JP2004212536A - Line light source device - Google Patents

Line light source device Download PDF

Info

Publication number
JP2004212536A
JP2004212536A JP2002380592A JP2002380592A JP2004212536A JP 2004212536 A JP2004212536 A JP 2004212536A JP 2002380592 A JP2002380592 A JP 2002380592A JP 2002380592 A JP2002380592 A JP 2002380592A JP 2004212536 A JP2004212536 A JP 2004212536A
Authority
JP
Japan
Prior art keywords
light
light emitting
led
source device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380592A
Other languages
Japanese (ja)
Other versions
JP2004212536A5 (en
JP4287141B2 (en
Inventor
Kazuo Hakamata
和男 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002380592A priority Critical patent/JP4287141B2/en
Priority to US10/652,481 priority patent/US7135695B2/en
Priority to EP03019994A priority patent/EP1396994A3/en
Publication of JP2004212536A publication Critical patent/JP2004212536A/en
Publication of JP2004212536A5 publication Critical patent/JP2004212536A5/ja
Application granted granted Critical
Publication of JP4287141B2 publication Critical patent/JP4287141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent image forming characteristics in a line light source device consisting of a light emitting element array and a cylindrical lens. <P>SOLUTION: The line light source device is equipped with the light emitting element array 1 constituted by juxtaposing a plurality of light emitting elements LED<SB>1</SB>, LED<SB>2</SB>and LED<SB>3</SB>in a line, and the cylindrical lenses 2 and 3 condensing light B<SB>1</SB>emitted from the respective light emitting elements of the array 1 in a divergent light state only by a plane perpendicular to a direction in which the light emitting elements are arranged, and linearly converging it on an irradiation surface 4. It is provided with an optical device such as a pin hole array 6 restricting the angle of divergence ϕ of the light B<SB>1</SB>advancing toward the surface 4 to a range 2×cos<SP>-1</SP>(1-z/L)≥ϕ when assuming that a distance from the image forming position on the front side of the lenses 2 and 3 to a focusing position on the rear side thereof is L and the desired depth of focus thereof is z. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、線状に収束させた光で照射面を照射するライン光源装置に関するものである。
【0002】
【従来の技術】
従来、例えば特許文献1に示されるように、被写体を透過する等により画像情報を含んでいる放射線が照射されると、その画像情報を静電電荷のパターン(静電潜像)として記録する放射線導電層を含む固体センサが公知となっている。この固体センサに記録された静電潜像は、該センサを読取光によって2次元的に走査し、そのときセンサから流れ出る電流を検出することによって読取り可能である。つまり上記電流の値は、固体センサの光照射部分の蓄積電荷量に対応したものとなるので、この電流値を検出することにより、記録されている静電潜像を読み取ることができる。
【0003】
ここで、上記固体センサを読取光によって2次元的に走査するには、読取光の光点を2次元的に移動させるいわゆるフライングスポット走査方式や、線状に収束させた光をその延びる方向と直角な方向に移動させるライン走査方式を採用することができる。
【0004】
この後者の方式により光走査する場合、線状に収束させた光を発生させる装置としては、例えば、複数の発光素子が1列に並設されてなる発光素子アレイと、この発光素子アレイの各発光素子から発せられた発散光を、該発光素子の並び方向に垂直な面内のみで集光して、照射面上で線状に収束させるシリンドリカルレンズとを備えてなるライン光源装置を好適に用いることができる。
【0005】
【特許文献1】
特開2001−257331号公報
【0006】
【発明が解決しようとする課題】
ところで、上述の発光素子アレイとシリンドリカルレンズとからなるライン光源装置においては、各発光素子から発せられた光が、該発光素子の発光軸から離れるにつれて照射面上で合焦しなくなるという問題が認められる。以下、図5を参照してこの問題を詳しく説明する。
【0007】
同図はこの種のライン光源装置の一例を示すものであり、(2)は平面形状を、(1)は(2)中のA−A線に沿った側断面形状を示している。同図において1は発光素子アレイの一例であるLED(発光ダイオード)アレイであり、複数のLED、LED、LED・・・が一列に並設されてなる。また2、3はシリンドリカルレンズであり、上記各LED、LED、LED・・・から発散光状態で発せられた光B、B、B・・・を、それらの並び方向に垂直な面内、つまり同図(1)に示される面内のみで集光して、照射面4上で線状に収束させる。
【0008】
しかしここで、同図(2)中に破線T、T・・・で示すように、LED、LED、LED・・・の並び方向と平行な面内における光B、B、B・・・の結像位置は、それぞれLED、LED、LED・・・の発光軸から離れるにつれてシリンドリカルレンズ2、3側に近付くようになり、照射面4上で合焦しなくなる。つまり光B、B、B・・・は、それぞれLED、LED、LED・・・の発光軸から離れるにつれて照射面4をより太い径で照射することになる。
【0009】
このような結像特性の劣化は、照射面4が例えば前述の放射線画像を記録した固体センサである場合は読取画像の鮮鋭度を低下させるものとなり、また、照射面4が光走査記録面であるような場合は記録画像の精細度を低下させるものとなる。さらに、上述のように発光素子の発光軸から離れるにつれて拡がった光が、フレアとなって画像の読取りや記録に悪影響を及ぼすこともある。
【0010】
本発明は上記の事情に鑑みてなされたものであり、発光素子アレイとシリンドリカルレンズとからなるライン光源装置において、良好な結像特性を得ることを目的とする。
【0011】
【課題を解決するための手段】
本発明によるライン光源装置は、前述したように、
複数の発光素子が1列に並設されてなる発光素子アレイと、
この発光素子アレイの各発光素子から発散光状態で発せられた光を、該発光素子の並び方向に垂直な面内のみで集光して、照射面上で線状に収束させるシリンドリカルレンズとを備えてなるライン光源装置において、
前記シリンドリカルレンズの前側結像位置からその後側の合焦位置までの距離をL、所望の焦点深度をzとしたとき、
前記照射面に向かって進行する光の拡がり角φを、
【数2】

