of the positive electrode plate. The lead-acid battery according to any one of claims 1 to 5, wherein:
JP2002379877A 2002-12-27 2002-12-27 Lead-acid battery Pending JP2004213951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379877A JP2004213951A (en) 2002-12-27 2002-12-27 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379877A JP2004213951A (en) 2002-12-27 2002-12-27 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2004213951A true JP2004213951A (en) 2004-07-29

Family

ID=32816255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379877A Pending JP2004213951A (en) 2002-12-27 2002-12-27 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2004213951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747179A1 (en) * 2012-09-10 2014-06-25 GS Yuasa International Ltd. Lattice for storage battery, method for producing lattice for storage battery, and storage battery using lattice for storage battery
CN111033838A (en) * 2017-08-09 2020-04-17 株式会社杰士汤浅国际 Grid for lead storage battery and lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747179A1 (en) * 2012-09-10 2014-06-25 GS Yuasa International Ltd. Lattice for storage battery, method for producing lattice for storage battery, and storage battery using lattice for storage battery
EP2747179A4 (en) * 2012-09-10 2015-04-29 Gs Yuasa Int Ltd Lattice for storage battery, method for producing lattice for storage battery, and storage battery using lattice for storage battery
CN111033838A (en) * 2017-08-09 2020-04-17 株式会社杰士汤浅国际 Grid for lead storage battery and lead storage battery
CN111033838B (en) * 2017-08-09 2023-12-26 株式会社杰士汤浅国际 Grid body for lead storage battery and lead storage battery

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
JP4900627B2 (en) Lattice plate for lead-acid battery, electrode plate and lead-acid battery provided with this electrode plate
JP2017063001A (en) Lead storage battery
JP6164266B2 (en) Lead acid battery
JP2008171701A (en) Lead acid storage battery
JP4884748B2 (en) Lattice substrate for lead acid battery
JP2008204639A (en) Lead acid storage battery
JP2000173575A (en) Lead-acid battery
JP4507483B2 (en) Control valve type lead acid battery
JP2004213951A (en) Lead-acid battery
JP2013191351A (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP3902330B2 (en) Cylindrical battery
JP4590813B2 (en) Lead-acid battery separator and lead-acid battery using the same
JP3185300B2 (en) Sealed lead-acid battery
JP4654477B2 (en) Cylindrical sealed lead-acid battery
JP2005116206A (en) Control valve type lead-acid storage battery
JPH10188999A (en) Sealed lead storage battery
JP5025317B2 (en) Lattice substrate for lead acid battery
JP2012079609A (en) Lead storage battery
JPH10302782A (en) Cathode pole plate for lead acid battery
JP2003197159A (en) Battery
JP2006140074A (en) Negative electrode active material for lead-acid battery, and lead-acid battery using it
JP2004311357A (en) Lead-acid storage battery
JP2001185131A (en) Sealed lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218