JP2004211175A - Production method of copper composite material - Google Patents

Production method of copper composite material Download PDF

Info

Publication number
JP2004211175A
JP2004211175A JP2003000919A JP2003000919A JP2004211175A JP 2004211175 A JP2004211175 A JP 2004211175A JP 2003000919 A JP2003000919 A JP 2003000919A JP 2003000919 A JP2003000919 A JP 2003000919A JP 2004211175 A JP2004211175 A JP 2004211175A
Authority
JP
Japan
Prior art keywords
powder
composite material
copper composite
copper
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003000919A
Other languages
Japanese (ja)
Other versions
JP4212363B2 (en
Inventor
Mitsuhiro Funaki
光弘 船木
Daiki Baba
大樹 馬場
Masaya Oyama
真哉 大山
Toshiyuki Horimuki
俊之 堀向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003000919A priority Critical patent/JP4212363B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to CN200910262569A priority patent/CN101760663A/en
Priority to US10/521,333 priority patent/US7544259B2/en
Priority to PCT/JP2003/009102 priority patent/WO2004009859A1/en
Priority to GB0601624A priority patent/GB2419604B/en
Priority to CN03822284A priority patent/CN100591784C/en
Priority to CA002492925A priority patent/CA2492925A1/en
Priority to GB0503149A priority patent/GB2406579B/en
Priority to GB0601625A priority patent/GB2419605B/en
Priority to GB0601627A priority patent/GB2419603B/en
Priority to AU2003252210A priority patent/AU2003252210A1/en
Publication of JP2004211175A publication Critical patent/JP2004211175A/en
Application granted granted Critical
Publication of JP4212363B2 publication Critical patent/JP4212363B2/en
Priority to US12/387,608 priority patent/US20100021334A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for imparting excellent mechanical strength and thermal and electrical properties to a copper composite material. <P>SOLUTION: An alumina (Al<SB>2</SB>O<SB>3</SB>) powder and a titanium boride (TiB<SB>2</SB>) powder are mixed with a base material (Cu powder), and the mixed powder is subsequently shaped into a primary shaped body and laterally squeezed to apply a strain corresponding to ≥200% elongation. Lateral squeezing is repeated for 12 times under a condition wherein the mold temperature is 400-1,000°C and the squeezing rate is about 1 mm/sec. Squeezing under this condition also serves as aging treatment, which facilitates deposition of the ceramic particles as well as miniaturization. This results in a secondary shaped product having average particle sizes of the base material (Cu) and the ceramic particles (Al<SB>2</SB>O<SB>3</SB>, TiB<SB>2</SB>) of ≤20 μm and ≤500 nm, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、溶接の電極材料などとして好適する銅複合材の製造方法に関する。
【0002】
【従来の技術】
銅マトリックス中にアルミナなどの酸化物を分散させた銅合金は導電性及び耐熱性に優れるため電気部品材料に広く利用され、この銅合金の特性や製法を改善する提案が多数なされている。
例えば、内部酸化する元素としてアルミニウムのみでなく、第3の元素としてスズを添加し、導電性と軟化特性を改善する提案がなされている。(特許文献1)
また、アトマイズ法にて製造した300μm以下のアルミニウムなどの易酸化性金属を固溶させた銅合金粉末を用いることで、50μm以下の粒子が70重量%以上となるものが提案されている。(特許文献2)
また、Cu−Al合金粉末を内部酸化してAlをAlにした後、この合金粉末の表面を平滑にし、その後圧粉成形して成形体とし、この成形体を600〜1000℃で熱間鍛造する方法が提案されている。(特許文献3)
また、Alを含む板状銅合金を内部酸化せしめてAlをAlにした後、この板状合金をコイル状にし、このコイル状合金を金属管内に密封し、この金属管を所望形状に900℃で熱間加工する方法が提案されている。(特許文献4)
また、Cu−Al合金の切粉を内部酸化せしめて得た合金粉末をカーボン型内に充填し、900℃、400kg/cmの圧力でホットプレスする方法が提案されている。(特許文献5)
また、Cu−Al合金粉末の内部にAlの環状硬質層が存在するようにして焼結性を高める方法が提案されている。(特許文献6)
【0003】
(特許文献1) 特開昭59−150043号公報 特許請求の範囲
(特許文献2) 特開昭60−141802号公報 特許請求の範囲
(特許文献3) 特開昭63−241126号公報 第2頁右上欄6行〜11行
(特許文献4) 特開平2−38541号公報 第3頁右上欄16行〜左下欄最終行
(特許文献5) 特開平2−93029号公報 第3頁右下欄15行〜第4頁左上欄17行
(特許文献6) 特開平4−80301号公報 特許請求の範囲
【0004】
【発明が解決しようとする課題】