Figure 2004212536
なる範囲に制限する光学素子が設けられたことを特徴とするものである。
【0012】
なお上述のような光学素子としては、ピンホールアレイや、あるいは屈折率分布型レンズアレイを好適に用いることができる。
【0013】
【発明の効果】
上記(数2)式は、後に発明の実施の形態に沿って詳しく示す通り、シリンドリカルレンズの前側結像位置からその後側の合焦位置までの距離をL、所望の焦点深度をzとしたとき、図5(2)中に破線T、Tで示した結像位置の照射面4からのズレが、焦点深度z以内に収まる条件を示している。そのようになっていれば、大きくボケた光(つまり、結像位置から焦点深度zを上回る距離進行して大きく拡がった光)が照射面に照射されることがなくなるので、良好な結像特性が得られ、またフレアの発生も抑制されるようになる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0015】
図1は、本発明の第1の実施の形態によるライン光源装置の平面形状を示すものであり、また図2はその要部の斜視形状を示している。このライン光源装置は、図5に示した従来のライン光源装置におけるものとそれぞれ同様のLEDアレイ1と、シリンドリカルレンズ2および3とを有し、線状に収束させた光で照射面4を照射するように構成されている。LEDアレイ1並びにシリンドリカルレンズ2および3の詳細な構成および作用は、先に図5を参照して説明した通りである。なお図1および2において、図5中の要素と同等の要素には同番号を付してあり、それらについての説明は特に必要のない限り省略する(以下、同様)。
【0016】
また上記の照射面4としては、例えば前述したように放射線画像情報を静電電荷のパターンとして記録する固体センサの表面が挙げられ、本装置はそのような固体センサをライン状の光で走査するために使用され得るものであるが、勿論、そのような用途に限定されるものではない。
【0017】
そして本実施の形態のライン光源装置は、上記要素1〜3に加えてさらにピンホールアレイ6を有しており、基本的にはこの点だけが、図5に示した装置と異なる。このピンホールアレイ6は図2に表示の通り、LEDアレイ1の複数のLED、LED、LED・・・の各発光軸と同軸に整合する複数のピンホールAP、AP、AP・・・を備えた光吸収性の板状部材からなり、LED、LED、LED・・・から発せられた光の拡がり角φを各ピンホールAP、AP、AP・・・によって制限する作用を果たす。
【0018】
以下、図1を参照して、この拡がり角φの制限について詳しく説明する。なおここでは、1番目のLEDからの光Bを例に挙げて説明するが、その他のLED、LED・・・からの光B、B・・・についても勿論同様である。シリンドリカルレンズ2および3の前側結像位置(ここにLEDの発光点が配置される)からその後側の合焦位置までの距離をL、所望の焦点深度をzとすると、図1中のΔL=L−lが焦点深度z以下になっていれば、光Bの結像位置(図1中に破線Tで示す)はどの部分でも照射面4から焦点深度zを上回って離れることがなく、良好な結像特性が得られることになる。
【0019】
ここで、
【数3】
Figure 2004212536
であるから、
【数4】
Figure 2004212536
となり、上述したΔL=L−lが焦点深度z以下という条件は、結局、
【数5】
Figure 2004212536
となる。これを変形すると、
【数6】
Figure 2004212536
となり、これから上記(数2)式が得られる。以上より、拡がり角φが(数2)式の範囲に制限されていれば、光Bの結像位置はどの部分でも照射面4から焦点深度zを上回って離れることがなく、良好な結像特性が得られることが明らかである。
【0020】
ここで、上記の構成における具体的な数値例を挙げる。焦点深度z=0.1mm、光学長L=30mmとすると、その場合は(数6)式より拡がり角φを9.4°以上とすればよい。また焦点深度z=0.2mm、光学長L=30mmとすると、その場合は同様に(数6)式より、拡がり角φを13.2°以上とすればよい。また焦点深度z=0.05mm、光学長L=10mmとすると、その場合は同様にして、拡がり角φを11.5°以上とすればよい。さらに焦点深度z=0.05mm、光学長L=5mmとすると、その場合は同様にして、拡がり角φを16.2°以上とすればよい。
【0021】
次に、本発明の第2の実施の形態について説明する。図3は、この第2の実施の形態によるライン光源装置の平面形状を示すものであり、また図4はその要部の斜視形状を示している。このライン光源装置は基本的に、光の拡がり角φを制限する光学素子として、前述のピンホールアレイ6に代えて屈折率分布型レンズアレイ7が用いられている点が、図1および2の装置と異なるものである。
【0022】
上記屈折率分布型レンズアレイ7は図4に示す通り、LEDアレイ1の複数のLED、LED、LED・・・の各発光軸と同軸に整合する複数の屈折率分布型レンズSL、SL、SL・・・が一体的に固定されてなるものであり、LED、LED、LED・・・から発せられた光の拡がり角φを各屈折率分布型レンズSL、SL、SL・・・によって制限する作用を果たす。
【0023】
以下、図3を参照して、この拡がり角φの制限について詳しく説明する。なおここでは、1番目のLEDからの光Bを例に挙げて説明するが、その他のLED、LED・・・からの光B、B・・・についても勿論同様である。本装置では、図3に示す平面つまりシリンドリカルレンズ2および3のパワーが現れない面内では、同図に示すように、光源であるLED(図中のP)の実像P’を屈折率分布型レンズSLによって結像させる。ここで図3においては、屈折率分布型レンズSLの焦点距離をf、該屈折率分布型レンズSLからLEDまでの距離をaとして示してある。また屈折率分布型レンズSLは、便宜的に、レンズ長を持たないものとして示してある。
【0024】
この図3と図1を比較して明らかなように、この場合もピンホールアレイ6を用いる場合と同様に、LEDからの光Bの拡がり角φを屈折率分布型レンズSLによって前記(数2)で示す範囲に制限すれば、光Bの結像位置はどの部分でも照射面4から焦点深度zを上回って離れることがなく、良好な結像特性が得られるようになる。
【0025】
ここで、屈折率分布型レンズアレイ7を用いる場合において、上記(数2)を満足させるための詳しい条件を説明する。光源Pの大きさをsとすると、図3において∠coe=∠c’oe’=φ/2であるから、
【数7】
Figure 2004212536
である。これと上記(数2)から、
【数8】
Figure 2004212536
となる。ここで、光源Pの実効的な大きさは屈折率分布型レンズSLの開口角に依存し、光Bの屈折率分布型レンズSLへの最大入射角をθmax、その光軸上屈折率をno、レンズ半径をro、屈折率分布定数をAとすると、
【数9】
Figure 2004212536
となる。そこで、光源Pの実効的な大きさ2a・tan(θmax)がsより小である場合は、
【数10】
Figure 2004212536
であることが必要となる。
【0026】
ここで、上記の構成における具体的な数値例を挙げる。焦点深度z=0.1mm、光学長L=30mmとすると、その場合は(数10)式より最大入射角θmaxを6.6°以下とすればよい。また焦点深度z=0.1mm、光学長L=20mmとすると、その場合は同様に(数10)式より、最大入射角θmaxを5.7°以下とすればよい。
【0027】
以上、発光素子アレイとしてLEDアレイを用いた実施の形態について説明したが、本発明のライン光源装置は、このLEDアレイ以外の発光素子アレイを用いて構成することも勿論可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるライン光源装置の概略平面図
【図2】図1のライン光源装置の要部を示す斜視図
【図3】本発明の第2の実施の形態によるライン光源装置の概略平面図
【図4】図3のライン光源装置の要部を示す斜視図
【図5】従来のライン光源装置を示す側断面図(1)と概略平面図(2)
