JP2004212308A - 溶接部の検査方法及び検査装置 - Google Patents

溶接部の検査方法及び検査装置 Download PDF

Info

Publication number
JP2004212308A
JP2004212308A JP2003001694A JP2003001694A JP2004212308A JP 2004212308 A JP2004212308 A JP 2004212308A JP 2003001694 A JP2003001694 A JP 2003001694A JP 2003001694 A JP2003001694 A JP 2003001694A JP 2004212308 A JP2004212308 A JP 2004212308A
Authority
JP
Japan
Prior art keywords
wave
vertical
ultrasonic probe
waves
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003001694A
Other languages
English (en)
Inventor
Takashi Asano
隆 浅野
Yoshiaki Nagashima
良昭 永島
Masahiro Koike
正浩 小池
Tetsuya Matsui
哲也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003001694A priority Critical patent/JP2004212308A/ja
Publication of JP2004212308A publication Critical patent/JP2004212308A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】溶接構造体の溶接部の検査において、接触媒質で検査対象の周辺を汚染せず、溶接部の空隙の有無を精度良く知ることである。
【解決手段】超音波探触子1は超音波送受信面に接触媒質10と薄くて且つ柔軟性のあるシート15を有している。応力を付加する手段27により超音波探触子に応力を付加しながら、垂直超音波が対抗面で反射した垂直反射波の信号強度と応力の相関を得る。応力の増加に伴う信号強度の増加の程度が緩やかになった時点の応力を維持して、SH波の送受信を行う。溶接部13に存在する空隙14で反射したSH反射波の信号検出の有無から空隙14の有無を知り、空隙が有れば溶接不良、無ければ健全であると判断する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、超音波の送受信により金属構造体の溶接部に存在する亀裂や金属部材間の隙間等の空隙を検査する技術に関する。具体的には、化学プラント等に設置された大型のタンク並びに長距離に渡って敷設された配管で代表される複数の金属部材が溶接されて一体となった構造体の溶接部に存在する空隙の有無から溶接部の健全性を評価する方法と装置に関する。
【0002】
【従来の技術】
一般に、超音波の送受信により金属構造体の溶接部に存在する亀裂や金属部材間の隙間等の空隙を検査する際に利用できる超音波として、超音波の振動方向が超音波の伝播方向に一致している超音波、即ち縦波、若しくは超音波の振動方向が超音波の伝播方向に垂直、且つ検査対象物の表面に垂直である超音波、即ちSV波、若しくは超音波の振動方向が超音波の伝播方向に垂直、且つ検査対象物の表面に平行である超音波、即ちSH波が知られている。この中でSH波は、振動方向が検査対象の表面に沿っているため、検査対象が水中等にあっても超音波のエネルギーが外部へ散逸しにくいこと、空隙等で反射した際に超音波の種類が変換しないという特徴を有しており、長距離に渡って伝播させることができる。従って、大型のタンクや長い配管等の超音波探傷に好適と考えられる。しかしながら、SH波は、超音波探触子から構造体内部に伝達しにくい、という欠点を有しており、従来は実用に供せられることは少なかった。
【0003】
実用化されたSH波を利用した検査技術として、図2に示した金属配管の表面腐食を検査する方法と装置が挙げられる(例えば、特許文献1参照)。超音波探触子1の内部に設けられたSH波振動子3で金属配管2の表面を伝播するSH波を送信し、配管支持部4等で表面が覆われて目視できない位置に存在する腐食部からの反射波を、超音波探触子1で受信する。反射波の検出の有無から腐食の有無、反射波の信号強度から腐食程度を知ることができる。金属配管2の任意の位置に超音波探触子1が取り付けられるように、超音波探触子1はバネ9及び支持体8を介して移動体7に連結しており、移動体7は金属配管2の外周に設けられたリング5で金属配管2に磁石6で固定される。従来技術では、反射波の検出性能から使用するSH波の周波数の下限は0.5MHz 、SH波の伝播距離から使用するSH波の周波数の上限は5MHzとされ、好ましい周波数は0.5 〜5MHzとされている。検査対象の腐食は金属配管2の表面、即ち超音波探触子を接している側の表面であることから、SH波のうち表面SH波、即ち超音波探触子が接している側の表面のみが部分的に振動するSH波が望ましいことから、
SH波が金属配管表面に入射する際の屈折角は80〜90度であることが好ましい、とされている。更に、超音波探触子を支持体8とバネ9で構成された荷重付与機構を用いて一定荷重で金属配管表面に押し付けることが好ましい、とされているが具体的に如何なる荷重で押し付けるかは記載がない。また、超音波探触子1と金属配管2の表面との間に接触媒質10を挟むことで、超音波を良好に金属配管内に伝達できる、とされているがその詳細については記載がない。
【0004】
【特許文献1】
