JP2004211936A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004211936A
JP2004211936A JP2002380005A JP2002380005A JP2004211936A JP 2004211936 A JP2004211936 A JP 2004211936A JP 2002380005 A JP2002380005 A JP 2002380005A JP 2002380005 A JP2002380005 A JP 2002380005A JP 2004211936 A JP2004211936 A JP 2004211936A
Authority
JP
Japan
Prior art keywords
water
air conditioner
zinc
conditioner according
antibacterial agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002380005A
Other languages
Japanese (ja)
Inventor
Narihiro Sato
成広 佐藤
Yoshikazu Nishihara
義和 西原
Shiho Furuya
志保 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002380005A priority Critical patent/JP2004211936A/en
Priority to KR1020030092629A priority patent/KR20040060740A/en
Priority to CNB2003101247111A priority patent/CN1276221C/en
Priority to CNA2006100912489A priority patent/CN1865800A/en
Publication of JP2004211936A publication Critical patent/JP2004211936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable air conditioner capable of suppressing the occurrence of odor resulting from unwanted bacteria and the occurrence of water leakage due to the stoppage of water draining function by organic substances formed of the unwanted bacteria. <P>SOLUTION: A drain port 7 dischargeable drain water accumulated in a water receiving pan 6 is formed through the water receiving pan 6, and a sealing plug 8A is detachably fitted to the drain port 7. Also, a soluble antibacterial agent 11 is fitted to the water receiving pan side of the sealing plug 8A. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、室内機内部の結露水が滴下する水受皿上に堆積した生活空間からの菌や滞留した結露水が腐敗して形成される有機物に起因する運転時の臭気発生や、排水機能停止による水漏れ発生を防止する機能を備えた空気調和機に関する。
【0002】
【従来の技術】
空気調和機の冷房運転時や除湿運転時には、室内空気中に含まれる水分が室内熱交換器に結露し、水受皿を経てドレン水として室外へと排出される。天井埋込型空気調和機では、ドレン水の機外への排出方法としてはドレンポンプを用いた強制排水による方法が一般的であり、水受皿に溜まった結露水はドレンポンプの下端から吸引され、ドレンホースを経て外部へ排出される。
【0003】
しかしながら、室内空間には夏場雑菌が浮遊して存在し、それらが運転時に熱交換器アルミニウムフィンにトラップされて水受皿に至ったり、水受皿上の溜まり水が梅雨時等の多湿雰囲気ではなかなか乾燥せず、そこで次第に腐敗する場合があり、水受皿で繁殖した雑菌により悪臭を発生することがあった。また、水受皿に雑菌の代謝物等の有機物が堆積した場合、有機物がドレンポンプに詰まって吸込み口を塞ぎ排水不能となったり、水受皿とフロートが有機物により固着してフロートスイッチが作動せず水漏れが発生することもあった。
【0004】
その対策として、従来の天井埋込型空気調和機では水受皿上に抗菌剤を添加した塗料を塗布している(例えば、特許文献1参照。)。また、抗菌剤混入の樹脂で水受皿の表面層を構成しているものもある(例えば、特許文献2参照。)。さらに、抗菌剤を練り込んだフィルムを不織布で被覆した複合シートを水受皿に敷設しているものもある(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特開昭62−288427号公報(第2−3頁、第4図)
【特許文献2】
特開平8−233303号公報(第2−4頁、第2図)
【特許文献3】
特開平6−174251号公報(第2−3頁、第2図)
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の方法では複雑な形状の水受皿表面に均一に塗膜を形成することが困難である。また、特許文献2に記載の方法では抗菌剤を有する樹脂表面が汚れてしまうと抗菌性が低下してしまい長期的な寿命を保証できない。さらに、特許文献3に記載の方法では高価な抗菌剤をかなり無駄にしていまうという問題がある。
【0007】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、長期的な寿命を保証でき外部から交換可能な抗菌機能を雑菌が繁殖し易い水受皿に付与することで、雑菌に起因する臭気発生などの不快感を抑制できるとともに雑菌により形成される有機物により排水機能が停止し水漏れが発生することを抑制できる信頼性の高い空気調和機を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、熱交換器と送風機とを収容する台枠と、該台枠の下部に配置された水受皿とを有する室内機を備えた空気調和機であって、前記水受皿に溜まったドレン水を排出可能なドレン口を前記水受皿を貫通して形成するとともに、前記ドレン口に封止栓を着脱自在に取り付け、該封止栓の前記水受皿側に溶出可能な抗菌剤を設けたことを特徴とする。
【0009】
また、請求項2に記載の発明は、前記抗菌剤中に亜鉛、銅、銀のうち少なくとも一つを含有させたことを特徴とする。
【0010】
さらに、請求項3に記載の発明は、前記抗菌剤が、亜鉛または亜鉛合金と該亜鉛または亜鉛合金よりもイオン化傾向の小さな金属が接続されてなることを特徴とする。
【0011】
また、請求項4に記載の発明は、前記抗菌剤が線材状またはコイル状に形成されていることを特徴とする。
【0012】
また、請求項5に記載の発明は、前記抗菌剤が前記封止栓の挿入方向に対して略直角に折り曲げられ水受皿表面に設置されたことを特徴とする。
【0013】
また、請求項6に記載の発明は、前記抗菌剤を前記封止栓の本体に着脱自在に取り付けたことを特徴とする。
【0014】
さらに、請求項7に記載の発明は、通風路内に設けられた熱交換器と、該熱交換器により温度調節された風を室内へ吹出すための送風機と、前記熱交換器から滴下した結露水を受ける水受皿と、該水受皿の結露水を貯留するための水受け部と、該水受け部の結露水を外部へ排出するためのポンプと、該ポンプに付設したフロートスイッチとを有する室内機を備えた空気調和機であって、前記ポンプの吸水口及び前記フロートスイッチのフロートのいずれか一方に金属具を設け、前記水受け部に前記金属具よりもイオン化傾向の大きい金属により構成されるイオン排出板を配置し、前記金属具と前記イオン排出板が接続されていることを特徴とする。
【0015】
また、請求項8に記載の発明は、前記イオン排出板の少なくとも一方の表面に化成処理皮膜層を形成したことを特徴とする。
【0016】
また、請求項9に記載の発明は、前記化成処理皮膜層がリン酸処理皮膜を含むことを特徴とする。
【0017】
また、請求項10に記載の発明は、前記イオン排出板の一方の表面に保護膜を設けたことを特徴とする。
【0018】
また、請求項11に記載の発明は、前記イオン排出板の前記金属具と対向する表面に電気絶縁層を設けたことを特徴とする。
【0019】
また、請求項12に記載の発明は、前記電気絶縁層が不織布を含むことを特徴とする。
【0020】
また、請求項13に記載の発明は、前記イオン排出板が亜鉛板、亜鉛メッキ鋼板、または亜鉛合金板であることを特徴とする。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
実施の形態1.
図1は本発明の実施の形態1にかかる空気調和機を示しており、特に天井埋込型空気調和機の室内機を示している。
【0022】
図1に示される空内機は、吸込みグリル1及び吹出し口4を室内(下方)に向けた状態で、熱交換器2と送風機3とを収容する台枠9が天井内に埋め込み配置されている。冷房運転時、吸込みグリル1を通して室内空気を吸い込み、吸い込んだ空気は吸込みグリル1から吹出口4に至る通風路内に配置された熱交換器2により冷却(温度調節)、除湿され、クロスフローファン等の送風機3によって送風され、吹出し口4から冷風を室内へ排出する。熱交換器2は熱交換性能の高効率化を図るために縦スリットが設けられた構造を有しており、熱交換器2上で結露した水はアルミニウムフィンとスリットとによって生じた空間をアルミニウムフィンに沿って水受皿(ドレンパン)6に滴下するとともに、一部水受け樋5を通って水受皿6に流れ込む。水受皿6に溜まった結露水は最終的にはドレンポンプ(図示せず)からドレンホース(図示せず)を経て外部へ排出される。ドレンポンプは常時稼動しているわけではなく、水受皿6の所定のレベルまで水が溜まったことをフロートスイッチ(図示せず)が検出したときに、フロートスイッチからの信号がコントローラに送られ、コントローラによりドレンポンプは稼動制御される。
【0023】
水受皿6には室内側まで貫通しているドレン口7が形成されており、このドレン口7に封止栓8が取り付けられている。水受皿6下部は吹出し口4となっており、吹出し口4近傍は発泡ポリスチレン等の断熱材で覆われているのが一般的である。ドレン口7は断熱材と水受皿6との双方を貫通しており、封止栓8はドレン口7に圧入やネジ留め等により着脱自在に取り付けられている。例えば、封止栓8とドレン口7の双方にネジを切ってネジ止めしたり、封止栓8のドレン口7内に挿入される部分を弾性体とし、封止栓8をドレン口7に密着させて取り付けることもできる。
【0024】
さらに、封止栓8は水受皿6側に溶出可能な抗菌剤を有しており、封止栓8を着脱することで抗菌剤の交換を容易に行うことができるので、長期にわたり抗菌剤の効果を持続することができ、雑菌からの臭気発生を防止することができる。
【0025】
なお、溶出可能な抗菌剤とは、有機系抗菌剤、無機系抗菌剤、それらの混合抗菌剤のどれでも構わない。有機系抗菌剤としては、2,4,4’−トリクロロ−2’−ヒドロキシジフェニルエーテルや、2−スルファニルアミドピリミジン等公知のものを使用することができる。また、これらの抗菌剤をポリプロピレン、ポリエチレン、ポリスチレン、ABS樹脂等に0.5−1%程度含有させることで溶出可能な抗菌剤を形成することができる。さらに、抗菌剤の樹脂中への分散を良好にするために酸化アルミニウム、酸化亜鉛などの酸化物、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩などをフィラーとして10〜40%程度樹脂中に混入させることもできる。
【0026】
また、抗菌剤中に亜鉛、銅、銀のうち少なくとも一つを含有させるのが好ましく、ドレン水中に安定的に抗菌性を有する金属イオンを溶出させることができる。これら金属は板状や線材状に加工したものを用いたり、金属粉末を樹脂中に練りこんだものを用いても構わない。金属を線材状あるいはコイル状にしたものは、水受皿6上でドレン水との接触部が多いばかりでなく使用金属量を多くでき、抗菌性を保ちやすい点で好ましい。線材状またはコイル状にしたものは、封止栓8の挿入方向に対して封止栓近傍で略直角に折り曲げ、水受皿6表面に配置するのが好ましく、金属線材またはコイルが効率的に水と接触し金属イオンを溶出する。また、略直角に折り曲げられることで封止栓8の脱落を防止するストッパとして機能する。使用する金属は、ドレン水中への溶出量を制御するために合金化したり、金属表面に保護層膜や化成処理皮膜層を設けても構わない。
【0027】