【符号の説明】
1 LEDアレイ
2、3 シリンドリカルレンズ
4 照射面
6 ピンホールアレイ
7 屈折率分布型レンズアレイ
AP、AP、AP・・・ ピンホール
SL、SL、SL・・・ 屈折率分布型レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a line light source device that irradiates an irradiation surface with light converged linearly.
[0002]
[Prior art]
Conventionally, for example, as disclosed in Patent Document 1, when radiation containing image information is irradiated by passing through a subject or the like, radiation that records the image information as an electrostatic charge pattern (electrostatic latent image) Solid state sensors including a conductive layer are known. The electrostatic latent image recorded on the solid state sensor can be read by scanning the sensor two-dimensionally with reading light and detecting the current flowing out of the sensor at that time. That is, the value of the current corresponds to the amount of accumulated charge in the light irradiation portion of the solid state sensor, so that the recorded electrostatic latent image can be read by detecting the current value.
[0003]
Here, in order to scan the solid-state sensor two-dimensionally with the reading light, a so-called flying spot scanning method in which the light spot of the reading light is moved two-dimensionally, or a direction in which the light converged linearly is extended. A line scanning system that moves in a perpendicular direction can be employed.
[0004]
In the case of optical scanning by the latter method, as a device for generating linearly converged light, for example, a light emitting element array in which a plurality of light emitting elements are arranged in a line, and each of the light emitting element arrays A line light source device including a cylindrical lens that converges diverging light emitted from a light emitting element only in a plane perpendicular to the direction in which the light emitting elements are arranged and converges linearly on the irradiation surface is preferable. Can be used.
[0005]
[Patent Document 1]
JP-A-2001-257331 [0006]
[Problems to be solved by the invention]
By the way, in the line light source device composed of the light emitting element array and the cylindrical lens described above, there is a problem that the light emitted from each light emitting element is not focused on the irradiation surface as the distance from the light emitting axis of the light emitting element is increased. It is done. Hereinafter, this problem will be described in detail with reference to FIG.
[0007]
This figure shows an example of this type of line light source device, where (2) shows a planar shape and (1) shows a side cross-sectional shape along line AA in (2). In FIG. 1, reference numeral 1 denotes an LED (light emitting diode) array, which is an example of a light emitting element array, and includes a plurality of LEDs 1 , LED 2 , LED 3 . Reference numerals 2 and 3 denote cylindrical lenses, which emit light B 1 , B 2 , B 3 ... Emitted from each of the LEDs 1 , LED 2 , LED 3. The light is condensed only in the vertical plane, that is, in the plane shown in FIG.
[0008]
However, here, as indicated by broken lines T 1 , T 2, ... In FIG. 2B, the light B 1 , B in the plane parallel to the arrangement direction of the LEDs 1 , LED 2 , LED 3 ,. 2 , B 3 , and so on, become closer to the cylindrical lenses 2 and 3 as they move away from the emission axes of LED 1 , LED 2 , LED 3 , and so on, and are focused on the irradiation surface 4. No longer. That is, the light B 1 , B 2 , B 3 ... Irradiates the irradiation surface 4 with a thicker diameter as the distance from the light emitting axis of the LED 1 , LED 2 , LED 3 .