特開2002−243704号公報
【0005】
【発明が解決しようとする課題】
溶接部に存在する空隙の有無から溶接部の健全性を評価する方法と装置化学プラント等に設置された大型のタンク並びに長距離に渡って敷設された配管で代表される複数の金属部材が溶接されて一体となった構造体の溶接部を検査対象とする場合、検査は大気中ばかりでなく水中で行われる場合も多い。また、人が用意にアクセス出来ない位置に検査装置を設置しなければならないこともある。従って、接触媒質を超音波探触子の超音波送受信面に単に塗布して構造体の表面に押し付ければ、接触媒質が水中へ溶け出して環境を汚染したり、構造体の表面に付着した接触媒質を後で清掃あるいは回収したりすることは容易でない。また、複数の位置を検査する場合には、超音波探触子に接触媒質を塗布するのに手間が掛かる。
【0006】
上記従来技術は、超音波探触子と構造体の表面との間に挟む接触媒質の挟み方ついては具体的に記載されていない、という問題があった。従って、本発明の第1の目的は、検査対象である構造体の表面に接触媒質が付着しない接触媒質の保持方法について提供することにある。
【0007】
次に、本発明の第2の目的について以下記載する。
【0008】
図3(a)に示すように金属部材12の表面から進行する腐食11を検査する場合は、上記従来技術のようにSH波を検査対象の表層を伝播させれば良いが、金属部材の溶接部の検査では、図3(b),(c)に示すように溶接不良に伴う金属部材12と12′の接合不良として存在する空隙14は、溶接を施した表面に対向する側の表面並びに内部に生じているため、SH波は検査対象の表層だけでなく金属部材12の断面全体に渡って伝播していることが望ましい。
【0009】
上記従来技術は、SH波の伝播領域をなるべく表層に限定することで表面に発生した腐食を検出することを目的としているので、金属部材の断面全体に渡って存在する空隙の有無を検査する必要のある溶接部の検査については考慮されていない。また、腐食の発生位置と近接した位置に超音波探触子を設置できるため、利用する超音波の周波数が0.5 〜5MHzと比較的高いという問題があった。
【0010】
従って、本発明の第2の目的は、複数の板状の金属部材が溶接されて一体となった構造体の溶接部の検査を行うために、SH波を表層だけでなく構造体の断面全体に渡って伝播させ、構造体の表面であって溶接部から離れた位置に押し付けた超音波探触子からSH波を送信及び受信する溶接部の検査方法と検査装置を提供することにある。
【0011】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明に依れば、超音波探触子の超音波送受信面と構造体の表面との間に接触媒質並びに接触媒質を包むシートを挟み、超音波探触子を構造体の表面に押し付けながらSH波の送受信を行い、構造体の内部を伝播したSH波が溶接部に存在する空隙から反射して来たSH反射波の信号の有無から溶接部の空隙の有無を定め、空隙が有れば溶接部は不良であり、空隙が無ければ溶接部は健全であると評価する溶接部の検査方法が提供される。この方法を用いて溶接部に存在する空隙の有無を検査する装置として、超音波探触子の超音波送受信面と前記構造体の表面との間に接触媒質並びに当該接触媒質を包むシートを有しており、且つ超音波探触子に応力を付加する手段と、超音波探触子を用いてSH波を送信するSH波送信回路と、超音波探触子を用いてSH波を受信するSH波受信回路と、受信したSH波の信号強度を時刻と伴に記録並びに表示するSH波信号処理手段とを有している溶接部の検査装置が提供される。
【0012】
上記第2の目的を達成するために、本発明に依れば、SH波を送受信する超音波探触子を0.1MPa 以上の応力で構造体の表面に押し付けながらSH波の送信と反射波の受信を行う溶接部の検査方法が提供される。
【0013】
更に、上記第2の目的を達成するために、SH波を送受信する超音波探触子はSH波を送受信するSH波振動子と構造体の厚み方向に伝播する垂直超音波を送受信する垂直波振動子とを備えており、垂直波振動子を用いて垂直超音波を構造体に入射し、構造体の対向面から反射して来た垂直反射波を垂直波振動子で検出し、垂直反射波の信号強度と超音波探触子を構造体の表面に押し付ける応力との相関を求め、応力の増加に伴い垂直反射波の信号強度が増加する程度が緩やかになった際の応力を維持しながらSH波振動子を用いてSH波の送受信を行う溶接部の検査方法が提供される。この方法を用いて溶接部に存在する空隙の有無を検査する装置として、SH波を送受信する超音波探触子は、超音波探触子の内部にSH波を送受信するSH波振動子と構造体の厚み方向に伝播する垂直超音波を送受信する垂直波振動子とを備えており、且つ垂直波振動子を用いて垂直波を送信する垂直波送信回路と、垂直波振動子を用いて垂直波を受信する垂直波受信回路と、受信した垂直波の信号強度を時刻と伴に記録並びに表示する垂直波信号処理手段と、SH波振動子を用いてSH波を送信するSH波送信回路と、SH波振動子を用いてSH波を受信するSH波受信回路と、受信したSH波の信号強度を時刻と伴に記録並びに表示するSH波信号処理手段とを有している溶接部の検査装置が提供される。
【0014】