上述した先行技術にあって、はいずれも高温での熱間加工を行うため、粒成長によって組織が粗大化する傾向にある。金属材料の結晶組織が粗大化すると機械的強度が低下することがホール・ペッチの法則として知られており、従来の方法では溶接の電極材料として要求される特性として、硬度が60(HRB)以上、導電率が85(IACS%)以上、熱伝導率が350(W/(m・K))以上を同時に満足するものを得ることができない。
【0005】
そこで、本発明者らは先に溶体化処理したCu−Cr合金に対し、200%の伸びに相当する歪を与えて時効処理することで、機械的強度と熱的・電気的特性の両方を満足する銅複合材を特願2002−210152号及び特願2002−210153号として提案している。
【0006】
しかしながら、AlはCuに固溶せず、Cu−Cr合金に対する処理方法をCu−Al合金に適用することはできない。
【0007】
また、Cuに固溶するAl量は少なく、内部酸化法による複合化では、微細なAlの析出量を多くして導電性を高く維持しつつ機械的強度を上げることが難しい。尚、ボールミル、振動ミル、アトライタを用いることでCuとAlの配合割合を任意に設定した合金を製造できるが、これらの方法による場合には、無酸化雰囲気にするなど設備的な問題と、不純物の混入を避けることができないという欠点がある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る銅複合材の製造方法は、従来行っている内部酸化処理を行わずに、銅粉末とセラミック粉末とを混合し、この混合粉末を1次形状体とし、この1次形状体に歪を付与しながら押出しをすることで母材の粒径は微細化し、セラミック粒子を微細に粉砕し、一様に分散した2次形状体とした。
【0009】
前記歪を付与する手段としては、押出し、引き抜き、せん断、圧延または鍛造などが考えられる。押出しの場合には金型温度400〜1000℃、押出し速度0.5〜2.0mm/secで行う側方押出しが有効であり、また押出しの回数は10〜20回繰り返すことが必要である。
押出しの金型温度を400〜1000℃以上としたのは、400℃未満では変形抵抗が大きく押出しが困難となり、母相と粒子間に十分な結合強度が得られなくなり、また1000℃を超えると、銅の融点を超え溶融してしまい、歪の付与ができないためである。そのため上記範囲が好ましい。
また、押出し速度は速いほど歪が入りやすいが、0.5〜2.0mm/secとしたのは、0.5mm/sec未満では製造時間がかかり好ましくなく、2.0mm/secを超えると金型との摩擦が上昇し、金型寿命が極端に短くなるので、上記範囲が好ましい。
また、押出しを行うには合金粉末を所定の形状(1次形状)にする必要があるが、そのためには、圧粉成形または管に混合粉末を充填する等の手段が考えられる。
【0010】
また、溶接の電極材料として要求される機械的強度及び熱的・電気的特性を満足するには、得られた銅複合材の母材の平均粒径が20μm以下、セラミック粒子の平均粒径が500nm以下であることが好ましい。これよりも大きい粒径では溶接時の加圧による変形(素材の圧縮強度が低いため)が大きくなってしまう。溶接時の変形を防止するために必要な圧縮強度を得るには上記の粒径以下にすることが好ましい。
このためには、材料として用いるセラミック粉末の平均粒径を0.3〜10μmとし、且つ1次形状体に与える歪を200%以上の伸びに相当するものとする。セラミック粉末の径を0.3μm未満とするのは製造が困難でコスト的に見合わず、また10μmを超えると後工程で歪を与えるための繰り返し数が増加するためである。
【0011】
本発明において銅マトリックスに添加するセラミック粉末としては、アルミナまたは硼化チタンが好適である。
【0012】
前記素材に歪を与える手段としては、押出し、引き抜き、せん断、圧延または鍛造などが考えられる。特に側方押出し場合には、金型温度を400〜1000℃、押出し速度を0.5〜2.0mm/secとすることで、粒子結合温度を低下させ十分な強度が得られる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る銅複合材を得る工程を説明した図であり、先ず、母材(Cu粉末)にアルミナ(Al)粉末や硼化チタン(TiB)粉末を混合する。混合割合は0.1wt%〜5.0wt%とする。0.1wt%未満では耐磨耗性が向上せず、5.0wt%を超えると導電率が低下し、金型の寿命も短くなるため、上記の範囲となる。
【0014】
次いで上記の混合粉末を側方押出しするために1次形状体とする。1次形状体にするには、例えば、圧粉成形或いはCu(銅)管内に混合粉末を充填することで行う。次いで、1次形状体に側方押出しによって200%以上、好ましくは約220%の伸びに相当する歪を与える。
尚、図1では説明を分りやすくするため、Cu管の径を側方押出し金型に形成した挿入孔の径よりも大きくしているが、実際はCu管の径と金型に形成した挿入孔の径は略等しく、またパンチでCu管を押し込む際にCu管が倒れないように治具等を用いて支持しておく。
【0015】
側方押出しの具体的な条件としては、金型温度を400〜1000℃とし、押し出し速度を約1mm/secとして、12回繰り返して押し出すECAE(equal−channel−angular extrusion)処理。この繰り返しで、母相の微細化とセラミックの粉砕・分散が生じる。
【0016】
このECAE処理によって得られた銅合金の結晶組織の顕微鏡写真を図2に示す。尚、図2(a)はアルミナ粉末を添加した複合材、(b)は硼化チタン粉末を添加した複合材を示す。これらの写真から銅マトリックスに粒径が数nmのアルミナまたは硼化チタンが均一に分散していることが確認される。
【0017】
図3は本発明に係る銅複合材と従来の銅複合材の溶接性を連続打点数で比較したグラフであり、本発明にかかる銅複合材のうち、アルミナが分散した銅複合材を溶接チップとした場合には、1000打点以上が可能で、硼化チタンが分散した銅複合材を溶接チップとした場合には、1400打点が可能であった。
【0018】
【発明の効果】
以上に説明したように本発明に係る銅合金の製造方法によれば、溶体化処理を出発点としていないので、固溶限界による制限がなく、銅合金中の第2元素粒子(AlやTiB)の割合を任意に設定でき、従来の銅複合材では得られなかった特性を得ることができる。
【0019】
即ち、銅合金のマトリックスの純度は高く、電気的特性に優れ、しかもマトリックス粒子の界面に析出するAlやTiBの粒子の粒径は粒成長が抑制されるためナノオーダ(500nm以下)と小さく且つ添加量も任意に設定できる。
【図面の簡単な説明】
【図1】本発明に係る銅複合材の製造方法を説明した図。
【図2】本発明に係る製造方法で得られた銅合金の結晶組織を示す顕微鏡写真であり、(a)はアルミナを添加した銅複合材、(b)は硼化チタンを添加した銅複合材を示す。
【図3】本発明に係る製造方法で得られた銅複合材と従来の銅複合材の溶接性を連続打点数で比較したグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a copper composite material suitable as a welding electrode material or the like.
[0002]
[Prior art]
A copper alloy in which an oxide such as alumina is dispersed in a copper matrix is widely used for electric component materials because of its excellent conductivity and heat resistance, and many proposals have been made to improve the properties and manufacturing method of this copper alloy.
For example, it has been proposed to add not only aluminum as an element to be internally oxidized but also tin as a third element to improve conductivity and softening characteristics. (Patent Document 1)