[0009]
Such deterioration of the imaging characteristics reduces, for example, the sharpness of the read image when the irradiation surface 4 is a solid sensor that records the above-described radiation image, and the irradiation surface 4 is an optical scanning recording surface. In some cases, the definition of the recorded image is reduced. Furthermore, as described above, the light that spreads away from the light emitting axis of the light emitting element may flare and adversely affect image reading and recording.
[0010]
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain good imaging characteristics in a line light source device including a light emitting element array and a cylindrical lens.
[0011]
[Means for Solving the Problems]
The line light source device according to the present invention, as described above,
A light emitting element array in which a plurality of light emitting elements are arranged in a line;
A cylindrical lens that converges light emitted from each light emitting element of the light emitting element array in a divergent light state only in a plane perpendicular to the arrangement direction of the light emitting elements and converges it linearly on the irradiation surface; In the line light source device provided,
When the distance from the front imaging position of the cylindrical lens to the rear focusing position is L, and the desired depth of focus is z,
The spread angle φ of light traveling toward the irradiation surface is
[Expression 2]
Figure 2004212536
An optical element for limiting to a certain range is provided.
[0012]
As the optical element as described above, a pinhole array or a gradient index lens array can be suitably used.
[0013]
【The invention's effect】
As will be described in detail later with reference to the embodiments of the present invention, the above equation (Equation 2) is obtained when the distance from the front imaging position of the cylindrical lens to the rear focusing position is L and the desired depth of focus is z. FIG. 5B shows a condition in which the deviation from the irradiation surface 4 of the imaging position indicated by broken lines T 1 and T 2 in FIG. 5B falls within the focal depth z. If this is the case, light that has been greatly blurred (that is, light that has traveled a distance exceeding the focal depth z from the imaging position and has spread greatly) will not be irradiated onto the irradiation surface, so that good imaging characteristics are obtained. And the occurrence of flare is also suppressed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows the planar shape of the line light source device according to the first embodiment of the present invention, and FIG. 2 shows the perspective shape of the main part thereof. This line light source device has the same LED array 1 and cylindrical lenses 2 and 3 as those in the conventional line light source device shown in FIG. 5, and irradiates the irradiation surface 4 with light converged linearly. Is configured to do. The detailed configuration and operation of the LED array 1 and the cylindrical lenses 2 and 3 are as described above with reference to FIG. 1 and 2, the same elements as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted unless necessary (the same applies hereinafter).
[0016]