更に、上記第2の目的を達成するために、SH波を送受信する超音波探触子と超音波探触子に隣接している構造体の厚み方向に伝播する垂直超音波を送受信する他の超音波探触子とが共に同じ応力で構造体の表面に押し付けられており、垂直超音波を送受信する超音波探触子を用いて垂直超音波を構造体に入射し、構造体の対向面から反射して来た垂直反射波を超音波探触子で検出し、垂直反射波の信号強度と超音波探触子を構造体の表面に押し付ける応力との相関を求め、応力の増加に伴い垂直反射波の信号強度が増加する程度が緩やかになった際の応力を維持しながら、SH波を送受信する超音波探触子を用いてSH波の送受信を行う溶接部の検査方法が提供される。この方法を用いて溶接部に存在する空隙の有無を検査する装置として、SH波を送受信する超音波探触子及び構造体の厚み方向に伝播する垂直超音波を送受信する他の超音波探触子の超音波送受信面と構造体の表面との間に接触媒質並びに接触媒質を包むシートを有しており、且つ二つの超音波探触子に同じ応力を付加する手段と、垂直超音波を送受信する超音波探触子を用いて垂直波を送信する垂直波送信回路と、垂直超音波を送受信する超音波探触子を用いて垂直波を受信する垂直波受信回路と、受信した垂直波の信号強度を時刻と伴に記録並びに表示する垂直波信号処理手段と、SH波を送受信する超音波探触子を用いてSH波を送信するSH波送信回路と、SH波を送受信する超音波探触子を用いてSH波を受信するSH波受信回路と、受信したSH波の信号強度を時刻と伴に記録並びに表示するSH波信号処理手段とを有している溶接部の検査装置が提供される。
【0015】
以上の検査方法若しくは検査装置において、好ましくは、SH波の周波数は、周波数[単位:MHz]×板厚み[単位:mm]≦音速[単位:km/s]の関係を満たすことが望ましい。
【0016】
上記本発明の手段が本発明の目的に適う理由を以下に説明する。
【0017】
超音波探触子の超音波送受信面に、薄くて柔軟性のある材質で形成された接触媒質を保持するシートを有しており、シートの内部に接触媒質を包含しているので、接触媒質は構造体の表面に付着することがなく、水中で検査する場合には水を汚染することが無い。更に、構造体の表面を清掃したり、後で接触媒質を回収したりする手間が要らない。シートは、接触媒質が浸透しない材質であれば良く、ポリイミドフィルム,ポリエチレンビニールシート等が適しているが、これに限定されるものではなく、例えばアルミ箔等の薄い金属箔であっても良い。また、シートは接触媒質により超音波探触子の超音波送受信面に粘着しているので、一旦、取り付ければ超音波探触子を設置する場所を替える際にもそのまま使用でき、改めて接触媒質を超音波送受信面に塗布する手間を要しない。
【0018】
しかしながら、シートを介しているので超音波探触子に応力を付加しながら
SH波の送受信を行わないと、超音波探触子と構造体との間でSH波が効率良く伝達されない。図4は、図3(b)に示したような空隙を模擬した試験片にSH波を伝播させた際の、超音波探触子に与える応力と空隙からのSH反射波の信号強度の相関を示している。この例では、シートは25μmの厚みのポリイミドフィルムを用い、接触媒質は高粘性の物質である。また、試験片はSUSで、その板厚みは4mmである。図4では、シートのない場合の信号強度を1として表示している。シートがない場合、一旦応力を掛けた後は応力をゼロにしても反射波の信号強度は変わらないが、シートのある場合は応力を付加しなければ反射波の信号は検出されない。これは、シートと構造体の表面とは粘着されていないためである。シートのある場合、応力の増加に従い反射波の信号強度は増加していくが、増加の程度は徐々に鈍り、ほぼ一定値に飽和する。従って、超音波探触子に付加する応力はSH反射波の信号強度の増加の程度が緩やかになったことを以って、SH波の送受信に適した応力が付加されていることを知ることができる。
【0019】
更に、超音波探触子に与える応力と空隙から反射して来たSH反射波の信号強度の相関は、構造体の厚み方向に伝播する垂直超音波でも同じ結果が得られることが判った。その際に、利用する超音波としてはSH波が横波の一種であることから横波であることが望ましい。即ち、超音波探触子に与える応力と構造体の対向面から反射して来た垂直反射波の信号強度の相関も、シートの無い場合の垂直反射波の信号強度を1とすれば、図4で示される。従って、溶接部の検査をSH波を利用して検査する前に、SH波の送受信に適した応力を垂直超音波の送受信により定めることができる。
【0020】
次に、溶接部の検査に適したSH波の周波数を定める方法について図5を用いて説明する。
【0021】
図5は、0次モードのSH波と高次モードのSH波の音速と周波数×板厚みとの相関を示している。図では高次モードとして1次と2次のみを示している。より高次のモードも存在するが、それらの音速を示す曲線は2次の音速を示す曲線より右側、即ち図のグラフの横軸、周波数F(MHz)×板厚み(mm)、の値がより大きな領域に現れるので割愛している。
【0022】
超音波探触子から特定の板厚みである構造体にSH波を入射する場合を考えると、送信したSH波の周波数により、構造体の内部に誘起されるSH波のモードが決まる。例えば、板厚み4mmの場合には、周波数0.3MHz のSH波を入射すると、FD=1.2 であるため構造体の内部に誘起されるSH波は0次モードのみとなる。また、周波数0.5MHz のSH波を入射すれば、FD=2であるため構造体の内部に誘起されるSH波は0次と1次モードとなる。更に、周波数1MHzのSH波を入射すれば、FD=4であるため構造体の内部に誘起されるSH波は0次,1次及び2次モードとなる。更に高い周波数のSH波を入射すれば、更に高次モードのSH波も誘起される。
【0023】
複数のモードのSH波が構造体の内部を伝播していると、それらは音速が異なるので空隙で反射してきたSH反射波を受信する時刻が異なり、SH反射波の信号強度から空隙の存在並びに位置を知る上でノイズとなり、検査精度を低下させる。従って、構造体の内部を伝播するSH波のモードを限定するのが良く、そのために2次モードのSH波のカットオフ周波数より低い周波数のSH波を送信して、構造体の内部には0次と1次モードしか誘起されないようにすることが望ましい。n次のモードのSH波が誘起されないためのカットオフ周波数F(MHz)は、板厚みD(mm)と0次モードのSH波の音速U(km/s)とを用いて、FD=nU/2で表される。従って、2次モードのSH波のカットオフ周波数より低い周波数のSH波を送信する場合には、FD≦Uを満たすようにすれば良い。図5の例では金属材料はSUSなので0次モードのSH波の音速は約3km/sであり、FD≦3となる。