Further, it has been proposed that particles of 50 μm or less become 70% by weight or more by using a copper alloy powder in which an easily oxidizable metal such as aluminum having a size of 300 μm or less manufactured by an atomizing method is used as a solid solution. (Patent Document 2)
Further, after the Cu-Al alloy powder is internally oxidized to convert Al to Al 2 O 3 , the surface of the alloy powder is smoothed, and then compacted into a compact, and the compact is heated at 600 to 1000 ° C. A hot forging method has been proposed. (Patent Document 3)
Further, after the plate-like copper alloy containing Al is internally oxidized to convert Al into Al 2 O 3 , the plate-like alloy is made into a coil shape, the coil-like alloy is sealed in a metal tube, and the metal tube is formed into a desired shape. A method of hot working at 900 ° C. has been proposed. (Patent Document 4)
Further, a method has been proposed in which a carbon mold is filled with an alloy powder obtained by internally oxidizing a chip of a Cu—Al alloy, and hot-pressed at 900 ° C. under a pressure of 400 kg / cm 2 . (Patent Document 5)
Further, a method has been proposed in which an annular hard layer of Al 2 O 3 is present inside a Cu—Al alloy powder to enhance sinterability. (Patent Document 6)
[0003]
(Patent Document 1) JP-A-59-150043 Patent claims (Patent Document 2) JP-A-60-141802 Patent claims (Patent Document 3) JP-A-63-241126 Page 2 Upper right column, lines 6 to 11 (Patent Document 4) JP-A-2-38541, page 3, upper right column, line 16 to lower left column, last line (Patent Document 5), JP-A-2-93029, page 3, lower right column 15, Line to page 4, upper left column, line 17 (Patent Document 6) JP-A-4-80301
[Problems to be solved by the invention]
In any of the above-mentioned prior arts, since hot working is performed at a high temperature, the structure tends to become coarse due to grain growth. It is known as Hall-Petch's law that the mechanical strength is reduced when the crystal structure of the metal material is coarsened. According to the conventional method, a property required as an electrode material for welding is a hardness of 60 (HRB) or more. In addition, it is impossible to obtain a material having an electrical conductivity of 85 (IACS%) or more and a thermal conductivity of 350 (W / (m · K)) or more.
[0005]
Then, the present inventors applied a strain corresponding to elongation of 200% to the Cu—Cr alloy that had been subjected to the solution treatment, and aged to give both mechanical strength and thermal / electrical properties. Satisfactory copper composite materials have been proposed as Japanese Patent Application Nos. 2002-210152 and 2002-210153.
[0006]
However, Al 2 O 3 does not form a solid solution in Cu, and a treatment method for a Cu—Cr alloy cannot be applied to a Cu—Al alloy.
[0007]
Further, the amount of Al dissolved in Cu is small, and it is difficult to increase the mechanical strength while maintaining high conductivity by increasing the amount of fine Al 2 O 3 deposited by complexing by the internal oxidation method. Incidentally, an alloy in which the mixing ratio of Cu and Al is arbitrarily set can be manufactured by using a ball mill, a vibration mill, and an attritor. However, according to these methods, equipment problems such as a non-oxidizing atmosphere and impurities are considered. There is a drawback that the incorporation of phenomena cannot be avoided.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for producing a copper composite material according to the present invention comprises mixing a copper powder and a ceramic powder without performing a conventional internal oxidation treatment, and forming the mixed powder into a primary shape. By extruding the primary body while applying strain to the primary body, the particle diameter of the base material was reduced, and the ceramic particles were pulverized finely to obtain a uniformly dispersed secondary body.