Examples of the irradiation surface 4 include the surface of a solid sensor that records radiation image information as an electrostatic charge pattern as described above, and the apparatus scans such a solid sensor with line-shaped light. However, it is of course not limited to such applications.
[0017]
The line light source device according to the present embodiment further includes a pinhole array 6 in addition to the elements 1 to 3 described above. Basically, only this point is different from the device shown in FIG. As shown in FIG. 2, the pinhole array 6 has a plurality of pinholes AP 1 , AP 2 , AP aligned coaxially with the light emission axes of the plurality of LEDs 1 , LED 2 , LED 3. 3 is a light-absorptive plate-like member, and LED 1 , LED 2 , LED 3, ... Divergence angle φ of light emitted from each of the pinholes AP 1 , AP 2 , AP 3.・ ・ Performs an action limited by
[0018]
Hereinafter, the limitation on the spread angle φ will be described in detail with reference to FIG. Note here, light B 1 from the first LED 1 will be described as an example, of course also applies to the light B 2, B 3 ··· from other LED 2, LED 3 · · · . Assuming that the distance from the front imaging position of the cylindrical lenses 2 and 3 (where the emission point of the LED 1 is disposed) to the rear focusing position is L and the desired depth of focus is z, ΔL in FIG. = L−l is equal to or less than the focal depth z, the imaging position of the light B 1 (indicated by the broken line T 1 in FIG. 1) may be separated from the irradiation surface 4 beyond the focal depth z at any portion. Therefore, good imaging characteristics can be obtained.
[0019]
here,
[Equation 3]
Figure 2004212536
Because
[Expression 4]
Figure 2004212536
The condition that ΔL = L−1 is equal to or less than the focal depth z is as follows:
[Equation 5]
Figure 2004212536
It becomes. If this is transformed,
[Formula 6]
Figure 2004212536
From this, the above equation (2) is obtained. As described above, if the divergence angle φ is limited to the range of the formula (2), the image formation position of the light B 1 does not move beyond the focal depth z from the irradiation surface 4 at any part, and a good result is obtained. It is clear that image characteristics can be obtained.
[0020]
Here, specific numerical examples in the above configuration will be given. Assuming that the focal depth z = 0.1 mm and the optical length L = 30 mm, in this case, the spread angle φ may be set to 9.4 ° or more from the equation (6). If the depth of focus z is 0.2 mm and the optical length L is 30 mm, in that case, the spread angle φ may be set to 13.2 ° or more according to the equation (6). If the depth of focus is z = 0.05 mm and the optical length L is 10 mm, in this case, the spread angle φ may be set to 11.5 ° or more. Further, assuming that the focal depth z = 0.05 mm and the optical length L = 5 mm, in this case, the spread angle φ may be set to 16.2 ° or more.
[0021]
Next, a second embodiment of the present invention will be described. FIG. 3 shows a planar shape of the line light source device according to the second embodiment, and FIG. 4 shows a perspective shape of a main part thereof. This line light source device basically uses a gradient index lens array 7 instead of the above-described pinhole array 6 as an optical element for limiting the light divergence angle φ. It is different from the device.
[0022]
As shown in FIG. 4, the gradient index lens array 7 includes a plurality of gradient index lenses SL 1 that are coaxially aligned with the light emission axes of the plurality of LEDs 1 , LED 2 , LED 3 ,. , which SL 2, SL 3, ..., which are fixed integrally, LED 1, LED 2, LED 3 each refractive index of the divergence angle φ of the light emitted from ... distribution type lens SL 1 , SL 2 , SL 3 ...