また、溶出可能な抗菌剤を、亜鉛または亜鉛合金とこれらの金属よりイオン化傾向の小さな金属とを接触させた構成にすると、二つの金属により内部電池が形成され、亜鉛イオンが継続的に水中に溶出しやすくなるので、抗菌性を長期的に保つことができる。亜鉛または亜鉛合金よりもイオン化傾向の小さな金属としては、ニッケル、アルミ合金、銅、銀、金などを用いることができる。特に、アルミ合金や銅は加工性もよく使いやすい。
【0028】
ここで、本発明の実施の形態1にかかる空気調和機に採用する封止栓8の具体的構成を図2乃至図4を参照しながら説明する。
【0029】
図2に示される封止栓8Aはゴム製本体10を有し、本体10の水受皿6側(上部)の中央部に凹部10aを形成し、凹部10a内に錠剤化した抗菌剤11を着脱自在に埋設したものである。ゴム製の封止栓本体10と抗菌剤11は接着剤等を用いて特に一体化する必要はなく、この封止栓8Aにより錠剤中の抗菌成分が徐々にドレン水中に溶出してくる。また、封止栓8Aを取り外すことにより抗菌剤11の交換を容易に行うことができる。
【0030】
また、図3に示される封止栓8Bはゴム製本体10を有し、本体10の水受皿6側(上部)の中央部に凹部10aを形成し、凹部10a内に銅製の円柱状部材12を着脱自在に埋設するともに、亜鉛メッキ鉄線等をコイル状に巻いて形成したコイル状部材13の一端を円柱状部材12と本体10との間に挟持したものである。
【0031】
図3に示されるように、コイル状部材13は本体10との間に一端を挟持する前に略90度折り曲げてあるので、コイル状部材13をドレン口7から挿入し本体10をドレン口7に取り付けると、コイル状部材13は水受皿6上に略水平に保持される。また、コイル表面にメッキされている亜鉛は銅よりもイオン化傾向が大きいので継続的に亜鉛イオンをドレン水中に放出しつづけることができる。さらに、封止栓8Bを抜くことで抗菌材料も取り出せるので、コイル状部材13の交換は容易である。
【0032】
また、図4に示される封止栓8Cはゴム製本体10を有し、本体10の水受皿6側(上部)の中央部にスリット10bを形成し、スリット10bに銅板等の金属板14を着脱自在に挟み込んだものである。
【0033】
図4に示されるように、金属板14は本体10で挟持する前に略90度折り曲げてあるので、金属板14をドレン口7から挿入し本体10をドレン口7に取り付けると、金属板14は水受皿6上に略水平に保持される。この形態でも、封止栓8Cを抜くことで抗菌材料も同時に取り出せるので、金属板14の交換は容易である。
【0034】
【実施例】
上述した構成の封止栓を配置した除菌機能を有する天井埋込型空気調和機の実証的な評価として下記のような試験を行った。
【0035】
実証評価試験として、2台の室内機を接続可能なマルチエアコンで天井埋込型室内機を2台用意し、1台は上述した構成の本発明にかかる封止栓を設置する一方、もう1台には抗菌剤は設置しなかった。
【0036】
2台の室内機を40℃、50%RHの雰囲気に設置して、設定温度27℃にて冷房連続運転を3日間行った。その後、室内機ドレンホースの出口から排出されてきた水を50ml採取し、日本ミリポア株式会社製マイクロステインメンブレン(表示孔径0.45μm)にて微生物をろ過した。このメンブレンを日水製薬製普通寒天培地(肉エキス5g、ペプトン10g、塩化ナトリウム5g、カンテン15gを水1Lに溶解し培地上に固めたもの)上にのせて37℃で16時間培養した後、日本ミリポア株式会社製マイクロステイン染色液にて染色し菌数を測定した。その結果を表1に示す。従来のエアコン(抗菌剤なし)では菌数が630個/ml前後であったのに対し、本実施例ではどれも10個/ml以下となっており明らかにドレン水中の菌数の減少が見られた。
【表1】

Figure 2004211936
【0037】
実施の形態2.
図5乃至図7は本発明の実施の形態2にかかる空気調和機を示しており、特に天井埋込型空気調和機の室内機を示している。
【0038】
本実施の形態にかかる空気調和機の基本構成は、実施の形態1にかかる空気調和機の基本構成と略同じであるが、水受皿6近傍の構成において相違しており、以下この相違点につき説明する。
【0039】
図6に示されるように、水受皿6の結露水は、水受皿6を凹状に陥没させて形成した水受け部6aに流れ込んで滞留し、溜まった結露水はドレンポンプ15の下端から吸引され、ドレンホース(図示せず)を経て外部へ排出される。ドレンポンプ15にはフロートスイッチ16が付設されており、水受け部6aにおける結露水の貯留量が所定レベル以上となりフロートスイッチ16が作動するとドレンポンプ15が起動し、水受け部6aに溜まった結露水は外部へ排出される。
【0040】
また、結露水が貯留される水受け部6aにおけるドレンポンプ15の下方に位置する部位には亜鉛合金板等の金属板(イオン排出板)17が配置されるとともに、ドレンポンプ15の吸水口表面15aにはアルミ合金等の金属具18が設けられている。
【0041】
図7は、図6に示される構成の変形例を示しており、フロートスイッチ16のフロート20の下方に位置する水受皿6にイオン排出板17を配置するとともに、フロート20に金属具18を取り付けたものである。
【0042】
金属具18は、例えばアルミ合金、鉄、銅またはそれらの合金を用いることができるが、アルミ合金が最も加工しやすく耐食性が高い。
【0043】
一方、イオン排出板17は金属具18よりもイオン化傾向の大きい金属であればどのようなものでも用いることができ、例えば亜鉛、マグネシウム、チタンまたはそれらの合金を用いることができる。亜鉛板、亜鉛メッキ鋼板、亜鉛合金板が最も安価であり加工しやすい。亜鉛合金板を使用する場合は、耐食性が高い亜鉛合金組成を用いるのが好ましい。耐食性が低いと、長期間の使用により亜鉛が溶出しなくなり、菌の繁殖を抑制する効果が得られなくなる。亜鉛に銅とチタンを適切な量添加して亜鉛合金とすることで耐食性を向上させることができるので好ましい。
【0044】
また、亜鉛合金板の表面には化成処理皮膜層を形成するのがよい。化成処理皮膜層は、硫化や酸化などの化学反応を利用して溶液中で材料表面に薄い硫化物や酸化物の皮膜を形成するものである。この化成処理皮膜により、過度の亜鉛酸化物の生成が抑えられるため、亜鉛合金板表面が粒状金属酸化物に覆われてしまうのを防止することができる。したがって、長期間にわたる亜鉛の溶出が可能となり、菌の繁殖抑制効果を長期間保つことができる。化成処理は硫化や酸化などの化学反応を利用するため、様々な手法がある。イオン化傾向を変えずに金属イオンの溶出を抑えるものであれば、リン酸皮膜処理、クロメート処理などどのようなものを使用してもよい。リン酸皮膜は処理が簡単であり地球環境に対する負荷も比較的少ない点で好ましい。
【0045】
化成処理皮膜層の厚みについては、厚すぎると金属イオンの溶出が少なくなり抗菌性が落ちるので、1μm程度の厚みが最適である。さらに、亜鉛合金板表面に集められた菌の繁殖を抑制し、亜鉛合金板の長期信頼性を確保するために、保護膜を設けるのが好ましい。保護膜は亜鉛合金板の片面に設け、亜鉛合金板の金属具と対向しない面に設けるのが抗菌効果を損なわないため好ましい。保護膜により亜鉛合金板の裏面からの亜鉛の溶出を抑制することができ、イオン排出板17の長寿命化を図ることができる。保護膜の厚みは10μm以上が好ましい。厚みが10μmよりも薄くなると、亜鉛イオンが不必要に溶出し、好ましくない。また、保護膜については、亜鉛イオンの溶出を抑えるものであればその組成は限定されない。例えばアクリル樹脂、ウレタン樹脂等公知の樹脂組成の保護膜を用いることができる。
【0046】
また、イオン排出板17上には亜鉛の溶出を抑制し、金属具18と接触して短絡しないように絶縁状態を確保するため電気絶縁層として厚み約1mmの不織布が設けられている。イオン排出板17上に設ける電気絶縁層は親水性のもので、かつ金属同士の接触を防ぐものであればよく、例えば綿やポリエステルの不織布、ポリウレタン、ナイロン、ポリビニルアルコールなどを用いることができる。不織布は毛細管現象によって水を十分保持できる。電気絶縁層を親水性のものにすることでイオン排出板17上に結露水が長時間溜まるようになるので、より多くの菌を集めて活動を抑制し、死滅させることができる。さらに、イオン排出板17からの溶出金属イオン自体に抗菌作用がある場合、より多くの金属イオンを溶出することができるので、さらに高い菌の繁殖抑制効果が得られる。
【0047】
【実施例】
上述した構成の除菌機能を有する天井埋込型空気調和機の具体的な実施例を以下説明する。
(実施例1)
図6の構成において、イオン排出板17としての亜鉛合金板を結露水が貯留される水受け部6aに配置するとともに、ドレンポンプ15の吸水口表面15aにプレス加工したアルミ合金を金属具18として取り付けた。ここで用いた亜鉛合金板17の組成は、Zn99.577%、Cu0.35%、Ti0.07%、Al0.003%であった。
【0048】
また、亜鉛合金板17の一端を折り曲げ加工してアルミ合金18と接続するための接続部19を設け、ドレン水中に漬からないように設計した。水受け部6aに結露水が溜まるとアルミ合金18と亜鉛合金板17との間には起電力が約0.4V生じるような構成である。
【0049】
上記構成において、空気中に漂っていた浮遊細菌はまず熱交換器3によってトラップされ、その後結露水とともに水受皿6を経て水受け部6aに滞留するが、その時マイナスの電荷を帯びた菌は亜鉛合金板17へと次々と集められる。その結果、自由な活動を抑制された菌は新陳代謝も抑制され、徐々に弱り、やがては死滅してしまう。さらに、亜鉛合金板17から溶出する亜鉛イオン自体に抗菌作用があるため、溶出亜鉛イオンにより結露水中に混入した菌の繁殖を抑制することもできる。
【0050】
このような菌の死滅化機能を有する空気調和機の実証的な評価として下記のような試験を行った。
【0051】
実証評価試験1として、天井埋込型エアコンを3台用意し、ドレンポンプ15の吸水口表面15aにアルミ合金18を取り付けた。1台には本実施例の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17をアルミ合金18と接続しないで設置し、1台には亜鉛合金板17を設置しなかった。40℃、50%RHに制御した室内にエアコンの室内機を設置した後、設定温度27℃にて冷房連続運転を7日間行い、ドレンホースから排出された水を採取して、日本ミリポア株式会社製マイクロステインメンブレン(表示孔径0.45μm)にて微生物をろ過した。このメンブレンを日水製薬製普通寒天培地(肉エキス5g、ペプトン10g、塩化ナトリウム5g、カンテン15gを水1Lに溶解し培地上に固めたもの)上にのせて37℃で16時間培養した。その後、日本ミリポア株式会社製マイクロステイン染色液にて染色し菌数を測定した。
【0052】
表2は実証評価試験1の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは1000個/ml前後であったのに対し、本実施例では10個/ml、亜鉛合金板17をアルミ合金18と接続しないものでは50個/mlとなり、明らかにドレン水中の菌数の減少が見られた。また本実施例のものは亜鉛合金板17をアルミ合金18と接続しないものよりも菌の繁殖抑制効果をさらに高めることができた。
【表2】
Figure 2004211936
【0053】
(実施例2)
図7の構成において、亜鉛合金板17が結露水が貯留される水受け部6aに配置されるとともに、フロートスイッチ16のフロート20にはプレス加工したアルミ合金18が取り付けられている。ここで用いた亜鉛合金板17の組成は、Zn99.577%、Cu0.35%、Ti0.07%、Al0.003%であった。また、亜鉛合金板17の一端を折り曲げ加工してアルミ合金18と接続するための接続部19を設け、ドレン水中に漬からないように設計した。水受け部6aに結露水が溜まると、アルミ合金18と亜鉛合金板17との間には起電力が約0.4V生じるような構成である。
【0054】
実証評価試験2として、天井埋込型エアコンを3台用意し、フロートスイッチ16のフロート20にアルミ合金18を取り付けた。1台には本実施例の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17をアルミ合金18と接続しないで設置し、1台には亜鉛合金板17を設置しなかった。実証評価試験1と同様にしてドレン水中の菌数を測定した。
【0055】
表3は実証評価試験2の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは1000個/ml前後であったのに対し、本実施例では10個/ml、亜鉛合金板17をアルミ合金18と接続しないものでは50個/mlとなり、明らかにドレン水中の菌数の減少が見られた。また、本実施例のものは亜鉛合金板17をアルミ合金18と接続しないものよりも菌の繁殖抑制効果をさらに高めることができた。
【表3】
Figure 2004211936
【0056】
(実施例3)
本実施例では、実施例1と同様にして亜鉛合金板17を結露水が貯留される水受け部6aに配置し、ドレンポンプ15の吸水口表面15aに設けたアルミ合金18と亜鉛合金板17とを接続した。ここで用いた亜鉛合金板17の組成は、Zn99.577%、Cu0.35%、Ti0.07%、Al0.003%であった。亜鉛合金板17の両面には、化成処理皮膜層としてリン酸処理皮膜を1μm形成した。