【0024】
FD≦U/2となるような更に低い周波数のSH波を送信すれば、構造体の内部に0次モードしか誘起されないようにすることも出来る。但し、受信される反射波の信号強度は周波数に比例するため、周波数が低くなるとSH反射波の信号強度は弱くなり、小さな空隙を見逃す可能性がある。SH波を伝播させる距離、即ち超音波探触子を設置可能な場所と溶接部との距離、によるSH波の減衰もあるため、受信される反射波の信号強度の強いU/2<FD≦Uである周波数のSH波と、ノイズの少ないFD≦U/2である周波数のSH波とを併用して検査を行うことも有効である。
【0025】
なお通常は、検査対象である構造体の板厚みは、その設計図等から判っていることが多いので、送信するSH波の周波数は事前に知ることが出来る。
【0026】
【発明の実施の形態】
以下、本発明の実施例を、図面を参照しつつ説明する。本発明の第1の実施例を図1及び図6から図8を用いて説明する。図1は板状の金属部材12と12′とが溶接されて一体となった構造体の溶接部を検査する装置の全体構成を示している。溶接部13の下方に存在する空隙14の有無を溶接部13から離れた位置で超音波探触子1を設置可能な金属部材12の表面から検査する。
【0027】
超音波探触子1は超音波送受信面に接触媒質10と薄くて且つ柔軟性のあるシート15を有している。接触媒質10はシート15に包含されているので、金属部材12の表面と直接接していない。本実施例では、シート15として約25μmの厚みのポリイミドフィルムを用いたが、これに限定されるものではなく100μm以下の厚みで柔軟性のある材質のものであれば良い。接触媒質10は浸透しないので検査対象が設置されている環境を汚すこと無く、且つ接触媒質10を繰り返し使用することが出来る。
【0028】
超音波探触子1に応力を付加する手段27が設けられており、本実施例における機能は以下のようになる。ステッピングモータ支持体25に支えられたステッピングモータ22の回転シャフト23の回転を回転制御回路26で制御する。回転シャフト23と雄ネジ部を有した押し出し棒18をネジ等により連結リング24で連結する。雌ネジの切られた支持体19に押し出し棒18の雄ネジ部を通すことにより、回転運動に連動して押し出し棒18は上下に駆動できるので、超音波探触子1を金属部材12の表面に押し付けることができる。その際、超音波探触子1自体が回転しないように、押し出し棒18と超音波探触子保持体17は固着せず、単に接触させるだけに留めておく。異なる方法としては、超音波探触子保持体17を上下方向にのみ動くことが可能なように固定しておくか、押し出し棒18の雄ネジ部の下側にベアリング等を入れて、押し出し棒18の下部は自由に回転できるようにして上部の回転運動を下部に伝達しないようにすることも有効である。また、超音波探触子1を金属部材12の表面に押し付ける力の反力で支持体19は押し返されるので、この反力より十分大きな吸着力を持つ吸着盤20により支持体19を金属部材12の表面に固定する。以上の、応力を付加する手段27により超音波探触子1に付加する応力を制御できる。
【0029】
勿論、応力を付加する手段は応力を制御可能なものであれば上述した本実施例に限定されるものではない。例えば、ネジによる回転を上下方向の駆動に変化するものに代えて、バネを用いて押さえつけても良いし、シリンダ,エアーポンプ等で押さえつけても良い。また、支持体19を金属部材12の表面に固定する方法も吸着盤に限定されるものではない。金属部材12の材質が磁性体であれば、電磁式の磁石を用いても良い。
【0030】
本実施例の超音波探触子1は、内部にSH波振動子3と垂直波振動子21とを有している。これらの制御のために、垂直波送信回路28,垂直波受信回路29,SH波送信回路30,SH波受信回路31,垂直波信号処理装置32,SH波信号処理装置33及び信号表示装置34が設けられている。垂直波信号処理装置32,SH波信号処理装置33及び信号表示装置34はパソコン35等を用いて一つの装置で信号処理と信号表示を行っても良い。
【0031】
本実施例における溶接部の検査は、以下のようになる。
【0032】
まず、検査に適した応力を定める手順を図6を用いて説明する。超音波探触子に回転制御機構27によりステッピングモータ22の回転ステップ数をC1回だけ動かして回転軸23を回転させ、押し出し棒18を下方向に駆動する。その状態で、垂直波送信回路28によりバーストパルス信号を垂直波振動子21に送信して振動させ、同時に、垂直波送信回路28から垂直波受信回路29にトリガ信号を送信する。このトリガ信号を受けて垂直波受信回路29は、垂直波振動子21の振動運動に起因して回路に流れる過渡電流の検出を開始し、その電流信号はA/Dコンバータ等によりデジタル信号に変換され、垂直波の信号強度の時間経過が垂直波信号処理装置32に記録される。表示装置34には受信した垂直波の信号強度の時間経過が図6(a)のように表示される。本実施例では、板厚み4mmのSUSに垂直超音波として横波を送信したので、対抗面で反射された垂直反射波が検出される時刻は、板厚み4mmとSUS中での横波の音速3200m/sより、垂直超音波を送信した2.5μs 後になる。図6(a)の枠の内側の図は、垂直反射波の部分を拡大表示したもので、バーストパルス信号が受信される。この結果から、回転ステップ数C1における垂直反射波の最大振幅V1が得られる。同様に、図6(b)に示すように回転ステップ数を増してC2とした時の垂直反射波の最大振幅V2を得る。順次、回転ステップ数を増しながら、垂直反射波の最大振幅を得て、垂直反射波の最大振幅を縦軸、回転ステップ数を横軸にとってグラフを描けば図6(c)が得られるので、垂直反射波の最大振幅の増加が回転ステップ数に伴い増加するのを確認して行き、増加の程度が緩やかになった時点でステッピングモータ22は、それ以上の操作はしないことにすれば良い。本実施例では、超音波探触子1に付加されている応力の値そのものは知ることが出来ないが、応力に対応する回転ステップ数で代用できるので以降の溶接部の検査には何ら問題が生じない。
【0033】
上述した手順で定めた超音波探触子1に加える応力を維持しながら、SH波の送受信により溶接部の検査を行う。SH波送信回路30によりバーストパルス信号をSH波振動子3に送信して振動させ、同時に、SH波送信回路30からSH波受信回路31にトリガ信号を送信する。このトリガ信号を受けてSH波受信回路31は、SH波振動子3の振動運動に起因して回路に流れる過渡電流の検出を開始し、その電流信号はA/Dコンバータ等によりデジタル信号に変換され、SH波の信号強度の時間経過がSH波信号処理装置33に記録される。
【0034】
図7は、複数の板状の金属部材12と12′とが溶接されて一体となった構造体の表面の平面を示している。本実施例では、図中下側の水平な溶接部に空隙
14が約30cmに渡って存在する。これを検査するには上側の丸数字で示した位置のそれぞれで、超音波探触子1に加える応力を定め、SH波の送受信を行う。勿論、超音波探触子1の位置を変えながら検査しても良いし、複数の超音波探触子を用いて同時に検査を行っても良い。
【0035】
図8は、送受信するSH波の周波数が0.3MHz の場合に図7に示した丸数字の位置で受信したSH波の信号強度の時間経過を示している。この場合、周波数[単位:MHz]×板厚み[単位:mm]=1.2<1.5(音速3km/s÷2)となり、1次モードのSH波のカットオフ周波数より低いので、0次のSH波しか構造体に誘起されない場合である。溶接部13と超音波探触子1との距離、金属部材12′の端と超音波探触子1との距離が判っているので、SH波の音速から溶接部13の空隙14で反射したSH反射波が検出される時間A,金属部材の端で反射したSH反射波が検出される時間Bを明示している。超音波探触子の位置▲1▼から▲4▼では、溶接部13の空隙14で反射したSH反射波のバーストパルス信号が存在する。位置▲1▼と▲4▼のバーストパルス信号強度が、位置▲2▼と▲3▼の信号強度より弱いのは、空隙14の両端からの反射波であるため反射率が低いことに対応している。更に、空隙14の存在しない溶接部にSH波を送信した位置▲5▼から▲7▼では、時刻AではSH反射波のバーストパルス信号は認められない。一方、時刻Bでは、位置▲1▼から▲7▼の全てにおいて、金属部材の端からの反射波が検出される。
【0036】
比較のために、送受信するSH波の周波数が0.5MHz の場合のSH波の信号強度の時間経過を図9に示す。1.5(音速3km/s÷2)<周波数[単位:MHz]×板厚み[単位:mm]=2<3(音速3km/s)となり、1次モードのSH波のカットオフ周波数より高く、2次モードのSH波のカットオフ周波数より低いので、0次と1次のモードのSH波が構造体に誘起される。
【0037】
図8と図9の結果を比べれば容易に分かるように、図8の0次のSH波しか構造体に誘起されない場合の方が、図9の0次と1次のモードのSH波が構造体に誘起される場合に比べてノイズが少なく、空隙14を精度良く検査できている。但し、空隙14で反射したSH反射波の最大振幅は周波数に比例するので、図9の0次と1次のモードのSH波が構造体に誘起される場合の方がSH反射波の最大振幅は大きい。また、検出感度が良いので、溶接部13で反射したSH反射波(図9の位置▲5▼から▲7▼の時刻Aに存在するバーストパルス信号)が検出される。本実施例では予め超音波探触子1と溶接部13との距離が分かっていたが、分からない場合も考えられる。その場合には、溶接部13で反射したSH反射波も検出可能な音速[単位:km/s]/2<周波数[単位:MHz]×板厚み[単位:mm]≦音速[単位:km/s]を満足する周波数のSH波を用いて超音波探触子1と溶接部13との距離を知り、次に周波数[単位:MHz]×板厚み[単位:mm]≦音速[単位:km/s]/2を満足する周波数のSH波を用いて溶接部13に存在する空隙14の有無を知るのが良い。
【0038】
以上のことから、本実施例の溶接部の検査装置に依れば、接触媒質をシートで包含したので、接触媒質が金属部材の表面に付着せず、検査対象が設置されている環境を汚すことが無く、接触媒質を繰り返し使用することが出来る。また、超音波探触子に付加する応力を適切に定め、溶接部の空隙の有無を精度良く知ることができるので、空隙が有れば溶接不良、空隙が無ければ溶接部は健全、と評価することが出来る。
【0039】
本発明の第2の実施例を図10により説明する。本実施例が第1の実施例と異なる点は、SH波を送受信するSH波振動子3のみを内部に持つ超音波探触子1と垂直超音波を送受信する垂直波振動子21のみを内部に持つ超音波探触子16とを備えていることである。従って、本実施例の溶接部の検査装置に依れば、第1の実施例と同様に、接触媒質をシートで包含したので、接触媒質が金属部材の表面に付着せず、検査対象が設置されている環境を汚すことが無く、接触媒質を繰り返し使用することが出来る。また、超音波探触子に付加する応力を適切に定め、溶接部の空隙の有無を精度良く知ることができるので、空隙が有れば溶接不良、空隙が無ければ溶接部は健全、と評価することが出来る。
【0040】
本発明の第3の実施例を図11により説明する。本実施例が第1並びに第2の実施例と異なる点は、SH波を送受信するSH波振動子3しか備えていないことにある。このため、超音波探触子1を金属部材12の表面に押し付ける応力が0.1MPa 以上となるように回転機構制御回路26によりステッピングモータ22を制御する。回転ステップ数と応力の関係を予め測定しておき、回転ステップ数を応力に換算すれば良い。若しくは、図12に示すように、応力測定子36を超音波探触子1と超音波探触子保持体17との間に挟み、超音波探触子1に付加されている応力を直接、計測しても良い。図4に示したように、超音波探触子1を金属部材12の表面に押し付ける応力が0.1MPa 以上であれば、反射波の信号強度が応力に対して増加しなくなり飽和する値の1/2以上の強度が得られる。
【0041】
従って、本実施例の溶接部の検査装置に依れば、第1並びに第2の実施例と同様に、接触媒質をシートで包含したので、接触媒質が金属部材の表面に付着せず、検査対象が設置されている環境を汚すことが無く、接触媒質を繰り返し使用することが出来る。また、超音波探触子を金属部材の表面面に押し付ける応力を予め定めているので、溶接部の空隙の有無を精度良く知ることができるので、空隙が有れば溶接不良、空隙が無ければ溶接部は健全、と評価することが出来る。
【0042】
【発明の効果】
本発明によれば、接触媒質をシートで包含したので、接触媒質が金属部材の表面に付着せず、検査対象が設置されている環境を汚すことが無く、接触媒質を繰り返し使用することが出来る。また、超音波探触子に付加する応力を適切に定め、溶接部の空隙の有無を精度良く知ることができるので、空隙が有れば溶接不良、空隙が無ければ溶接部は健全、と評価することが出来る。
【図面の簡単な説明】
【図1】本発明の第1の実施例における溶接部の検査装置の全体構成を表す図である。
【図2】従来の腐食検査装置の構成を表す図である。
【図3】腐食検査と溶接部の検査の原理を表す図である。
【図4】超音波探触子に付加する応力と反射波の信号強度の相関を表す図である。
【図5】SH波の音速と周波数×板厚みの相関を表す図である。
【図6】垂直超音波を用いて超音波探触子に適切な応力を付加できることを表す図である。
【図7】本発明の第1の実施例における検査対象の平面図と検査位置を表す図である。
【図8】本発明の第1の実施例における周波数0.3MHz のSH波を用いた際に受信したSH波の信号強度の時間経過を表す図である。
【図9】本発明の第1の実施例における周波数0.5MHz のSH波を用いた際に受信したSH波の信号強度の時間経過を表す図である。
【図10】本発明の第2の実施例における溶接部の検査装置の全体構成を表す図である。
【図11】本発明の第3の実施例における溶接部の検査装置の全体構成を表す図である。
【図12】本発明の第3の実施例における超音波探触子に付加されている応力を測定する際の構成を表す図である。
【符号の説明】
1…超音波探触子、2…金属配管、3…SH波振動子、4…配管支持部、5…リング、6…磁石、7…移動体、8…支持体、9…バネ、10…接触媒質、11…腐食、12…金属部材、13…溶接部、14…空隙、15…シート、16…垂直超音波を送受信する超音波探触子、17…超音波探触子保持体、18…押し出し棒、19…支持体、20…吸着盤、21…垂直波振動子、22…ステッピングモータ、23…回転シャフト、24…連結リング、25…ステッピングモータ支持体、26…回転制御回路、27…応力を付加する手段、28…垂直波送信回路、29…垂直波受信回路、30…SH波送信回路、31…SH波受信回路、32…垂直波信号処理装置、33…SH波信号処理装置、34…表示装置、35…パソコン、36…応力測定子。

Claims (9)

  1. 複数の板状の金属部材が溶接されて一体となった構造体の溶接部に存在する空隙の有無を超音波の一種であるSH波の送受信により検査する方法において、超音波探触子の超音波送受信面と前記構造体の表面との間に接触媒質並びに当該接触媒質を包むシートを挟み、当該超音波探触子を前記構造体の表面に押し付けながらSH波の送受信を行い、前記構造体の内部を伝播したSH波が溶接部に存在する空隙から反射して来たSH反射波の信号の有無から溶接部の空隙の有無を定め、空隙が有れば溶接部は不良であり、空隙が無ければ溶接部は健全であると評価することを特徴とした溶接部の検査方法。
  2. 請求項1に記載の溶接部の検査方法において、SH波を送受信する前記超音波探触子を0.1MPa 以上の応力で前記構造体の表面に押し付けながらSH波の送受信を行うことを特徴とした溶接部の検査方法。
  3. 請求項1に記載の溶接部の検査方法において、SH波を送受信する前記超音波探触子はSH波を送受信するSH波振動子と前記構造体の厚み方向に伝播する垂直超音波を送受信する垂直波振動子とを備えており、前記垂直波振動子を用いて垂直超音波を前記構造体に入射し、前記構造体の対向面から反射して来た垂直反射波を前記垂直波振動子で検出し、当該垂直反射波の信号強度と超音波探触子を前記構造体の表面に押し付ける応力との相関を求め、応力の増加に伴い垂直反射波の信号強度が増加する程度が緩やかになった際の応力を維持しながらSH波振動子を用いてSH波の送受信を行うことを特徴とした溶接部の検査方法。
  4. 請求項1に記載の溶接部の検査方法において、SH波を送受信する前記超音波探触子と当該超音波探触子に隣接している前記構造体の厚み方向に伝播する垂直超音波を送受信する他の超音波探触子とが共に同じ応力で前記構造体の表面に押し付けられており、垂直超音波を送受信する超音波探触子を用いて垂直超音波を前記構造体に入射し、前記構造体の対向面から反射して来た垂直反射波を当該超音波探触子で検出し、当該垂直反射波の信号強度と超音波探触子を前記構造体の表面に押し付ける応力との相関を求め、応力の増加に伴い垂直反射波の信号強度が増加する程度が緩やかになった際の応力を維持しながら、SH波を送受信する超音波探触子を用いてSH波の送受信を行うことを特徴とした溶接部の検査方法。
  5. 請求項1から請求項4のいずれか一項に記載の溶接部の検査方法において、送受信を行うSH波の周波数は、当該SH波の音速と前記構造体の板厚みとを用いて、周波数[単位:MHz]×板厚み[単位:mm]≦音速[単位:km/s]の関係を満足するような周波数であることを特徴とした溶接部の検査方法。
  6. 複数の板状の金属部材が溶接されて一体となった構造体の溶接部に存在する空隙の有無を超音波の一種であるSH波の送受信により検査する装置において、超音波探触子の超音波送受信面と前記構造体の表面との間に接触媒質並びに当該接触媒質を包むシートを有しており、且つ当該超音波探触子に応力を付加する手段と、当該超音波探触子を用いてSH波を送信するSH波送信回路と、当該超音波探触子を用いてSH波を受信するSH波受信回路と、受信したSH波の信号強度を時刻と伴に記録並びに表示するSH波信号処理手段とを有していることを特徴とした溶接部の検査装置。
  7. 請求項6記載の溶接部の検査装置において、SH波を送受信する前記超音波探触子は、当該超音波探触子の内部にSH波を送受信するSH波振動子と前記構造体の厚み方向に伝播する垂直超音波を送受信する垂直波振動子とを備えており、且つ前記垂直波振動子を用いて垂直波を送信する垂直波送信回路と、前記垂直波振動子を用いて垂直波を受信する垂直波受信回路と、受信した垂直波の信号強度を時刻と伴に記録並びに表示する垂直波信号処理手段とを有していることを特徴とした溶接部の検査装置。
  8. 複数の板状の金属部材が溶接されて一体となった構造体の溶接部に存在する空隙の有無を超音波の一種であるSH波の送受信により検査する装置において、
    SH波を送受信する超音波探触子及び前記構造体の厚み方向に伝播する垂直超音波を送受信する他の超音波探触子の超音波送受信面と前記構造体の表面との間に接触媒質並びに当該接触媒質を包むシートを有しており、且つ当該二つの超音波探触子に同じ応力を付加する手段と、垂直超音波を送受信する超音波探触子を用いて垂直波を送信する垂直波送信回路と、垂直超音波を送受信する超音波探触子を用いて垂直波を受信する垂直波受信回路と、受信した垂直波の信号強度を時刻と伴に記録並びに表示する垂直波信号処理手段と、SH波を送受信する超音波探触子を用いてSH波を送信するSH波送信回路と、SH波を送受信する超音波探触子を用いてSH波を受信するSH波受信回路と、受信したSH波の信号強度を時刻と伴に記録並びに表示するSH波信号処理手段とを有していることを特徴とした溶接部の検査装置。
  9. 請求項6から請求項8までのいずれか一項に記載の溶接部の検査装置において、送受信を行うSH波の周波数は、当該SH波の音速と前記構造体の板厚みとを用いて、周波数[単位:MHz]×板厚み[単位:mm]≦音速[単位:km/s]の関係を満足するような周波数であることを特徴とした溶接部の検査装置。
JP2003001694A 2003-01-08 2003-01-08 溶接部の検査方法及び検査装置 Pending JP2004212308A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001694A JP2004212308A (ja) 2003-01-08 2003-01-08 溶接部の検査方法及び検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001694A JP2004212308A (ja) 2003-01-08 2003-01-08 溶接部の検査方法及び検査装置

Publications (1)

Publication Number Publication Date
JP2004212308A true JP2004212308A (ja) 2004-07-29

Family

ID=32819651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001694A Pending JP2004212308A (ja) 2003-01-08 2003-01-08 溶接部の検査方法及び検査装置

Country Status (1)

Country Link
JP (1) JP2004212308A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004574A1 (ja) * 2005-07-04 2007-01-11 Independent Administrative Institution Japan Aerospace Exploration Agency 超音波試験方法及びこれを用いた超音波試験装置
GB2475337A (en) * 2009-11-17 2011-05-18 Sonardyne Internat Ltd Subsea acoustic probe apparatus for monitoring oil risers
JP2012078322A (ja) * 2010-10-06 2012-04-19 Mitsubishi Heavy Ind Ltd 超音波探傷試験用治具
JP2012127832A (ja) * 2010-12-16 2012-07-05 Hitachi Engineering & Services Co Ltd ガイド波を用いた非破壊検査方法および装置
JP2012177603A (ja) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd 超音波検査方法
KR200477791Y1 (ko) * 2015-01-15 2015-07-22 황동수 초음파 탐촉유닛

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004574A1 (ja) * 2005-07-04 2007-01-11 Independent Administrative Institution Japan Aerospace Exploration Agency 超音波試験方法及びこれを用いた超音波試験装置
US8024975B2 (en) 2005-07-04 2011-09-27 Independent Administrative Institution Japan Aerospace Exploration Agency Ultrasonic testing method and ultrasonic testing device using this
GB2475337A (en) * 2009-11-17 2011-05-18 Sonardyne Internat Ltd Subsea acoustic probe apparatus for monitoring oil risers
JP2012078322A (ja) * 2010-10-06 2012-04-19 Mitsubishi Heavy Ind Ltd 超音波探傷試験用治具
JP2012127832A (ja) * 2010-12-16 2012-07-05 Hitachi Engineering & Services Co Ltd ガイド波を用いた非破壊検査方法および装置
JP2012177603A (ja) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd 超音波検査方法
KR200477791Y1 (ko) * 2015-01-15 2015-07-22 황동수 초음파 탐촉유닛

Similar Documents

Publication Publication Date Title
Nakamura et al. Mode conversion behavior of SH guided wave in a tapered plate
RU2485388C2 (ru) Устройство и блок датчиков для контроля трубопровода с использованием ультразвуковых волн двух разных типов
US9091638B2 (en) Apparatus and method for non-destructive testing using ultrasonic phased array
US4641529A (en) Pipeline inspection device using ultrasonic apparatus for corrosion pit detection
JP4630992B2 (ja) 超音波検査方法及びこれに用いる超音波検査装置
Alleyne et al. The long range detection of corrosion in pipes using Lamb waves
JPH07318336A (ja) パイプラインを超音波で検査するための方法及び装置
US8770027B2 (en) Pulse-echo method by means of an array-type probe and temperature compensation
ZA200505706B (en) Configurations and methods for ultrasonic time of flight diffraction analysis
US8739630B2 (en) Pulse-echo method for determining the damping block geometry
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JP2011027571A (ja) 配管減肉検査装置および配管減肉検査方法
US20090249879A1 (en) Inspection systems and methods for detection of material property anomalies
Piao et al. Non-invasive ultrasonic inspection of sludge accumulation in a pipe
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
Urayama et al. Application of EMAT/EC dual probe to monitoring of wall thinning in high temperature environment
JP2004212308A (ja) 溶接部の検査方法及び検査装置
Sinha Acoustic sensor for pipeline monitoring
JP2001208729A (ja) 欠陥検出装置
JP2008175796A (ja) ドラム缶検査方法及びその装置
GB2037984A (en) Ultrasonic testing of welds
JP2011529170A (ja) カップリングチェックを使用した改良超音波非破壊検査
JP2004077292A (ja) 応力腐食割れ検査方法及び検査装置
JP3571473B2 (ja) 斜角超音波探傷方法及び装置
JPH07244028A (ja) 球状被検体の超音波探傷装置およびその方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A02