[0023]
Hereinafter, the limitation on the spread angle φ will be described in detail with reference to FIG. Note here, light B 1 from the first LED 1 will be described as an example, of course also applies to the light B 2, B 3 ··· from other LED 2, LED 3 · · · . In this apparatus, in a plane that does not appear power planes, that the cylindrical lens 2 and 3 shown in FIG. 3, as shown in the figure, the refractive index distribution real image P 'of the LED 1 (P in the figure) is a light source It is imaged by the mold lens SL 1. In FIG. 3, the focal length of the gradient index lens SL 1 is indicated by f, and the distance from the gradient index lens SL 1 to the LED 1 is indicated by a. The gradient index lens SL 1 is for convenience, is shown as having no lens length.
[0024]
As is clear from comparison between FIG. 3 and FIG. 1, in this case as well, as in the case of using the pinhole array 6, the spread angle φ of the light B 1 from the LED 1 is changed by the gradient index lens SL 1 . If limited to the range expressed by (Equation 2), the imaging position of the light B 1 does not deviate from the irradiation surface 4 beyond the depth of focus z at any part, and good imaging characteristics can be obtained.
[0025]
Here, detailed conditions for satisfying the above (Equation 2) when the gradient index lens array 7 is used will be described. Assuming that the size of the light source P is s, in FIG. 3, ∠coe = ∠c'oe '= φ / 2.
[Expression 7]
Figure 2004212536
It is. From this and (Equation 2) above,
[Equation 8]
Figure 2004212536
It becomes. Here, the effective size of the light source P is dependent on the opening angle of the gradient index lens SL 1, the maximum incident angle to the gradient index lens SL 1 optical B 1 .theta.max, on the optical axis refracting If the rate is no, the lens radius is ro, and the refractive index distribution constant is A,
[Equation 9]
Figure 2004212536
It becomes. Therefore, when the effective size 2a · tan (θmax) of the light source P is smaller than s,
[Expression 10]
Figure 2004212536
It is necessary to be.
[0026]
Here, specific numerical examples in the above configuration will be given. Assuming that the depth of focus z = 0.1 mm and the optical length L = 30 mm, in that case, the maximum incident angle θmax may be set to 6.6 ° or less from the equation (10). If the focal depth z = 0.1 mm and the optical length L = 20 mm, then the maximum incident angle θmax may be set to 5.7 ° or less from the equation (10).
[0027]
The embodiment using the LED array as the light emitting element array has been described above, but the line light source device of the present invention can of course be configured using a light emitting element array other than the LED array.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a line light source device according to a first embodiment of the present invention. FIG. 2 is a perspective view showing a main part of the line light source device of FIG. FIG. 4 is a perspective view showing a main part of the line light source device of FIG. 3. FIG. 5 is a side sectional view (1) and a schematic plan view showing a conventional line light source device.
[Explanation of symbols]
1 LED array 2 and 3 a cylindrical lens 4 irradiation surface 6 pinhole array 7 gradient index lens array AP 1, AP 2, AP 3 ··· pinhole SL 1, SL 2, SL 3 ··· GRIN lens