[0009]
Extrusion, drawing, shearing, rolling, forging, and the like can be considered as means for imparting the strain. In the case of extrusion, side extrusion performed at a mold temperature of 400 to 1000 ° C. and an extrusion speed of 0.5 to 2.0 mm / sec is effective, and the number of extrusions needs to be repeated 10 to 20 times.
The reason why the extrusion mold temperature is set to 400 to 1000 ° C. or higher is that if the temperature is lower than 400 ° C., deformation resistance is large and extrusion is difficult, and sufficient bonding strength between the parent phase and the particles cannot be obtained. This is because the melting point exceeds the melting point of copper, and distortion cannot be imparted. Therefore, the above range is preferable.
The higher the extrusion speed, the easier the strain is to be introduced. However, the reason why the extrusion speed is set to 0.5 to 2.0 mm / sec is that if the extrusion speed is less than 0.5 mm / sec, the production time is unfavorably long. The above range is preferable because the friction with the mold increases and the life of the mold is extremely shortened.
In order to perform extrusion, it is necessary to form the alloy powder into a predetermined shape (primary shape). For this purpose, means such as compacting or filling a tube with a mixed powder may be considered.
[0010]
In addition, in order to satisfy the mechanical strength and thermal / electrical properties required as electrode materials for welding, the average particle size of the base material of the obtained copper composite material is 20 μm or less, and the average particle size of the ceramic particles is 20 μm or less. Preferably it is 500 nm or less. If the particle size is larger than this, deformation due to pressurization during welding (because the compressive strength of the material is low) will be large. In order to obtain the compressive strength necessary for preventing deformation during welding, it is preferable that the particle size is equal to or less than the above particle size.
For this purpose, the average particle size of the ceramic powder used as the material is set to 0.3 to 10 μm, and the strain applied to the primary shape body is equivalent to elongation of 200% or more. The reason why the diameter of the ceramic powder is set to less than 0.3 μm is that production is difficult and the cost is unreasonable.
[0011]
In the present invention, alumina or titanium boride is preferable as the ceramic powder added to the copper matrix.
[0012]
Extrusion, drawing, shearing, rolling, forging, and the like can be considered as means for imparting strain to the material. Particularly in the case of lateral extrusion, by setting the mold temperature to 400 to 1000 ° C. and the extrusion speed to 0.5 to 2.0 mm / sec, the particle bonding temperature is lowered and sufficient strength is obtained.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a view for explaining a process of obtaining a copper composite material according to the present invention. First, alumina (Al 2 O 3 ) powder or titanium boride (TiB 2 ) powder is mixed with a base material (Cu powder). The mixing ratio is 0.1 wt% to 5.0 wt%. If it is less than 0.1 wt%, the abrasion resistance is not improved, and if it exceeds 5.0 wt%, the electrical conductivity is reduced and the life of the mold is shortened.
[0014]
Next, the above-mentioned mixed powder is made into a primary shape body for lateral extrusion. In order to obtain a primary shape, for example, compacting or filling a mixed powder in a Cu (copper) tube is performed. The primary profile is then strained by side extrusion, corresponding to an elongation of 200% or more, preferably about 220%.
In FIG. 1, the diameter of the Cu tube is made larger than the diameter of the insertion hole formed in the side-extrusion die for the sake of easy understanding of the description. Are approximately equal, and are supported by using a jig or the like so that the Cu tube does not fall when the Cu tube is pushed in by a punch.
[0015]
As a specific condition of the lateral extrusion, an ECAE (equal-channel-angular extrusion) process of repeatedly extruding 12 times at a mold temperature of 400 to 1000 ° C. and an extrusion speed of about 1 mm / sec. By repetition of the above, the microstructure of the mother phase and the pulverization and dispersion of the ceramic occur.
[0016]
FIG. 2 shows a micrograph of the crystal structure of the copper alloy obtained by the ECAE treatment. 2A shows a composite material to which alumina powder is added, and FIG. 2B shows a composite material to which titanium boride powder is added. From these photographs, it is confirmed that alumina or titanium boride having a particle size of several nm is uniformly dispersed in the copper matrix.
[0017]
FIG. 3 is a graph comparing the weldability of the copper composite material according to the present invention and the conventional copper composite material by the number of continuous dots, and among the copper composite materials according to the present invention, a copper composite material in which alumina is dispersed is used as a welding tip. In this case, 1000 or more dots were possible, and when a copper composite material in which titanium boride was dispersed was used as a welding tip, 1400 dots were possible.
[0018]
【The invention's effect】
As described above, according to the method for producing a copper alloy according to the present invention, since the solution treatment is not a starting point, there is no limitation due to the solid solution limit, and the second element particles (Al 2 O 3) in the copper alloy are not limited. And TiB 2 ) can be set arbitrarily, and characteristics that cannot be obtained with a conventional copper composite material can be obtained.
[0019]
That is, the purity of the matrix of the copper alloy is high, the electrical characteristics are excellent, and the particle size of Al 2 O 3 or TiB 2 particles deposited at the interface of the matrix particles is in the nano order (500 nm or less) because the grain growth is suppressed. And the addition amount can be set arbitrarily.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for producing a copper composite material according to the present invention.
FIGS. 2A and 2B are micrographs showing a crystal structure of a copper alloy obtained by a production method according to the present invention, wherein FIG. 2A is a copper composite material to which alumina is added, and FIG. 2B is a copper composite material to which titanium boride is added. Shows the material.
FIG. 3 is a graph comparing the weldability of the copper composite obtained by the production method according to the present invention and the conventional copper composite by the number of continuous hit points.

Claims (5)

銅粉末とセラミック粉末とを混合し、この混合粉末を1次形状体とし、この1次形状体に歪を付与することで母材及びセラミック粒子の粒径が微細化して結合した2次形状体とすることを特徴とする銅複合材の製造方法。A copper powder and a ceramic powder are mixed, the mixed powder is made into a primary shape, and the primary shape is strained to reduce the diameters of the base material and the ceramic particles and combine with the secondary shape. A method for producing a copper composite material, comprising: 請求項1に記載の銅複合材の製造方法において、前記歪を付与する手段は金型温度400℃以上1000℃以下で行う押出しであることを特徴とする銅複合材の製造方法。The method for producing a copper composite material according to claim 1, wherein the means for imparting the strain is extrusion performed at a mold temperature of 400 ° C. or more and 1000 ° C. or less. 請求項1に記載の銅複合材の製造方法において、前記1次形状体は圧粉成形または管に混合粉末を充填することで得ることを特徴とする銅複合材の製造方法。The method for producing a copper composite material according to claim 1, wherein the primary shape body is obtained by compacting or filling a tube with a mixed powder. 請求項1または請求項2に記載の銅複合材の製造方法において、前記セラミック粉末の平均粒径は0.3〜10μmとし、前記1次形状体に与える歪は200%以上の伸びに相当するものとし、また得られる2次形状体の母材の平均粒径は20μm以下、セラミック粒子の平均粒径は500nm以下であることを特徴とする銅複合材の製造方法。3. The method for producing a copper composite material according to claim 1, wherein the ceramic powder has an average particle size of 0.3 to 10 μm, and a strain applied to the primary shape body corresponds to an elongation of 200% or more. And a mean particle size of the base material of the obtained secondary shape body is 20 μm or less, and a mean particle size of the ceramic particles is 500 nm or less. 請求項1乃至請求項3に記載の銅複合材の製造方法において、前記セラミック粉末はアルミナまたは硼化チタンであることを特徴とする銅複合材の製造方法。4. The method for producing a copper composite material according to claim 1, wherein said ceramic powder is alumina or titanium boride.
JP2003000919A 2002-07-18 2003-01-07 Method for producing copper composite material Expired - Fee Related JP4212363B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2003000919A JP4212363B2 (en) 2003-01-07 2003-01-07 Method for producing copper composite material
GB0601625A GB2419605B (en) 2002-07-18 2003-07-17 Method of manufacturing composite copper material
PCT/JP2003/009102 WO2004009859A1 (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
GB0601624A GB2419604B (en) 2002-07-18 2003-07-17 Method of manufacturing composite copper material
CN03822284A CN100591784C (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method
CA002492925A CA2492925A1 (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
CN200910262569A CN101760663A (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
US10/521,333 US7544259B2 (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
GB0601627A GB2419603B (en) 2002-07-18 2003-07-17 Composite copper material
AU2003252210A AU2003252210A1 (en) 2002-07-18 2003-07-17 Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
GB0503149A GB2406579B (en) 2002-07-18 2003-07-17 Copper alloy, method, of manufacturing copper alloy
US12/387,608 US20100021334A1 (en) 2002-07-18 2009-05-05 Method of manufacturing composite copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000919A JP4212363B2 (en) 2003-01-07 2003-01-07 Method for producing copper composite material

Publications (2)

Publication Number Publication Date
JP2004211175A true JP2004211175A (en) 2004-07-29
JP4212363B2 JP4212363B2 (en) 2009-01-21

Family

ID=32819076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000919A Expired - Fee Related JP4212363B2 (en) 2002-07-18 2003-01-07 Method for producing copper composite material

Country Status (1)

Country Link
JP (1) JP4212363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360262A (en) * 2020-03-30 2020-07-03 河南科技大学 Plastic forming method of copper-based composite material and production method of copper-based composite material plate strip
CN112725663A (en) * 2020-12-30 2021-04-30 江苏智仁景行新材料研究院有限公司 Ceramic-aluminum composite powder and preparation method thereof
CN115595461A (en) * 2022-11-09 2023-01-13 西安理工大学(Cn) Microlaminate TiB 2 Reinforced copper-based composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360262A (en) * 2020-03-30 2020-07-03 河南科技大学 Plastic forming method of copper-based composite material and production method of copper-based composite material plate strip
CN111360262B (en) * 2020-03-30 2022-04-15 河南科技大学 Plastic forming method of copper-based composite material and production method of copper-based composite material plate strip
CN112725663A (en) * 2020-12-30 2021-04-30 江苏智仁景行新材料研究院有限公司 Ceramic-aluminum composite powder and preparation method thereof
CN112725663B (en) * 2020-12-30 2022-07-05 江苏智仁景行新材料研究院有限公司 Ceramic-aluminum composite powder and preparation method thereof
CN115595461A (en) * 2022-11-09 2023-01-13 西安理工大学(Cn) Microlaminate TiB 2 Reinforced copper-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4212363B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
CN104988438B (en) High-strength and high-conductivity carbon nano tube strengthening copper-based composite material and preparing method thereof
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US20100021334A1 (en) Method of manufacturing composite copper material
JP2006348349A (en) Magnesium alloy-powder raw material, high proof-stress magnesium alloy, method for manufacturing magnesium alloy-powder raw material and method for manufacturing high proof-stress magnesium alloy
EP3957417A1 (en) Method for manufacturing aluminum-based clad heat sink, and aluminum-based clad heat sink manufactured thereby
JP4212363B2 (en) Method for producing copper composite material
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JP2008007793A (en) Sintered high-strength magnesium alloy, and its manufacturing method
CN112430763B (en) Al (aluminum)2O3Preparation method of dispersion-strengthened copper-based composite material
JP4169652B2 (en) Method for producing copper composite material
JPS59157202A (en) Manufacture of al alloy machine parts
JP2007051322A (en) Green compact, and method for producing the same
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
JP2015172225A (en) Aluminum material, conductor for wire and wire for vehicle
JPH10298608A (en) Production of formed product
JP3458146B2 (en) Aluminum-based particle-dispersed composite material and method for producing the same
JP2004100041A (en) Copper alloy
JP7000145B2 (en) Manufacturing method of extruded composite material
JP2004342893A (en) Method of manufacturing thermoelectric material
DE10047525B4 (en) A method of producing a shaped article using a raw material containing silicon carbide in powder or particulate form and copper, and shaped articles thus produced
CN117920989A (en) Component gradient aluminum-based composite wire and preparation method thereof
JPH06210463A (en) Electrode for resistance welding and its production
JPS63241126A (en) Production of dispersion strengthened copper alloy material
JP2004356272A (en) Manufacturing method for thermoelectric material
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081002

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

LAPS Cancellation because of no payment of annual fees