【0057】
実証評価試験3として、天井埋込型エアコンを3台用意し、ドレンポンプ15の吸水口表面15aにアルミ合金18を取り付けた。1台には本実施例の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17の両面に化成処理皮膜層を形成しない亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17を設置しなかった。40℃、50%RHに制御した室内にエアコンの室内機を設置し、設定温度27℃にて冷房連続運転を1000時間行い、実証評価試験1と同様にしてドレン水中の菌数を測定した。
【0058】
表4は実証評価試験3の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは3000個/ml前後であったのに対し、本実施例のものと化成処理皮膜層を形成しない亜鉛合金板17のものはともに菌数が1/100となり、明らかにドレン水中の菌数の減少が見られた。また、本実施例のものは化成処理皮膜層を形成しない亜鉛合金板17のものよりも重量減少が少なく、菌の繁殖抑制効果を維持しつつ長寿命化を達成することができた。
【表4】
Figure 2004211936
【0059】
(実施例4)
本実施例では、実施例1と同様にして亜鉛合金板17を結露水が貯留される水受け部6aに配置し、ドレンポンプ15の吸水口表面15aに設けたアルミ合金18と亜鉛合金板17とを接続した。ここで用いた亜鉛合金板17の組成は、Zn99.577%、Cu0.35%、Ti0.07%、Al0.003%であった。亜鉛合金板17のアルミ合金18との対向面には、化成処理皮膜層としてリン酸処理皮膜を1μmの厚みで形成した。亜鉛合金板17のアルミ合金18と対向しない面には、保護膜としてアクリル樹脂塗膜を100μmの厚みで形成した。
【0060】
実証評価試験4として、天井埋込型エアコンを3台用意し、ドレンポンプ15の吸水口表面15aにアルミ合金18を取り付けた。1台には本実施例の亜鉛合金板17をアルミ合金18と接続して設置し、1台には実施例3の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17を設置しなかった。実証評価試験3と同様にしてドレン水中の菌数を測定した。
【0061】
表5は実証評価試験4の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは3000個/ml前後であったのに対し、本実施例のものと実施例3のものはともに菌数が1/100となり、明らかにドレン水中の菌数の減少が見られた。また、本実施例のものは実施例3のものよりも重量減少が少なく、菌の繁殖抑制効果を維持しつつ長寿命化を達成することができた。
【表5】
Figure 2004211936
【0062】
(実施例5)
本実施例では、実施例1と同様にして亜鉛合金板17を結露水が貯留される水受け部6aに配置し、ドレンポンプ15の吸水口表面15aに設けたアルミ合金18と亜鉛合金板17とを接続した。ここで用いた亜鉛合金板17の組成は、Zn99.577%、Cu0.35%、Ti0.07%、Al0.003%であった。亜鉛合金板17のアルミ合金18との対向面には、化成処理皮膜層としてリン酸処理皮膜を1μmの厚みで形成した。亜鉛合金板17のアルミ合金18と対向しない面には、保護膜としてアクリル樹脂塗膜を100μmの厚みで形成した。また、亜鉛合金板17のアルミ合金18との対向面には、電気絶縁層として厚み1mmの木綿製不織布シートを全面に接着した。
【0063】
実証評価試験5として、天井埋込型エアコンを3台用意し、ドレンポンプ15の吸水口表面15aにアルミ合金18を取り付けた。1台には本実施例の亜鉛合金板17をアルミ合金18と接続して設置し、1台には実施例4の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛合金板17を設置しなかった。実証評価試験3と同様にしてドレン水中の菌数を測定し、さらにドレン水中の亜鉛イオン濃度をICP発光分光分析法により測定した。
【0064】
表6は実証評価試験5の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは3000個/ml前後であったのに対し、本実施例のものと実施例4のものはともに菌数が1/100となり、明らかにドレン水中の菌数の減少が見られた。また、ドレン水中の亜鉛イオン濃度は、実施例4のものは3ppmであったのに対し、本実施例のものは2ppmとなり、本実施例のものは実施例3のものよりも亜鉛の溶出を抑制しつつ菌の繁殖抑制効果を維持することにより長寿命化を達成することができた。
【表6】
Figure 2004211936
【0065】
(実施例6)
本実施例では、実施例1と同様にしてイオン排出板17としての亜鉛鉄板を結露水が貯留される水受け部6aに配置し、ドレンポンプ15の吸水口表面15aに設けたアルミ合金18と亜鉛鉄板17とを接続した。ここで用いた亜鉛鉄板17の両面には、化成処理皮膜層としてリン酸処理皮膜を形成した。水受け部6aに結露水が溜まると、アルミ合金18と亜鉛鉄板17との間には起電力が約0.4V生じるような構成である。
【0066】
実証評価試験6として、天井埋込型エアコンを3台用意し、ドレンポンプ15の吸水口表面15aにアルミ合金18を取り付けた。1台には本実施例の亜鉛鉄板17をアルミ合金18と接続して設置し、1台には実施例3の亜鉛合金板17をアルミ合金18と接続して設置し、1台には亜鉛鉄板あるいは亜鉛合金板17を設置しなかった。実証評価試験1と同様にしてドレン水中の菌数を測定した。
【0067】
表7は実証評価試験6の試験結果である。ドレン水中の菌数は、従来の水受け部6aに亜鉛合金板17のないものでは1000個/ml前後であったのに対し、本実施例のものと実施例3のものはともに菌数が1/100となり、明らかにドレン水中の菌数の減少が見られた。本実施例の亜鉛鉄板においても、菌の繁殖抑制効果を確認することができた。
【表7】
Figure 2004211936
【0068】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
本発明の実施の形態1の構成によれば、生活空間に存在している菌は熱交換器のアルミニウムフィンに結露水と一緒にトラップされ、アルミニウムフィンを経て水受皿上に滴下する。結露水中に混入した菌は水受皿上で封止栓の水受皿側にある抗菌剤の溶出により弱り、やがて死滅するので、菌の繁殖による臭気発生等の不快感を低減することができる。また、封止栓を取り出して抗菌剤を交換することにより除菌あるいは滅菌効果を長期的に持続することができるとともに、雑菌により形成される有機物により排水機能が停止することなく水漏れのおそれのない空気調和機を提供することができる。
【0069】
また、抗菌剤中に亜鉛、銅、銀のうち少なくとも一つを含有させることで、ドレン水中に安定的に抗菌性を有する金属イオンを溶出させることができ、効果的に除菌を行うことができる。
【0070】
また、抗菌剤を、亜鉛または亜鉛合金とこれらの金属よりもイオン化傾向の小さな金属を接続した構成にすると、継続的に亜鉛イオンが溶出し、高い抗菌性を持続することができる。
【0071】
さらに、抗菌剤を線材状またはコイル状に形成すると、表面積が大きくなり水中に効率的に金属イオンを放出するため、除菌効果を保ちつつ長寿命化できる。
【0072】
また、線材状またはコイル状に形成した抗菌剤を封止栓の挿入方向に対して略直角に折り曲げ水受皿表面に設置すると、抗菌剤がドレン水中に浸かりやすくなり抗菌成分が溶出しやすくなるため、除菌効果を保ちつつ長寿命化できる。
【0073】
また、抗菌剤が封止栓本体部分から着脱可能であるため、封止栓本体部分を繰り返し使用することができるようになり廃棄物を削減し地球環境を保全することができる。
【0074】
さらに、本発明の実施の形態2の構成によれば、結露水中に混入した菌は菌自体がある程度マイナスの電荷を帯びているため、ドレンポンプあるいはフロートの金属部とイオン排出板のイオン化傾向の差により、菌は電気泳動して低電位なイオン排出板側へと次々と集められて菌の自由な活動を抑制する。その後、新陳代謝機能を不活化された菌は弱り、やがて死滅してしまうので、雑菌に起因する臭気発生などの不快感を抑制できるとともに雑菌により形成される有機物により排水機能が停止し水漏れが発生することを抑制できる空気調和機を提供することができる。
【0075】
また、イオン排出板の金属種によっては、溶出する金属イオン自体に抗菌作用があるため、溶出金属イオンにより結露水中に混入した菌の繁殖を抑制することもできる。
【0076】
また、イオン排出板の表面に化成処理皮膜層を形成すると、過度の亜鉛酸化物の生成が抑えられるので、亜鉛合金板表面が粒状金属酸化物に覆われてしまうことを防止することができる。したがって、長期間にわたる亜鉛の溶出が可能となり菌の繁殖抑制効果を長期間保持することができる。
【0077】
また、イオン排出板の表面の化成処理皮膜層がリン酸処理皮膜を含むことで、過度の亜鉛酸化物の生成が抑えられ、亜鉛合金板表面が粒状金属酸化物に覆われてしまうことを防止することができる。さらに、リン酸皮膜は処理が簡単であり地球環境に対する負荷も比較的少ない。
【0078】
また、イオン排出板の表面の化成処理皮膜層がリン酸処理皮膜を含むことで、地球環境負荷の低い簡単な処理で、過度の亜鉛酸化物の生成が抑えられ、亜鉛合金板表面が粒状金属酸化物に覆われてしまうことを防止することができる。
【0079】
また、イオン排出板の一方の表面に保護膜を設けることで、イオンの溶出量を抑制することができ、イオン排出板の長寿命化を図ることができる。
【0080】
また、イオン排出板の表面に電気絶縁層を設けることで、金属具と接触して短絡しないように絶縁状態を確保することができるので、生じた起電力により菌は電気泳動して低電位なイオン排出板側へと次々と集められるとともに、自由な活動を抑制され、死滅する。さらにイオンの溶出を抑制することができるため、イオン排出板の長寿命化を図ることができる。
【0081】
また、電気絶縁層に不織布を含ませることによって、結露水を長時間保持することができるので、水受け部の貯留量が少ない場合にも起電力が生じ、菌を死滅させることができる。
【0082】
また、イオン排出板を亜鉛板、亜鉛メッキ鋼板、または亜鉛合金とすることにより、低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる天井埋込型空気調和機の室内機の断面図である。
【図2】図1の室内機におけるドレン口に設置された封止栓の断面図である。
【図3】図2の封止栓の変形例を示す断面図である。
【図4】図2の封止栓の別の変形例を示す断面図である。
【図5】本発明の実施の形態2にかかる天井埋込型空気調和機の室内機の断面図である。
【図6】図5の室内機のドレンポンプと亜鉛合金板との接続構成を示す断面図である。
【図7】図5の室内機のフロートスイッチと亜鉛合金板との接続構成を示す断面図である。
【符号の説明】
1 吸込みグリル、 2 熱交換器、 3 送風機、 4 吹出し口、
5 水受け樋、 6 水受皿、 6a 水受け部、 7 ドレン口、
8,8A,8B,8C 封止栓、 9 台枠、 10 封止栓本体、
10a 凹部、 10b スリット、 11 錠剤化した抗菌剤、
12 円柱状部材、 13 コイル状部材、 14 金属板、
15 ドレンポンプ、 15a ドレンポンプの吸水口表面、
16 フロートスイッチ、 17 イオン排出板、 18 金属具、
19 接続部、 20 フロート。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an odor generation during operation and a stoppage of a drainage function caused by microorganisms from a living space accumulated on a water tray on which condensation water drops inside an indoor unit and organic matter formed by decay of accumulated condensation water. The present invention relates to an air conditioner having a function of preventing occurrence of water leakage due to air.
[0002]
[Prior art]
During the cooling operation and the dehumidifying operation of the air conditioner, the moisture contained in the indoor air condenses on the indoor heat exchanger, and is discharged to the outside as drain water through the water receiving tray. In an in-ceiling air conditioner, the method of draining drain water outside the machine is generally by forced drainage using a drain pump.Condensation water collected in a water receiving tray is sucked from the lower end of the drain pump. Is discharged to the outside via a drain hose.
[0003]
However, in the indoor space, there are summer germs floating in the air, which are trapped in the heat exchanger aluminum fins during operation and reach the water tray, or the accumulated water on the water tray is very dry in a humid atmosphere such as during the rainy season. Without this, there was a case where it gradually decayed, and a odor was sometimes generated due to various bacteria bred in a water tray. In addition, when organic matter such as metabolites of various bacteria accumulates in the water pan, the organic matter clogs the drain pump and blocks the suction port, preventing drainage, or the water pan and the float are stuck by the organic substance and the float switch does not operate. Water leakage sometimes occurred.
[0004]
As a countermeasure, in a conventional ceiling-mounted air conditioner, a paint containing an antibacterial agent is applied on a water receiving tray (for example, see Patent Document 1). In addition, there is a case in which a surface layer of a water tray is formed of a resin mixed with an antibacterial agent (for example, see Patent Document 2). Further, there is a case where a composite sheet in which a film in which an antibacterial agent is kneaded is covered with a nonwoven fabric is laid on a water receiving tray (for example, see Patent Document 3).
[0005]
[Patent Document 1]
JP-A-62-288427 (page 2-3, FIG. 4)
[Patent Document 2]
JP-A-8-233303 (pages 2-4, FIG. 2)
[Patent Document 3]
JP-A-6-174251 (page 2-3, FIG. 2)
[0006]
[Problems to be solved by the invention]
However, with the method described in Patent Document 1, it is difficult to uniformly form a coating film on the surface of a water tray having a complicated shape. Further, in the method described in Patent Document 2, if the surface of the resin having the antibacterial agent is contaminated, the antibacterial property is reduced, and a long-term life cannot be guaranteed. Furthermore, the method described in Patent Document 3 has a problem that an expensive antibacterial agent is wasted considerably.
[0007]
The present invention has been made in view of such problems of the related art, and by providing a long-life exchangeable antibacterial function that can be exchanged from the outside to a water tray in which various germs easily propagate, It is an object of the present invention to provide a highly reliable air conditioner that can suppress discomfort such as odor generation due to various bacteria and can prevent a drainage function from stopping due to organic matter formed by various bacteria and causing water leakage. .
[0008]
[Means for Solving the Problems]
Means for Solving the Problems In order to achieve the above object, an invention according to claim 1 of the present invention provides an indoor room having an underframe for housing a heat exchanger and a blower, and a water pan disposed under the underframe. An air conditioner comprising a device, wherein a drain port capable of discharging drain water collected in the water tray is formed through the water tray, and a sealing stopper is detachably attached to the drain port, An elutable antibacterial agent is provided on the water receiving tray side of the sealing stopper.
[0009]
The invention according to claim 2 is characterized in that the antibacterial agent contains at least one of zinc, copper, and silver.
[0010]
Further, the invention according to claim 3 is characterized in that the antibacterial agent is formed by connecting zinc or a zinc alloy and a metal having a lower ionization tendency than the zinc or the zinc alloy.
[0011]
The invention according to claim 4 is characterized in that the antibacterial agent is formed in a wire shape or a coil shape.
[0012]
The invention according to claim 5 is characterized in that the antibacterial agent is bent substantially at right angles to the insertion direction of the sealing plug and is set on the surface of the water receiving tray.
[0013]
The invention according to claim 6 is characterized in that the antibacterial agent is detachably attached to the main body of the sealing plug.
[0014]
Furthermore, in the invention according to claim 7, a heat exchanger provided in the ventilation path, a blower for blowing the air temperature-controlled by the heat exchanger into the room, and the heat exchanger dropped from the heat exchanger. A water receiving tray for receiving the dew condensation water, a water receiving portion for storing the dew condensation water in the water receiving tray, a pump for discharging the dew condensation water from the water receiving portion to the outside, and a float switch attached to the pump. An air conditioner comprising an indoor unit having a metal fitting provided on one of the water suction port of the pump and the float of the float switch, and a metal having a greater ionization tendency than the metal fitting in the water receiving portion. The present invention is characterized in that a configured ion discharge plate is arranged, and the metal fitting and the ion discharge plate are connected.
[0015]
The invention according to claim 8 is characterized in that a chemical conversion coating layer is formed on at least one surface of the ion discharge plate.
[0016]
The invention according to claim 9 is characterized in that the chemical conversion treatment film layer includes a phosphoric acid treatment film.
[0017]
According to a tenth aspect of the present invention, a protective film is provided on one surface of the ion discharge plate.
[0018]
An eleventh aspect of the present invention is characterized in that an electric insulating layer is provided on a surface of the ion discharge plate facing the metal fitting.
[0019]
According to a twelfth aspect of the present invention, the electric insulating layer includes a nonwoven fabric.
[0020]
The invention according to claim 13 is characterized in that the ion discharge plate is a zinc plate, a galvanized steel plate, or a zinc alloy plate.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 shows an air conditioner according to a first embodiment of the present invention, and particularly shows an indoor unit of a ceiling-embedded air conditioner.
[0022]
In the airplane shown in FIG. 1, a frame 9 for housing the heat exchanger 2 and the blower 3 is embedded and arranged in the ceiling with the suction grill 1 and the outlet 4 facing the room (downward). I have. During cooling operation, indoor air is sucked through the suction grill 1, and the sucked air is cooled (temperature controlled) and dehumidified by a heat exchanger 2 disposed in a ventilation path from the suction grill 1 to the air outlet 4. And the like, and cool air is discharged from the outlet 4 into the room. The heat exchanger 2 has a structure in which a vertical slit is provided in order to increase the efficiency of heat exchange performance. Water condensed on the heat exchanger 2 converts the space generated by the aluminum fins and the slit into aluminum. Along with the fins, the water drops (drain pans) 6 are dropped onto the water receiving pans 6 and partially flow into the water receiving pans 6 through the water receiving gutters 5. The condensed water accumulated in the water receiving tray 6 is finally discharged from a drain pump (not shown) to the outside via a drain hose (not shown). The drain pump is not always operating, and when a float switch (not shown) detects that water has accumulated to a predetermined level in the water tray 6, a signal from the float switch is sent to the controller. The operation of the drain pump is controlled by the controller.
[0023]
A drain port 7 penetrating to the indoor side is formed in the water receiving tray 6, and a sealing plug 8 is attached to the drain port 7. In general, the lower part of the water receiving tray 6 is an outlet 4, and the vicinity of the outlet 4 is generally covered with a heat insulating material such as expanded polystyrene. The drain port 7 penetrates both the heat insulating material and the water receiving pan 6, and the sealing plug 8 is detachably attached to the drain port 7 by press fitting, screwing, or the like. For example, both the sealing plug 8 and the drain port 7 may be screwed and screwed, or a portion of the sealing plug 8 inserted into the drain port 7 may be made of an elastic material. It can also be attached closely.
[0024]
Further, the sealing stopper 8 has an antibacterial agent that can be eluted on the water receiving pan 6 side, and the antibacterial agent can be easily replaced by attaching and detaching the sealing stopper 8, so that the antibacterial agent can be easily replaced for a long time. The effect can be maintained and odor generation from various bacteria can be prevented.
[0025]
The elutable antibacterial agent may be any of an organic antibacterial agent, an inorganic antibacterial agent, and a mixed antibacterial agent thereof. Known organic antibacterial agents such as 2,4,4'-trichloro-2'-hydroxydiphenyl ether and 2-sulfanylamidopyrimidine can be used. Also, by adding these antibacterial agents to polypropylene, polyethylene, polystyrene, ABS resin or the like at about 0.5-1%, an elutable antibacterial agent can be formed. Furthermore, in order to improve the dispersion of the antibacterial agent in the resin, oxides such as aluminum oxide and zinc oxide, hydroxides such as magnesium hydroxide and aluminum hydroxide, and carbonates such as calcium carbonate and magnesium carbonate are used. About 10 to 40% can be mixed into the resin as a filler.
[0026]
It is preferable that at least one of zinc, copper, and silver is contained in the antibacterial agent, so that metal ions having antibacterial properties can be stably eluted in the drain water. These metals may be used in the form of a plate or a wire, or may be obtained by kneading a metal powder in a resin. The metal in the form of a wire or a coil is preferred in that not only the contact portion with the drain water on the water receiving tray 6 is large, but also the amount of metal used can be increased, and the antibacterial property is easily maintained. It is preferable that the wire or coil is bent at a substantially right angle in the vicinity of the sealing plug with respect to the insertion direction of the sealing plug 8 and disposed on the surface of the water receiving tray 6. And elute metal ions. In addition, by being bent at substantially a right angle, it functions as a stopper for preventing the sealing plug 8 from falling off. The metal used may be alloyed to control the amount of elution into the drain water, or a protective layer or a chemical conversion coating layer may be provided on the metal surface.
[0027]
In addition, when the elutable antibacterial agent is made to contact zinc or a zinc alloy with a metal having a smaller ionization tendency than these metals, an internal battery is formed by the two metals, and zinc ions are continuously dissolved in water. Since it is easily eluted, antibacterial properties can be maintained for a long time. As a metal having a lower ionization tendency than zinc or a zinc alloy, nickel, an aluminum alloy, copper, silver, gold, or the like can be used. In particular, aluminum alloy and copper have good workability and are easy to use.
[0028]
Here, a specific configuration of the sealing plug 8 employed in the air conditioner according to the first embodiment of the present invention will be described with reference to FIGS.
[0029]
The sealing plug 8A shown in FIG. 2 has a rubber body 10, a recess 10a is formed in the center of the body 10 on the side of the water tray 6 (upper part), and the tableted antibacterial agent 11 is attached and detached in the recess 10a. It is buried freely. It is not necessary to integrate the rubber sealing plug main body 10 and the antibacterial agent 11 with an adhesive or the like, and the antibacterial component in the tablet is gradually eluted into the drain water by the sealing plug 8A. Further, the antibacterial agent 11 can be easily replaced by removing the sealing plug 8A.
[0030]
The sealing plug 8B shown in FIG. 3 has a rubber body 10, a recess 10a is formed in the center of the body 10 on the side of the water receiving tray 6 (upper part), and a copper columnar member 12 is formed in the recess 10a. Is detachably embedded, and one end of a coil-shaped member 13 formed by winding a galvanized iron wire or the like in a coil shape is sandwiched between the columnar member 12 and the main body 10.
[0031]
As shown in FIG. 3, since the coil-shaped member 13 is bent substantially 90 degrees before one end is sandwiched between the coil-shaped member 13 and the main body 10, the coil-shaped member 13 is inserted from the drain port 7 and the main body 10 is connected to the drain port 7. , The coil-shaped member 13 is held substantially horizontally on the water tray 6. Further, since zinc plated on the coil surface has a higher ionization tendency than copper, zinc ions can be continuously released into drain water. Further, since the antibacterial material can be taken out by removing the sealing plug 8B, the replacement of the coil-shaped member 13 is easy.
[0032]
The sealing plug 8C shown in FIG. 4 has a rubber main body 10, a slit 10b is formed in the center of the main body 10 on the water receiving tray 6 side (upper part), and a metal plate 14 such as a copper plate is formed in the slit 10b. It is detachably sandwiched.
[0033]
As shown in FIG. 4, since the metal plate 14 is bent approximately 90 degrees before being sandwiched by the main body 10, when the metal plate 14 is inserted from the drain port 7 and the main body 10 is attached to the drain port 7, the metal plate 14 Is held substantially horizontally on the water tray 6. Also in this embodiment, the antibacterial material can be taken out at the same time by removing the sealing plug 8C, so that the replacement of the metal plate 14 is easy.
[0034]
【Example】
The following test was performed as an empirical evaluation of the ceiling-embedded air conditioner having the sterilization function in which the sealing plug having the above-described configuration was arranged.
[0035]
As a proof evaluation test, two ceiling-mounted indoor units were prepared with a multi-air conditioner capable of connecting two indoor units, and one was equipped with the sealing plug according to the present invention having the above-described configuration, while the other was installed with another. No antimicrobial was installed on the platform.
[0036]
Two indoor units were placed in an atmosphere of 40 ° C. and 50% RH, and a continuous cooling operation was performed at a set temperature of 27 ° C. for 3 days. Thereafter, 50 ml of water discharged from the outlet of the indoor unit drain hose was collected, and the microorganisms were filtered through a micro stain membrane (0.45 μm in display pore diameter) manufactured by Nippon Millipore Co., Ltd. The membrane was placed on a Nissui Pharmaceutical ordinary agar medium (5 g of meat extract, 10 g of peptone, 5 g of sodium chloride, and 15 g of agar dissolved in 1 L of water and solidified on the medium), and cultured at 37 ° C. for 16 hours. The cells were stained with Microstain staining solution manufactured by Nippon Millipore Co., Ltd., and the number of bacteria was measured. Table 1 shows the results. In the conventional air conditioner (without antibacterial agent), the number of bacteria was around 630 / ml, but in this embodiment, the number was less than 10 / ml. Was done.
[Table 1]
Figure 2004211936
[0037]
Embodiment 2 FIG.
5 to 7 show an air conditioner according to a second embodiment of the present invention, and particularly show an indoor unit of a ceiling-embedded type air conditioner.
[0038]
The basic configuration of the air conditioner according to the present embodiment is substantially the same as the basic configuration of the air conditioner according to the first embodiment, but differs in the configuration near the water tray 6. explain.
[0039]
As shown in FIG. 6, the condensed water in the water tray 6 flows into and stays in a water receiving portion 6 a formed by depressing the water tray 6 into a concave shape, and the accumulated dew water is sucked from the lower end of the drain pump 15. Is discharged to the outside via a drain hose (not shown). The drain pump 15 is provided with a float switch 16. When the amount of dew condensation water stored in the water receiving portion 6 a reaches a predetermined level or more and the float switch 16 is operated, the drain pump 15 is started, and the dew condensation accumulated in the water receiving portion 6 a is started. Water is discharged outside.
[0040]
In addition, a metal plate (ion discharge plate) 17 such as a zinc alloy plate is disposed in a portion of the water receiving portion 6a where the dew condensation water is stored below the drain pump 15, and a surface of a water inlet of the drain pump 15 is provided. A metal tool 18 such as an aluminum alloy is provided on 15a.
[0041]
FIG. 7 shows a modification of the configuration shown in FIG. 6, in which the ion discharge plate 17 is arranged on the water tray 6 located below the float 20 of the float switch 16 and the metal fitting 18 is attached to the float 20. It is a thing.
[0042]
As the metal fitting 18, for example, an aluminum alloy, iron, copper, or an alloy thereof can be used, but an aluminum alloy is most easily processed and has high corrosion resistance.
[0043]
On the other hand, any metal can be used for the ion discharge plate 17 as long as it has a higher ionization tendency than the metal tool 18, and for example, zinc, magnesium, titanium, or an alloy thereof can be used. Zinc plate, galvanized steel plate and zinc alloy plate are the cheapest and easy to process. When a zinc alloy plate is used, it is preferable to use a zinc alloy composition having high corrosion resistance. If the corrosion resistance is low, zinc is not eluted by long-term use, and the effect of suppressing the growth of bacteria cannot be obtained. It is preferable to add an appropriate amount of copper and titanium to zinc to form a zinc alloy because corrosion resistance can be improved.
[0044]
A chemical conversion coating layer is preferably formed on the surface of the zinc alloy sheet. The chemical conversion coating layer forms a thin sulfide or oxide film on the material surface in a solution using a chemical reaction such as sulfurization or oxidation. This chemical conversion coating suppresses excessive generation of zinc oxide, and thus can prevent the surface of the zinc alloy sheet from being covered with the particulate metal oxide. Therefore, zinc can be eluted for a long period of time, and the effect of inhibiting the growth of bacteria can be maintained for a long period of time. The chemical conversion treatment utilizes various chemical reactions such as sulfurization and oxidation, and therefore, there are various methods. As long as it suppresses elution of metal ions without changing the ionization tendency, any treatment such as phosphoric acid film treatment and chromate treatment may be used. Phosphoric acid films are preferred because they are easy to treat and have relatively little impact on the global environment.
[0045]
Regarding the thickness of the chemical conversion coating layer, if the thickness is too large, the elution of metal ions is reduced and the antibacterial property is reduced. Further, it is preferable to provide a protective film in order to suppress the growth of bacteria collected on the surface of the zinc alloy plate and to secure long-term reliability of the zinc alloy plate. It is preferable that the protective film is provided on one surface of the zinc alloy plate and provided on a surface of the zinc alloy plate that is not opposed to the metal member because the antibacterial effect is not impaired. The elution of zinc from the back surface of the zinc alloy plate can be suppressed by the protective film, and the life of the ion discharge plate 17 can be extended. The thickness of the protective film is preferably 10 μm or more. If the thickness is less than 10 μm, zinc ions are unnecessarily eluted, which is not preferable. The composition of the protective film is not limited as long as the elution of zinc ions is suppressed. For example, a protective film having a known resin composition such as an acrylic resin or a urethane resin can be used.
[0046]
Further, a nonwoven fabric having a thickness of about 1 mm is provided on the ion discharge plate 17 as an electric insulating layer in order to suppress the elution of zinc and to secure an insulating state so as not to make a short circuit by contacting the metal fitting 18. The electrical insulating layer provided on the ion discharge plate 17 may be any material that is hydrophilic and prevents contact between metals. For example, a nonwoven fabric of cotton or polyester, polyurethane, nylon, polyvinyl alcohol, or the like can be used. The nonwoven fabric can sufficiently retain water by capillary action. By making the electric insulating layer hydrophilic, the dew condensation water is accumulated on the ion discharge plate 17 for a long time, so that more bacteria can be collected, the activity can be suppressed, and the bacteria can be killed. Furthermore, when the metal ions eluted from the ion discharge plate 17 themselves have an antibacterial action, more metal ions can be eluted, so that a higher bacterial growth suppression effect can be obtained.
[0047]
【Example】
A specific embodiment of the ceiling-embedded air conditioner having the sterilization function having the above-described configuration will be described below.
(Example 1)
In the configuration of FIG. 6, a zinc alloy plate serving as an ion discharge plate 17 is disposed in the water receiving portion 6 a in which dew condensation water is stored, and an aluminum alloy pressed on the water inlet surface 15 a of the drain pump 15 is used as the metal fixture 18. Attached. The composition of the zinc alloy plate 17 used here was 99.577% of Zn, 0.35% of Cu, 0.07% of Ti, and 0.003% of Al.
[0048]
In addition, a connecting portion 19 for connecting one end of the zinc alloy plate 17 to the aluminum alloy 18 by bending is designed so as not to be immersed in drain water. When dew condensation water accumulates in the water receiving portion 6a, an electromotive force of about 0.4 V is generated between the aluminum alloy 18 and the zinc alloy plate 17.
[0049]
In the above configuration, the suspended bacteria floating in the air are first trapped by the heat exchanger 3, and then stay in the water receiving portion 6a via the water receiving tray 6 together with the condensed water. At that time, the negatively charged bacteria are zinc. It is collected one after another on the alloy plate 17. As a result, the bacteria whose free activities have been suppressed are also suppressed in metabolism, gradually weaken, and eventually die. Further, since the zinc ions eluted from the zinc alloy plate 17 have an antibacterial effect, it is possible to suppress the propagation of bacteria mixed in the dew water due to the eluted zinc ions.
[0050]
The following test was performed as an empirical evaluation of an air conditioner having such a fungus killing function.
[0051]
As a proof evaluation test 1, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to the surface 15a of the water inlet of the drain pump 15. One unit is provided with the zinc alloy plate 17 of this embodiment connected to the aluminum alloy 18, one unit is provided with the zinc alloy plate 17 not connected to the aluminum alloy 18, and one unit is provided with the zinc alloy plate 17. Was not installed. After installing an air conditioner indoor unit in a room controlled at 40 ° C. and 50% RH, continuous cooling operation was performed at a set temperature of 27 ° C. for 7 days, and water discharged from a drain hose was collected. Microorganisms were filtered through a microstain membrane (0.45 μm in indicated pore size) manufactured by EIZO Co., Ltd. This membrane was placed on a normal agar medium (manufactured by Nissui Pharmaceutical, 5 g of meat extract, 10 g of peptone, 5 g of sodium chloride, and 15 g of agar dissolved in 1 L of water and solidified on the medium) and cultured at 37 ° C. for 16 hours. Thereafter, the cells were stained with a microstain staining solution manufactured by Nippon Millipore Co., Ltd., and the number of bacteria was measured.
[0052]
Table 2 shows the test results of the verification evaluation test 1. The number of bacteria in the drain water was around 1000 / ml in the case where the conventional water receiver 6a had no zinc alloy plate 17, whereas in the present embodiment, the number of bacteria was 10 / ml. The number of cells not connected with No. 18 was 50 cells / ml, and the number of bacteria in the drain water was clearly reduced. In this embodiment, the effect of suppressing the growth of bacteria could be further enhanced as compared with the case where the zinc alloy plate 17 was not connected to the aluminum alloy 18.
[Table 2]
Figure 2004211936
[0053]
(Example 2)
In the configuration shown in FIG. 7, a zinc alloy plate 17 is disposed in a water receiving portion 6a in which dew condensation water is stored, and a press-worked aluminum alloy 18 is attached to a float 20 of the float switch 16. The composition of the zinc alloy plate 17 used here was 99.577% of Zn, 0.35% of Cu, 0.07% of Ti, and 0.003% of Al. In addition, a connecting portion 19 for connecting one end of the zinc alloy plate 17 to the aluminum alloy 18 by bending is designed so as not to be immersed in drain water. When the dew condensation water accumulates in the water receiving portion 6a, an electromotive force of about 0.4 V is generated between the aluminum alloy 18 and the zinc alloy plate 17.
[0054]
As a proof evaluation test 2, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to a float 20 of a float switch 16. One unit is provided with the zinc alloy plate 17 of this embodiment connected to the aluminum alloy 18, one unit is provided with the zinc alloy plate 17 not connected to the aluminum alloy 18, and one unit is provided with the zinc alloy plate 17. Was not installed. The number of bacteria in the drain water was measured in the same manner as in the verification test 1.
[0055]
Table 3 shows the test results of the verification test 2. The number of bacteria in the drain water was around 1000 / ml in the case where the conventional water receiver 6a had no zinc alloy plate 17, whereas in the present embodiment, the number of bacteria was 10 / ml. The number of cells not connected with No. 18 was 50 cells / ml, and the number of bacteria in the drain water was clearly reduced. Further, in the case of the present embodiment, the effect of suppressing the growth of bacteria could be further enhanced as compared with the case where the zinc alloy plate 17 was not connected to the aluminum alloy 18.
[Table 3]
Figure 2004211936
[0056]
(Example 3)
In the present embodiment, the zinc alloy plate 17 is disposed in the water receiving portion 6a where the dew condensation water is stored in the same manner as in the first embodiment, and the aluminum alloy 18 and the zinc alloy plate 17 provided on the water intake surface 15a of the drain pump 15 are provided. And connected. The composition of the zinc alloy plate 17 used here was 99.577% of Zn, 0.35% of Cu, 0.07% of Ti, and 0.003% of Al. On both surfaces of the zinc alloy plate 17, a phosphoric acid treatment film was formed as a chemical conversion treatment film layer at 1 μm.
[0057]
As a proof evaluation test 3, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to the water intake surface 15a of the drain pump 15. One unit is provided with the zinc alloy plate 17 of the present embodiment connected to the aluminum alloy 18, and one unit is a zinc alloy plate 17 having no chemical conversion coating layer formed on both sides of the zinc alloy plate 17 and the aluminum alloy 18. They were connected and installed, and no zinc alloy plate 17 was installed in one of them. An indoor unit of an air conditioner was installed in a room controlled at 40 ° C. and 50% RH, and a continuous cooling operation was performed at a set temperature of 27 ° C. for 1000 hours, and the number of bacteria in drain water was measured in the same manner as in the verification evaluation test 1.
[0058]
Table 4 shows the test results of the verification evaluation test 3. The number of bacteria in the drain water was about 3000 / ml in the case where the conventional water receiving portion 6a was not provided with the zinc alloy plate 17, whereas the number of bacteria in the present embodiment was equal to that in the case where the chemical conversion coating layer was not formed. In each of the 17 samples, the number of bacteria decreased to 1/100, and the number of bacteria in the drain water was clearly reduced. Further, in the case of the present example, the weight loss was smaller than that of the zinc alloy plate 17 in which the chemical conversion coating layer was not formed, and it was possible to achieve a longer life while maintaining the effect of suppressing the growth of bacteria.
[Table 4]
Figure 2004211936
[0059]
(Example 4)
In the present embodiment, the zinc alloy plate 17 is disposed in the water receiving portion 6a where the dew condensation water is stored in the same manner as in the first embodiment, and the aluminum alloy 18 and the zinc alloy plate 17 provided on the water intake surface 15a of the drain pump 15 are provided. And connected. The composition of the zinc alloy plate 17 used here was 99.577% of Zn, 0.35% of Cu, 0.07% of Ti, and 0.003% of Al. On the surface of the zinc alloy plate 17 facing the aluminum alloy 18, a phosphoric acid-treated film was formed as a chemical conversion film with a thickness of 1 μm. An acrylic resin coating film having a thickness of 100 μm was formed as a protective film on the surface of the zinc alloy plate 17 not facing the aluminum alloy 18.
[0060]
As a proof evaluation test 4, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to the water intake surface 15a of the drain pump 15. One unit is provided with the zinc alloy plate 17 of the present embodiment connected to the aluminum alloy 18, and one unit is provided with the zinc alloy plate 17 of the third embodiment connected to the aluminum alloy 18. No zinc alloy plate 17 was provided. The number of bacteria in drain water was measured in the same manner as in the verification test 3.
[0061]
Table 5 shows the test results of the proof evaluation test 4. The number of bacteria in the drain water was about 3000 / ml in the case where the zinc alloy plate 17 was not provided in the conventional water receiving portion 6a, whereas the number of bacteria in the present example and that in Example 3 were both higher. 1/100, and the number of bacteria in the drain water was clearly reduced. Further, in this example, the weight loss was smaller than that in Example 3, and the life was prolonged while maintaining the effect of suppressing the growth of bacteria.
[Table 5]
Figure 2004211936
[0062]
(Example 5)
In the present embodiment, the zinc alloy plate 17 is disposed in the water receiving portion 6a where the dew condensation water is stored in the same manner as in the first embodiment, and the aluminum alloy 18 and the zinc alloy plate 17 provided on the water intake surface 15a of the drain pump 15 are provided. And connected. The composition of the zinc alloy plate 17 used here was 99.577% of Zn, 0.35% of Cu, 0.07% of Ti, and 0.003% of Al. On the surface of the zinc alloy plate 17 facing the aluminum alloy 18, a phosphoric acid-treated film was formed as a chemical conversion film with a thickness of 1 μm. An acrylic resin coating film having a thickness of 100 μm was formed as a protective film on the surface of the zinc alloy plate 17 not facing the aluminum alloy 18. A 1-mm-thick cotton nonwoven fabric sheet was adhered to the entire surface of the zinc alloy plate 17 facing the aluminum alloy 18 as an electrical insulating layer.
[0063]
As a proof evaluation test 5, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to the water inlet surface 15a of the drain pump 15. One unit is provided with the zinc alloy plate 17 of the present embodiment connected to the aluminum alloy 18, and one unit is provided with the zinc alloy plate 17 of the fourth embodiment connected to the aluminum alloy 18. No zinc alloy plate 17 was provided. The number of bacteria in the drain water was measured in the same manner as in the verification test 3, and the zinc ion concentration in the drain water was measured by ICP emission spectroscopy.
[0064]
Table 6 shows the test results of the verification evaluation test 5. The number of bacteria in the drain water was about 3000 / ml in the case where the zinc alloy plate 17 was not provided in the conventional water receiving portion 6a, whereas the number of bacteria in both the present embodiment and the fourth embodiment was lower. 1/100, and the number of bacteria in the drain water was clearly reduced. In addition, the zinc ion concentration in the drain water was 3 ppm in the example 4, whereas it was 2 ppm in the example, and the zinc elution in the example was less than that in the example 3. It was possible to achieve a longer life by maintaining the effect of suppressing the growth of bacteria while suppressing the growth.
[Table 6]
Figure 2004211936
[0065]
(Example 6)
In the present embodiment, as in the first embodiment, a zinc iron plate as the ion discharge plate 17 is disposed in the water receiving portion 6a in which the dew condensation water is stored, and the aluminum alloy 18 provided on the water inlet surface 15a of the drain pump 15 It was connected to a zinc iron plate 17. Phosphate-treated films were formed as chemical conversion film layers on both surfaces of the zinc iron plate 17 used here. When the dew condensation water accumulates in the water receiving portion 6a, an electromotive force of about 0.4 V is generated between the aluminum alloy 18 and the zinc iron plate 17.
[0066]
As a proof evaluation test 6, three ceiling-mounted air conditioners were prepared, and an aluminum alloy 18 was attached to the water intake surface 15a of the drain pump 15. One unit is provided with the zinc iron plate 17 of the present embodiment connected to the aluminum alloy 18, one unit is provided with the zinc alloy plate 17 of the third embodiment connected to the aluminum alloy 18, and one unit is provided with zinc No iron plate or zinc alloy plate 17 was provided. The number of bacteria in the drain water was measured in the same manner as in the verification test 1.
[0067]
Table 7 shows test results of the verification evaluation test 6. The number of bacteria in the drain water was about 1000 / ml in the case where the zinc alloy plate 17 was not provided in the conventional water receiving portion 6a, whereas the number of bacteria in the present embodiment and that in the third embodiment were both higher. 1/100, and the number of bacteria in the drain water was clearly reduced. Also with the zinc iron plate of this example, the effect of inhibiting the growth of bacteria could be confirmed.
[Table 7]
Figure 2004211936
[0068]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
According to the configuration of the first embodiment of the present invention, bacteria existing in the living space are trapped by the aluminum fins of the heat exchanger together with dew condensation water, and dropped onto the water tray via the aluminum fins. Bacteria mixed in the dew water are weakened by the elution of the antibacterial agent on the water tray side of the sealing stopper on the water tray, and eventually die, so that discomfort such as generation of odor due to propagation of the bacteria can be reduced. In addition, by removing the sealing stopper and replacing the antibacterial agent, the bacteria elimination or sterilization effect can be maintained for a long period of time, and there is a possibility of water leakage without stopping the drainage function due to organic substances formed by various bacteria. No air conditioner can be provided.
[0069]
In addition, by containing at least one of zinc, copper, and silver in the antibacterial agent, metal ions having antibacterial properties can be stably eluted in the drain water, and effective disinfection can be performed. it can.
[0070]
Further, when the antibacterial agent has a structure in which zinc or a zinc alloy is connected to a metal having a smaller ionization tendency than these metals, zinc ions are continuously eluted and high antibacterial properties can be maintained.
[0071]
Further, when the antibacterial agent is formed into a wire or a coil, the surface area is increased and metal ions are efficiently released into water, so that the life can be extended while maintaining the sterilization effect.
[0072]
In addition, if the antibacterial agent formed in a wire or coil shape is bent at a right angle to the insertion direction of the sealing plug and placed on the surface of the water tray, the antibacterial agent is easily immersed in the drain water and the antibacterial component is easily eluted. In addition, the life can be extended while maintaining the disinfecting effect.
[0073]
Further, since the antibacterial agent is detachable from the sealing plug main body portion, the sealing plug main body portion can be used repeatedly, thereby reducing waste and preserving the global environment.
[0074]
Further, according to the configuration of the second embodiment of the present invention, the bacteria mixed into the dew water have a certain degree of negative charge, so that the metal part of the drain pump or the float and the ionization tendency of the ion discharge plate are reduced. Due to the difference, the bacteria are electrophoresed and collected one after another toward the low-potential ion discharge plate, thereby suppressing the free activity of the bacteria. After that, the bacteria whose metabolic function is inactivated weaken and eventually die, so that discomfort such as odor caused by various bacteria can be suppressed, and the drainage function stops due to organic substances formed by various bacteria, causing water leakage It is possible to provide an air conditioner that can suppress the occurrence of the air conditioner.
[0075]
Further, depending on the metal species of the ion discharge plate, the eluted metal ions themselves have an antibacterial action, so that the propagation of bacteria mixed into the dew water due to the eluted metal ions can also be suppressed.
[0076]
Further, when a chemical conversion coating layer is formed on the surface of the ion discharge plate, excessive generation of zinc oxide is suppressed, so that the surface of the zinc alloy plate can be prevented from being covered with the particulate metal oxide. Therefore, zinc can be eluted for a long period of time, and the effect of suppressing the growth of bacteria can be maintained for a long period of time.
[0077]
In addition, since the chemical conversion coating layer on the surface of the ion discharge plate contains a phosphoric acid coating, excessive zinc oxide generation is suppressed, and the zinc alloy plate surface is prevented from being covered with particulate metal oxide. can do. Further, the phosphoric acid film is easy to treat and has a relatively small impact on the global environment.
[0078]
In addition, since the chemical conversion coating layer on the surface of the ion discharge plate contains a phosphoric acid-treated coating, the generation of excess zinc oxide is suppressed by a simple treatment with a low environmental load, and the surface of the zinc alloy plate becomes granular metal. It can be prevented from being covered with oxide.
[0079]
Further, by providing a protective film on one surface of the ion discharge plate, the elution amount of ions can be suppressed, and the life of the ion discharge plate can be extended.
[0080]
In addition, by providing an electric insulating layer on the surface of the ion discharge plate, an insulating state can be ensured so as not to be short-circuited by contact with metal components. While being collected one after another to the ion discharge plate side, free activities are suppressed and they die. Further, since the elution of ions can be suppressed, the life of the ion discharge plate can be extended.
[0081]
In addition, since the non-woven fabric is included in the electric insulating layer, the dew condensation water can be retained for a long time, so that an electromotive force is generated even when the storage amount of the water receiving portion is small, and the bacteria can be killed.
[0082]
Further, the cost can be reduced by using a zinc plate, a galvanized steel plate, or a zinc alloy as the ion discharge plate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an indoor unit of an embedded ceiling air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view of a sealing plug installed at a drain port of the indoor unit of FIG.
FIG. 3 is a sectional view showing a modified example of the sealing plug of FIG. 2;
FIG. 4 is a sectional view showing another modification of the sealing plug of FIG. 2;
FIG. 5 is a cross-sectional view of an indoor unit of an embedded ceiling air conditioner according to Embodiment 2 of the present invention.
FIG. 6 is a sectional view showing a connection configuration between a drain pump and a zinc alloy plate of the indoor unit in FIG. 5;
7 is a cross-sectional view illustrating a connection configuration between a float switch and a zinc alloy plate of the indoor unit in FIG.
[Explanation of symbols]
1 suction grill, 2 heat exchanger, 3 blower, 4 outlet,
5 water receiving gutter, 6 water receiving pan, 6a water receiving section, 7 drain port,
8, 8A, 8B, 8C sealing stopper, 9 underframe, 10 sealing stopper body,
10a recess, 10b slit, 11 tableted antibacterial agent,
12 cylindrical members, 13 coil members, 14 metal plates,
15 drain pump, 15a drain pump surface,
16 float switch, 17 ion discharge plate, 18 metal fittings,
19 connections, 20 floats.

Claims (13)

熱交換器と送風機とを収容する台枠と、該台枠の下部に配置された水受皿とを有する室内機を備えた空気調和機であって、
前記水受皿に溜まったドレン水を排出可能なドレン口を前記水受皿を貫通して形成するとともに、前記ドレン口に封止栓を着脱自在に取り付け、該封止栓の前記水受皿側に溶出可能な抗菌剤を設けたことを特徴とする空気調和機。
An air conditioner including an indoor unit having a frame that houses a heat exchanger and a blower, and a water tray disposed at a lower portion of the frame,
A drain port through which the drain water accumulated in the water tray can be drained is formed through the water tray, and a sealing plug is detachably attached to the drain port to elute the sealing plug toward the water tray. An air conditioner characterized by providing a possible antibacterial agent.
前記抗菌剤中に亜鉛、銅、銀のうち少なくとも一つを含有させたことを特徴とする請求項1に記載の空気調和機。The air conditioner according to claim 1, wherein at least one of zinc, copper, and silver is contained in the antibacterial agent. 前記抗菌剤が、亜鉛または亜鉛合金と該亜鉛または亜鉛合金よりもイオン化傾向の小さな金属が接続されてなることを特徴とする請求項2に記載の空気調和機。The air conditioner according to claim 2, wherein the antibacterial agent is formed by connecting zinc or a zinc alloy and a metal having a lower ionization tendency than the zinc or the zinc alloy. 前記抗菌剤が線材状またはコイル状に形成されていることを特徴とする請求項2に記載の空気調和機。The air conditioner according to claim 2, wherein the antibacterial agent is formed in a wire shape or a coil shape. 前記抗菌剤が前記封止栓の挿入方向に対して略直角に折り曲げられ水受皿表面に設置されたことを特徴とする請求項4に記載の空気調和機。5. The air conditioner according to claim 4, wherein the antibacterial agent is bent substantially at right angles to a direction in which the sealing plug is inserted, and is installed on a surface of a water receiving tray. 前記抗菌剤を前記封止栓の本体に着脱自在に取り付けたことを特徴とする請求項1に記載の空気調和機。The air conditioner according to claim 1, wherein the antibacterial agent is detachably attached to a main body of the sealing plug. 通風路内に設けられた熱交換器と、該熱交換器により温度調節された風を室内へ吹出すための送風機と、前記熱交換器から滴下した結露水を受ける水受皿と、該水受皿の結露水を貯留するための水受け部と、該水受け部の結露水を外部へ排出するためのポンプと、該ポンプに付設したフロートスイッチとを有する室内機を備えた空気調和機であって、
前記ポンプの吸水口及び前記フロートスイッチのフロートのいずれか一方に金属具を設け、前記水受け部に前記金属具よりもイオン化傾向の大きい金属により構成されるイオン排出板を配置し、前記金属具と前記イオン排出板が接続されていることを特徴とする空気調和機。
A heat exchanger provided in the ventilation path, a blower for blowing the air temperature-controlled by the heat exchanger into a room, a water tray for receiving dew condensation water dropped from the heat exchanger, and the water tray An air conditioner provided with an indoor unit having a water receiver for storing the dew water of the above, a pump for discharging the dew water of the water receiver to the outside, and a float switch attached to the pump. hand,
A metal fitting is provided in one of the water inlet of the pump and the float of the float switch, and an ion discharge plate made of a metal having a higher ionization tendency than the metal fitting is arranged in the water receiving portion, And the ion discharge plate is connected to the air conditioner.
前記イオン排出板の少なくとも一方の表面に化成処理皮膜層を形成したことを特徴とする請求項7に記載の空気調和機。The air conditioner according to claim 7, wherein a chemical conversion coating layer is formed on at least one surface of the ion discharge plate. 前記化成処理皮膜層がリン酸処理皮膜を含むことを特徴とする請求項8に記載の空気調和機。The air conditioner according to claim 8, wherein the chemical conversion coating layer includes a phosphoric acid coating. 前記イオン排出板の一方の表面に保護膜を設けたことを特徴とする請求項7〜9のいずれか1項に記載の空気調和機。The air conditioner according to any one of claims 7 to 9, wherein a protective film is provided on one surface of the ion discharge plate. 前記イオン排出板の前記金属具と対向する表面に電気絶縁層を設けたことを特徴とする請求項7〜10のいずれか1項に記載の空気調和機。The air conditioner according to any one of claims 7 to 10, wherein an electric insulating layer is provided on a surface of the ion discharge plate facing the metal fitting. 前記電気絶縁層が不織布を含むことを特徴とする請求項11記載の空気調和機。The air conditioner according to claim 11, wherein the electric insulating layer includes a nonwoven fabric. 前記イオン排出板が亜鉛板、亜鉛メッキ鋼板、または亜鉛合金板であることを特徴とする請求項7〜12のいずれか1項に記載の空気調和機。The air conditioner according to any one of claims 7 to 12, wherein the ion discharge plate is a zinc plate, a galvanized steel plate, or a zinc alloy plate.
JP2002380005A 2002-12-27 2002-12-27 Air conditioner Pending JP2004211936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002380005A JP2004211936A (en) 2002-12-27 2002-12-27 Air conditioner
KR1020030092629A KR20040060740A (en) 2002-12-27 2003-12-17 Air conditioner
CNB2003101247111A CN1276221C (en) 2002-12-27 2003-12-24 Air conditioner
CNA2006100912489A CN1865800A (en) 2002-12-27 2003-12-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380005A JP2004211936A (en) 2002-12-27 2002-12-27 Air conditioner

Publications (1)

Publication Number Publication Date
JP2004211936A true JP2004211936A (en) 2004-07-29

Family

ID=32816341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380005A Pending JP2004211936A (en) 2002-12-27 2002-12-27 Air conditioner

Country Status (3)

Country Link
JP (1) JP2004211936A (en)
KR (1) KR20040060740A (en)
CN (2) CN1865800A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170477A (en) * 2004-12-13 2006-06-29 Daikin Ind Ltd Drain water bacteriostatic structure for air conditioner
JP2006194494A (en) * 2005-01-12 2006-07-27 Daikin Ind Ltd Air conditioner
JP2006194493A (en) * 2005-01-12 2006-07-27 Daikin Ind Ltd Drain discharging device
JP2006322677A (en) * 2005-05-19 2006-11-30 Daikin Ind Ltd Antibacterial material and device comprising the same
JP2010164255A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Air conditioner
JP2011149635A (en) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp Drain outlet structure for air conditioner
JP2015124959A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464796B2 (en) * 2004-11-15 2010-05-19 日立アプライアンス株式会社 Heat exchanger and manufacturing method thereof
WO2006075607A1 (en) * 2005-01-12 2006-07-20 Daikin Industries, Ltd. Air conditioner
EP2085711B1 (en) * 2008-01-29 2014-12-31 SANYO Electric Co., Ltd. Air conditioner having antibacterial unit for drain water
KR20180000035U (en) 2016-06-24 2018-01-04 김완수 Spreader with side guider

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170477A (en) * 2004-12-13 2006-06-29 Daikin Ind Ltd Drain water bacteriostatic structure for air conditioner
JP4696547B2 (en) * 2004-12-13 2011-06-08 ダイキン工業株式会社 Drain water bacteriostatic structure of air conditioner
JP2006194494A (en) * 2005-01-12 2006-07-27 Daikin Ind Ltd Air conditioner
JP2006194493A (en) * 2005-01-12 2006-07-27 Daikin Ind Ltd Drain discharging device
JP2006322677A (en) * 2005-05-19 2006-11-30 Daikin Ind Ltd Antibacterial material and device comprising the same
JP2010164255A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Air conditioner
JP2011149635A (en) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp Drain outlet structure for air conditioner
JP2015124959A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
KR20040060740A (en) 2004-07-06
CN1276221C (en) 2006-09-20
CN1865800A (en) 2006-11-22
CN1512111A (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP2004211936A (en) Air conditioner
US7754157B2 (en) Humidifier
US6303039B1 (en) Method for treating water over an extended time using tablets and packets
JP2007212125A (en) Humidifier
JP4401695B2 (en) Humidifier
JP3871610B2 (en) Air conditioner
JP2021040710A (en) Air filter for sterilizing compressed air circuit
JP4992233B2 (en) Humidifier
EP1892483A3 (en) Air conditioner and method of controlling the same
JP2003010301A (en) Airborne bacteria sterilizing capsule
JP2012247185A (en) Sterilization filter and humidifier
WO2006062182A1 (en) Drain up kit
JP4959292B2 (en) Air conditioner
JP3879578B2 (en) Underwater immersion member and electric device equipped with the same
JP6138040B2 (en) Air conditioner
JP2005172260A (en) Air conditioner
JP2006322677A (en) Antibacterial material and device comprising the same
CN1474101A (en) Air conditioner
US11859858B1 (en) Copper coated AC drain pan basin
JP2009058210A (en) Humidifier
KR101704304B1 (en) Method for reducing odor from evaporator core
WO2016089117A1 (en) Anion generator
JP2001201169A (en) Air conditioner and air cleaner
CN220820691U (en) Antibacterial USB flash disk
JP4948638B2 (en) Water disinfection device and humidification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327