Claims (3)

複数の発光素子が1列に並設されてなる発光素子アレイと、この発光素子アレイの各発光素子から発散光状態で発せられた光を、該発光素子の並び方向に垂直な面内のみで集光して、照射面上で線状に収束させるシリンドリカルレンズとを備えてなるライン光源装置において、
前記シリンドリカルレンズの前側結像位置からその後側の合焦位置までの距離をL、所望の焦点深度をzとしたとき、
前記照射面に向かって進行する光の拡がり角φを、
Figure 2004212536
なる範囲に制限する光学素子が設けられたことを特徴とするライン光源装置。
A light emitting element array in which a plurality of light emitting elements are arranged in a row, and light emitted from each light emitting element of the light emitting element array in a divergent light state is only in a plane perpendicular to the arrangement direction of the light emitting elements. In a line light source device comprising a cylindrical lens that focuses and converges linearly on the irradiation surface,
When the distance from the front imaging position of the cylindrical lens to the focusing position on the rear side is L, and the desired depth of focus is z,
The spread angle φ of light traveling toward the irradiation surface is
Figure 2004212536
A line light source device characterized in that an optical element for limiting to a certain range is provided.
前記光学素子がピンホールアレイであることを特徴とする請求項1記載のライン光源装置。The line light source device according to claim 1, wherein the optical element is a pinhole array. 前記光学素子が屈折率分布型レンズアレイであることを特徴とする請求項1記載のライン光源装置。The line light source device according to claim 1, wherein the optical element is a gradient index lens array.
JP2002380592A 2002-09-05 2002-12-27 Line light source device Expired - Fee Related JP4287141B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002380592A JP4287141B2 (en) 2002-12-27 2002-12-27 Line light source device
US10/652,481 US7135695B2 (en) 2002-09-05 2003-09-02 Line light source system
EP03019994A EP1396994A3 (en) 2002-09-05 2003-09-03 Line light source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380592A JP4287141B2 (en) 2002-12-27 2002-12-27 Line light source device

Publications (3)

Publication Number Publication Date
JP2004212536A true JP2004212536A (en) 2004-07-29
JP2004212536A5 JP2004212536A5 (en) 2005-08-25
JP4287141B2 JP4287141B2 (en) 2009-07-01

Family

ID=32816764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380592A Expired - Fee Related JP4287141B2 (en) 2002-09-05 2002-12-27 Line light source device

Country Status (1)

Country Link
JP (1) JP4287141B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167679A (en) * 2009-01-22 2010-08-05 Seiko Epson Corp Line head and image forming apparatus
JP2010184392A (en) * 2009-02-10 2010-08-26 Seiko Epson Corp Line head and image forming apparatus
JP2010188528A (en) * 2009-02-13 2010-09-02 Seiko Epson Corp Line head and image forming apparatus
JP2010194764A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Line head and image forming apparatus
JP2017183554A (en) * 2016-03-30 2017-10-05 Hoya Candeo Optronics株式会社 Light irradiation device
EP3718777A1 (en) * 2019-04-02 2020-10-07 Heidelberger Druckmaschinen AG Device for hardening uv ink on a printing substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167679A (en) * 2009-01-22 2010-08-05 Seiko Epson Corp Line head and image forming apparatus
JP2010184392A (en) * 2009-02-10 2010-08-26 Seiko Epson Corp Line head and image forming apparatus
JP2010188528A (en) * 2009-02-13 2010-09-02 Seiko Epson Corp Line head and image forming apparatus
JP2010194764A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Line head and image forming apparatus
JP2017183554A (en) * 2016-03-30 2017-10-05 Hoya Candeo Optronics株式会社 Light irradiation device
US10131162B2 (en) 2016-03-30 2018-11-20 Hoya Candeo Optronics Corporation Light illuminating apparatus
EP3718777A1 (en) * 2019-04-02 2020-10-07 Heidelberger Druckmaschinen AG Device for hardening uv ink on a printing substrate
CN111791611A (en) * 2019-04-02 2020-10-20 海德堡印刷机械股份公司 Device for hardening UV ink on a printing material

Also Published As

Publication number Publication date
JP4287141B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US8081203B2 (en) Light-amount detecting device, light source device, optical scanning unit and image forming apparatus
US7897903B2 (en) Image detection system of optical channels arranged next to one another
US20060209372A1 (en) Scanning device
US7433125B2 (en) Light quantity distribution control element and optical apparatus using the same
US6542178B2 (en) Image recording apparatus
JP2009244662A (en) Imaging apparatus
JP2011022330A (en) Exposure device, image forming device, and hologram recording device
JP2004212536A (en) Line light source device
JPWO2020116078A1 (en) Laser radar
US6519070B2 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
JP2007045094A (en) Scanning optical system and image forming device using the same
JP5381258B2 (en) Exposure apparatus and image forming apparatus
JP4575748B2 (en) Light quantity distribution control element and optical apparatus using the same
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
JP4105060B2 (en) Optical beam scanning device
JP2011023603A (en) Aligner
JP2021020249A (en) Laser unit, laser marker and laser printing system
JP2006013441A (en) Optical write unit, image forming apparatus, and process cartridge
JP2012144012A (en) Optical writing head and image forming apparatus
JP3271817B2 (en) Optical scanning device
JP2004155140A (en) Method and apparatus for adjusting and assembling optical writing print head
JPH1052941A (en) Light-scanning apparatus and image-forming apparatus
JP2023034997A (en) Rod lens array, rod lens array assembly, sensor unit, reader device, test device, and recording system
JP2005212157A (en) Light source unit, optical writing unit and image forming apparatus
JPH0385689A (en) Optical reader

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees