JP2004210887A - Starch composition - Google Patents

Starch composition Download PDF

Info

Publication number
JP2004210887A
JP2004210887A JP2002380087A JP2002380087A JP2004210887A JP 2004210887 A JP2004210887 A JP 2004210887A JP 2002380087 A JP2002380087 A JP 2002380087A JP 2002380087 A JP2002380087 A JP 2002380087A JP 2004210887 A JP2004210887 A JP 2004210887A
Authority
JP
Japan
Prior art keywords
starch
viscosity
tapioca starch
cationized
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380087A
Other languages
Japanese (ja)
Other versions
JP4067400B2 (en
Inventor
Shunpei Shibahara
俊平 芝原
Yukiji Matsumoto
行司 松本
Koji Takasaki
康二 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP2002380087A priority Critical patent/JP4067400B2/en
Publication of JP2004210887A publication Critical patent/JP2004210887A/en
Application granted granted Critical
Publication of JP4067400B2 publication Critical patent/JP4067400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a starch composition with a remarkably increased starchy liquid viscosity. <P>SOLUTION: The starch composition comprises a raw tapioca starch and a cationized tapioca starch. The mass ratio of the raw tapioca starch to the cationized tapioca starch in their mixture is 95:5-50:50, and the substitution rate of cations in the cationized tapioca starch is 0.01-0.10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、未加工タピオカ澱粉にカチオン化タピオカ澱粉を配合することにより糊液の粘度を著しく増大させた澱粉組成物に関する。
【0002】
【従来の技術】
澱粉は、ぶどう糖を構成単位とするポリマーであり、工業的用途にも使用される。主な工業的用途は、製紙、段ボール、繊維、建材用用途などであるが、これらのほとんどで、澱粉は接着剤として使用される。
【0003】
接着は、ぬれ(接着剤と被着剤表面の相溶性)、浸透性(接着剤の分布、アンカー効果)、表面張力、化学結合(共有結合、水素結合、ファンデルワールス結合)、凝集力(接着剤や被着剤自体の内部結合強度)などによって説明されるが、実際にはこれらが複雑に絡み合って接着が形成されるものと考えられる。
【0004】
澱粉を接着剤として使用する場合、接着剤(澱粉)自体の量の多さが要求される場合がある。この場合、澱粉はより高い濃度で使用されることとなるが、高粘度タイプの澱粉では接着剤の粘度が高すぎて作業上支障を来すため、低粘度(低分子量)タイプの澱粉が使用される。これらの例としては、表面サイズ用澱粉、塗工用澱粉、繊維糊付用澱粉などが挙げられる。
【0005】
一方、未糊化の状態で澱粉を含む接着剤を適用した後に加熱工程や乾燥工程において澱粉を糊化する場合は、適用時には、未糊化の状態であるので、糊液粘度が高いことは問題とならない。よって、この場合は、一般に、糊液粘度の高い澱粉を含む接着剤を用いることが、より高い接着強度を得ること、及び、より少ない使用量で十分な接着力を得ることが可能であるため好ましい。これらの例としては、未糊化、即ち粘性がほとんど出ない状態で適用される段ボール接着剤のメイン部澱粉、製紙層間スプレー用澱粉などが挙げられる。
【0006】
澱粉の粘度は、原料となる植物の種類により第一義的に決まることが知られている。即ち、澱粉糊液の粘度は、澱粉を構成する2種類のグルコース重合体であるアミロースとアミロペクチンの含有比率、各々の分子量、アミロペクチンの枝分かれの程度や鎖長、結合燐酸の量、その他の夾雑物などで決まるものと考えられ、これらは澱粉を取り出す原料の植物によってほぼ決まっているため、それぞれの澱粉は、固有の糊液粘度を有する。
【0007】
澱粉の糊液粘度を高くする方法のひとつに架橋処理がある。これは、オキシ塩化燐、トリメタ燐酸ナトリウム、エピクロルヒドリン、ホルムアルデヒド、ケトンアルデヒド初期縮合物などの多官能性化合物によって澱粉の分子間を橋架けするもので、共有結合により澱粉分子の分子量増大が図られる(非特許文献1)。
しかしながら、澱粉は粒構造を持ち、架橋処理を施すと、その水性懸濁液を加熱して糊化した場合、澱粉粒が膨潤する。このように膨潤した澱粉粒は分散性に劣るため、使用目的に適った高粘度糊液を得ることが困難であった。
【0008】
別の方法として、界面活性剤、糖類、塩類などを添加して粘度の上昇を図る方法がある(非特許文献2)。しかし、これらの物質の添加は、澱粉の糊化分散を抑制する方向に働き、また、添加した物質により接着性の低下などが生じることもあり、澱粉の機能発現の妨げになるおそれがあった。
【0009】
また、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸塩などの水溶性合成高分子やグアーガム、ローカストビーンガム、アルギン酸塩、ペクチンなどの植物性ガムなどの他の増粘剤を添加する方法も提案されている(非特許文献3)。しかし、この方法は、単に他の増粘剤の効果を期待したに過ぎず、澱粉自体の糊液粘度を上昇させるものではなく、更にこれらの添加によるコストアップを免れない。
【0010】
一方、澱粉をカチオン化することにより、糊液粘度が上昇することが知られている(非特許文献4)。しかし、澱粉をカチオン化することによる粘度上昇幅は、製紙分野で一般的に使用されるカチオン化タピオカ澱粉の場合で、カチオン化処理前の未加工澱粉に対して25%程度に過ぎず、十分な糊液粘度上昇効果を得ることはできなかった。
【0011】
【非特許文献1】
O.B.ウルツバーグ(Wurzburg)、「モディファイド・スターチズ(Modified Starches):プロパティズ・アンド・ユーズィズ(Properties and Uses)」、米国、CRCプレス・インク(CRC Press, Inc.)、1986年、p.45−46
【非特許文献2】
リン(Lynn) B. デフェンバウフ(Deffenbaugh), リンカーン(Lincoln), NE, C.E.ウォーカー(Walker)、「ユーズ・オブ・ラピッド・ビスコアナライザー・トゥー・メジャー・スターチ・ペースティング・プロパティズ(Use of the Rapid Visco−Analyzer to measure Starch pasting Properties)」、スターチ(Starch)、ドイツ、VCH ベルラグスゲセルシャフト(Verlagsgesellschaft) mbH、1990年、42、Nr.3、p.89−95
【非特許文献3】
ユースリア(Yousria) A., バーンアッセイ(Bahnassey), ウィリアム(William) M. ブレーン(Breene)、「ラピッド・ビスコアナライザー(RVA)ペースティング・プロファイル・オブ・ウィート・コーン・ワクシーコーン・タピオカ・アンド。アマレンス・スターチズ(A.ヒポコンドリアクス・アンド・A.クルエンタス)イン・ザ・プレゼンス・オブ・コンジャック・フラワー・ゲラン・グアル・キサンタン・アンド・ローカスト・ビーン・ガムズ(Rapid Visco−Analyzer (RVA) Pasting Profiles of Wheat, Corn, Waxy Corn, Tapioca and Amaranth Starches (A. hypochondriacus and A. cruentus) in the Presence of Konjac Flour, Gellan, Guar, Xanthan and Locust Bean Gums)」、スターチ(Starch)、ドイツ、VCH ベルラグスゲセルシャフト(Verlagsgesellschaft) mbH、1994年、46、Nr.4、p.134−141
【非特許文献4】
C. ヨック(Yook), F. ソスルスキー(Sosulski),P. R. ビラド・サスカトーン(Bhirud Saskatoon)、「エフェクト・オブ・カチオナイゼーション・オン・ファンクショナル・プロパティズ・オブ・ピー・アンド・コーン・スターチズ(Effect of Cationaization on Functional Properties of Pea and Corn Starches)」、スターチ(Starch)、ドイツ、VCH ベルラグスゲセルシャフト(Verlagsgesellschaft) mbH、1994年、46、Nr.10、p.393−399
【0012】
【発明が解決しようとする課題】
上記のような状況に鑑み、本発明の目的は、糊液粘度が顕著に増大した澱粉組成物を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、未加工タピオカ澱粉にカチオン化タピオカ澱粉を配合することにより糊液粘度が上昇する事実を認め、鋭意研究を進めた結果、特定のカチオン化澱粉配合比率で著しく糊液粘度が上昇することを見出し、本発明を完成するに至った。
即ち、本発明の上記目的は、
未加工タピオカ澱粉及びカチオン化タピオカ澱粉からなる澱粉組成物であって、
前記未加工タピオカ澱粉とカチオン化タピオカ澱粉との混合比が95:5〜50:50(質量比)であり、
前記カチオン化タピオカ澱粉のカチオン置換度が0.01〜0.10であることを特徴とする澱粉組成物によって達成される。
【0014】
【発明の実施の形態】
本発明の澱粉組成物は、未加工タピオカ澱粉とカチオン化タピオカ澱粉とを95:5〜50:50の混合比で含有することを特徴とする。
【0015】
本発明の澱粉組成物において、未加工タピオカ澱粉とカチオン化タピオカ澱粉の合計を100質量部として、未加工タピオカ澱粉の混合比が95質量部を越える場合、及び未加工タピオカ澱粉の配合量が50質量部未満の場合は、未加工タピオカ澱粉のみ、又はカチオン化タピオカ澱粉のみと比べて、粘度上昇効果を得ることが出来ない。更に、未加工タピオカ澱粉と比較してカチオン化澱粉の製造コストが高いため、カチオン化タピオカ澱粉の配合量が50質量部を超えると、澱粉組成物の製造コストが上昇するという問題もある。
【0016】
本発明において、未加工タピオカ澱粉に配合するカチオン化タピオカ澱粉としては、未加工タピオカ澱粉に、通常のカチオン化処理を施してカチオン化されたものを用いることができる。具体的には、ジエチルアミノエチルクロライドを反応させた三級アミンタイプのカチオン化タピオカ澱粉、グリシジルトリメチルアンモニウムクロライド、又は3−クロロ,2−ヒドロキシプロピルトリメチルアンモニウムクロライドを反応させた四級アンモニウム塩タイプのカチオン化タピオカ澱粉等を用いることができる。本発明では、使用するカチオン化剤の量などを適宜調整することにより、所望のカチオン置換度を有するカチオン澱粉を得ることができる。
【0017】
上記カチオン化タピオカ澱粉において、カチオン置換度は、0.01〜0.10であり、好ましくは0.02〜0.05である。ここで、カチオン置換度とは、澱粉を構成する無水グルコース単位1ケ当たりの置換基の数を意味し、ミクロケルダール法により窒素量を求めることによって測定することができる。
【0018】
本発明で用いられるカチオン澱粉のカチオン置換度が0.01未満では、未加工タピオカ澱粉のみ、又はカチオン化タピオカ澱粉のみと比べて、粘度上昇効果を得ることが出来ない。一方、カチオン置換度が0.10を超えると、冷水可溶性が高まり、工業的に製造することが困難となる。
【0019】
本発明において、未加工澱粉とカチオン澱粉との混合は、両者を均一に混合できればいかなる方法で行ってもよく、粉体同士、又は澱粉懸濁液(スラリー)同士を混合してもよく、粉体とスラリーとを混合してもよい。
なお、本発明において、未加工タピオカ澱粉とカチオン化タピオカ澱粉との配合は、未加工澱粉とカチオン澱粉を、予め配合しておいてもよく、または、使用の直前に配合してもよい。
【0020】
本発明の澱粉組成物を水に懸濁し、加熱することによって得た糊液の粘度は、未加工タピオカ澱粉、又はカチオン化タピオカ澱粉を単独で加熱糊化して得た糊液の粘度から予想される値に比べて著しく高い。すなわち本発明によれば、高い糊液粘度を与える澱粉組成物を、増粘剤を添加することなく安価に提供することができる。
【0021】
【実施例】
以下に、本発明の態様を実施例をもって説明する。無論、本発明はこれら実施例にのみ限定されるものではない。実施例および比較例において、%は質量基準である。また、「部」とは、「質量部」を意味する。なお、実施例中の糊液粘度は、アミログラフィーにより次のように測定した。
1) ブラベンダー社アミログラフの専用容器に固形分30gの試料を含む水懸濁液500gを採取する。
2) 1.5℃/minの速度で昇温し、95℃到達後30分間同温度に保持する。この間の粘度(BU:ブラベンダーユニット)を連続的に記録する。
3) 最高粘度(BU)と95℃30分保持後の粘度(BU)を読み取り、糊液粘度を求める。
【0022】
実施例1
未加工タピオカ澱粉を水に懸濁し、40%濃度の澱粉懸濁液を得た。対澱粉固形分当り7%の無水硫酸ナトリウム、対澱粉固形分当り2.7%の水酸化ナトリウムを含む水溶液、次いで対澱粉固形分当り5.8%の3−クロロ,2−ヒドロキシプロピルトリメチルアンモニウムクロライドを含むカチオン化剤を添加した。42℃で7時間攪拌を続けてカチオン化反応を進めた後、希硫酸を用いてpH6.0に中和した。反応終了後、液を水で希釈した後、ろ過した。ろ過ケーキを水に懸濁した後、再度ろ過した。ろ過ケーキを通風乾燥機中で15時間乾燥し、水分約12%の精製されたカチオン化タピオカ澱粉Aを得た。ミクロケルダール法により窒素量を求めた結果、カチオン澱粉Aのカチオン置換度は、0.040であった。
上記で使用した未加工タピオカ澱粉95、90、85、75または50部にカチオン化タピオカ澱粉Aを各々5、10、15、25または50部卓上ミキサーにより均一に混合し、澱粉組成物を得た。これらの糊液粘度をアミログラフィーにより測定した。
【0023】
実施例2
実施例1のうち、カチオン化剤、水酸化ナトリウム、無水硫酸ナトリウムの量のみを適宜調整してカチオン置換度0.050及び0.020のカチオン澱粉B、Cを得た。実施例1の未加工のタピオカ澱粉90部にこれらのカチオン澱粉10部を卓上ミキサーにより均一に混合し、澱粉組成物を得た。これらの糊液粘度をアミログラフィーにより測定した。
【0024】
比較例1
実施例1で使用した未加工タピオカ澱粉25部に実施例1で得たカチオン化タピオカ澱粉A75部を卓上ミキサーにより均一に混合し、澱粉組成物を得た。この澱粉組成物、未加工タピオカ澱粉及びカチオン澱粉Aについて糊液粘度をアミログラフィーにより測定した。
【0025】
比較例2
実施例1のうち、カチオン化剤、水酸化ナトリウム、無水硫酸ナトリウムの量のみを適宜調整してカチオン置換度0.004のカチオン化タピオカ澱粉Fを得た。実施例1の未加工タピオカ澱粉90部にカチオン化タピオカ澱粉F10部を卓上ミキサーにより均一に混合し、澱粉組成物を得た。この組成物とカチオン澱粉F(単独)について、糊液粘度をアミログラフィーにより測定した。
【0026】
参考例
実施例1の未加工タピオカ澱粉90部に、カチオン澱粉以外の加工澱粉として、市販のノニオン澱粉であるアセチル化タピオカ澱粉(アセチル基置換度0.030)、アニオン澱粉である尿素燐酸化タピオカ澱粉(燐酸基置換度0.025)を各々10部卓上ミキサーにより均一に混合し、澱粉組成物を得た。これらの糊液粘度をアミログラフィーにより測定した。
【0027】
【表1】

Figure 2004210887
【0028】
表1に示すように、実施例1及び2の澱粉組成物は、未加工タピオカ澱粉のみ、及びカチオン化タピオカ澱粉のみと比べて、顕著な糊液粘度の上昇を示した。
また、実施例1の澱粉組成物から得た糊液の最高粘度および95℃粘度は、カチオン化タピオカ澱粉配合量が75質量部である比較例1の澱粉組成物から得た糊液より高かった。また、カチオン置換度が0.004のカチオン化澱粉Fを用いた比較例2では、未加工澱粉とカチオン化澱粉の混合比が90:10の澱粉組成物の糊液粘度は、カチオン化澱粉単独の場合の糊液粘度よりも低かった。また、参考例において、未加工澱粉にアニオン澱粉を配合した澱粉組成物は、未加工澱粉単独、カチオン化澱粉単独より、最高粘度及び95℃粘度が低かった。また、参考例において、未加工澱粉にノニオン澱粉を添加した澱粉組成物は、未加工澱粉単独、カチオン化澱粉単独と比べて、95℃粘度はわずかに高かったが、最高粘度は低かった。
【0029】
【発明の効果】
本発明により、未加工タピオカ澱粉のみ、又はカチオン化タピオカ澱粉のみと比べて、加熱糊化した際、極めて高い粘度を示す澱粉組成物を得ることができる。また、本発明の澱粉組成物は、増粘剤の添加を必要としないため、安価に製造することができる。従って、本発明の澱粉組成物から、高粘度の澱粉糊液を、安価に提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a starch composition in which the viscosity of a paste liquid is remarkably increased by incorporating cationized tapioca starch into raw tapioca starch.
[0002]
[Prior art]
Starch is a polymer having glucose as a structural unit, and is also used for industrial applications. The main industrial uses are for papermaking, cardboard, fiber, building materials, etc. In most of these, starch is used as an adhesive.
[0003]
Adhesion includes wetness (adhesive and adherent surface compatibility), permeability (adhesive distribution, anchor effect), surface tension, chemical bonds (covalent bonds, hydrogen bonds, van der Waals bonds), cohesive forces ( However, in reality, it is considered that these are intertwined in a complicated manner to form a bond.
[0004]
When starch is used as an adhesive, a large amount of the adhesive (starch) itself may be required. In this case, the starch will be used at a higher concentration, but the high viscosity type starch is too high in the viscosity of the adhesive, which may hinder the work, so the low viscosity (low molecular weight) type starch is used. Is done. Examples of these include starch for surface size, starch for coating, starch for fiber paste, and the like.
[0005]
On the other hand, after applying an adhesive containing starch in an ungelatinized state, when starch is gelatinized in a heating step or a drying step, it is in an ungelatinized state at the time of application, so that the paste viscosity is high. It doesn't matter. Therefore, in this case, in general, it is possible to obtain a higher adhesive strength and to obtain a sufficient adhesive force with a smaller amount of use by using an adhesive containing starch having a high paste viscosity. preferable. Examples of these include non-gelatinized, that is, a main part starch of a corrugated cardboard adhesive that is applied in a state where almost no viscosity is produced, starch for papermaking interlayer spray, and the like.
[0006]
It is known that the viscosity of starch is primarily determined by the type of plant used as a raw material. That is, the viscosity of starch paste is the content ratio of amylose and amylopectin, which are two types of glucose polymers constituting starch, the molecular weight of each, the degree of branching and chain length of amylopectin, the amount of bound phosphate, and other contaminants. Since these are almost determined by the plant from which the starch is extracted, each starch has a specific paste viscosity.
[0007]
One method for increasing the viscosity of starch paste is crosslinking. This is a structure in which starch molecules are bridged by polyfunctional compounds such as phosphorus oxychloride, sodium trimetaphosphate, epichlorohydrin, formaldehyde, ketone aldehyde precondensate, and the molecular weight of starch molecules is increased by covalent bonds ( Non-patent document 1).
However, starch has a grain structure, and when subjected to a crosslinking treatment, starch granules swell when the aqueous suspension is heated and gelatinized. Since the swollen starch granules are inferior in dispersibility, it has been difficult to obtain a high-viscosity paste suitable for the intended use.
[0008]
As another method, there is a method of increasing the viscosity by adding a surfactant, saccharide, salt or the like (Non-patent Document 2). However, the addition of these substances works to suppress starch gelatinization and dispersion, and the added substances may cause a decrease in adhesiveness, which may hinder the expression of starch functions. .
[0009]
Also proposed are methods of adding other thickening agents such as water-soluble synthetic polymers such as polyvinyl alcohol, polyacrylamide and polyacrylate, and vegetable gums such as guar gum, locust bean gum, alginate and pectin. (Non-patent Document 3). However, this method merely expects the effect of other thickeners, does not increase the viscosity of the starch solution itself, and further increases the cost due to the addition of these.
[0010]
On the other hand, it is known that the paste viscosity increases by cationizing starch (Non-Patent Document 4). However, the increase in viscosity due to cationization of starch is only about 25% with respect to raw starch before cationization treatment in the case of cationized tapioca starch generally used in the papermaking field. It was not possible to obtain an effect of increasing the viscosity of the paste liquid.
[0011]
[Non-Patent Document 1]
O. B. Wurzburg, "Modified Starches: Properties and Uses", USA, CRC Press, Inc., 1986, p. 45-46
[Non-Patent Document 2]
Lynn B. Defenbaugh, Lincoln, NE, C.I. E. Walker, “Use of the Rapid Visco-Analyzer to Analyzing Pasting Properties,” Starch, Germany. Verlagsgesellschaft mbH, 1990, 42, Nr. 3, p. 89-95
[Non-Patent Document 3]
Yousria A. Bainsey, William M .; Brene, “Rapid Viscoanalyzer (RVA) Pasting Profile of Wheat Cone Waxy Cone Tapioca and Amarens Starch (A. Hypochondriax and A. Kluentas) Presence of conjack flower Guerlain Guar Xanthan and locust bean gums (Rapid Visco-Analyzer (RVA) In the Presence of Konjac Floor, Gellan, Guar, Xanthan and Locust Bean Gums), Starch, Germany, VCH Verlagsgesellshaft mbH, 1994, 46, Nr. 4, p. 134-141
[Non-Patent Document 4]
C. Yok, F.M. Sosulski, P.M. R. Birado Saskatoon, “Effect of Cationization on Functional Properties of Pea and Corn Stars” (Starch), Germany, VCH Verlagsgesellschaft mbH, 1994, 46, Nr. 10, p. 393-399
[0012]
[Problems to be solved by the invention]
In view of the above situation, an object of the present invention is to provide a starch composition in which the viscosity of the paste liquid is remarkably increased.
[0013]
[Means for Solving the Problems]
The present inventors have recognized the fact that the viscosity of the paste liquid increases by blending the cationized tapioca starch with the raw tapioca starch, and as a result of diligent research, as a result, the paste liquid viscosity is remarkably increased at a specific cationized starch blending ratio. As a result, the present invention was completed.
That is, the above object of the present invention is to
A starch composition comprising raw tapioca starch and cationized tapioca starch,
The mixing ratio of the raw tapioca starch and the cationized tapioca starch is 95: 5 to 50:50 (mass ratio),
The cationized tapioca starch has a cation substitution degree of 0.01 to 0.10.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The starch composition of the present invention comprises raw tapioca starch and cationized tapioca starch in a mixing ratio of 95: 5 to 50:50.
[0015]
In the starch composition of the present invention, when the total of raw tapioca starch and cationized tapioca starch is 100 parts by mass, the mixing ratio of raw tapioca starch exceeds 95 parts by mass, and the amount of raw tapioca starch is 50 When the amount is less than parts by mass, the effect of increasing the viscosity cannot be obtained as compared with only raw tapioca starch or only cationized tapioca starch. Furthermore, since the production cost of the cationized starch is higher than that of the raw tapioca starch, there is also a problem that the production cost of the starch composition increases when the blending amount of the cationized tapioca starch exceeds 50 parts by mass.
[0016]
In the present invention, as the cationized tapioca starch to be blended with the raw tapioca starch, it is possible to use a cationized tapioca starch that has been subjected to a normal cationization treatment. Specifically, tertiary amine type cationized tapioca starch reacted with diethylaminoethyl chloride, glycidyltrimethylammonium chloride, or quaternary ammonium salt type cation reacted with 3-chloro, 2-hydroxypropyltrimethylammonium chloride Tapioca starch or the like can be used. In the present invention, a cationic starch having a desired degree of cation substitution can be obtained by appropriately adjusting the amount of the cationizing agent used.
[0017]
In the cationized tapioca starch, the degree of cation substitution is 0.01 to 0.10, preferably 0.02 to 0.05. Here, the degree of cation substitution means the number of substituents per anhydroglucose unit constituting starch, and can be measured by determining the amount of nitrogen by the micro Kjeldahl method.
[0018]
When the cation substitution degree of the cation starch used in the present invention is less than 0.01, the effect of increasing the viscosity cannot be obtained as compared with the raw tapioca starch alone or the cationized tapioca starch alone. On the other hand, when the degree of cation substitution exceeds 0.10, the solubility in cold water increases, making it difficult to produce industrially.
[0019]
In the present invention, the raw starch and the cationic starch may be mixed by any method as long as they can be mixed uniformly, and powders or starch suspensions (slurries) may be mixed. The body and the slurry may be mixed.
In the present invention, raw tapioca starch and cationized tapioca starch may be blended in advance with raw starch or cationic starch, or may be blended immediately before use.
[0020]
The viscosity of the paste obtained by suspending the starch composition of the present invention in water and heating is predicted from the viscosity of the paste obtained by heating and gelatinizing raw tapioca starch or cationized tapioca starch alone. Is significantly higher than That is, according to this invention, the starch composition which gives high paste liquid viscosity can be provided cheaply, without adding a thickener.
[0021]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to examples. Of course, the present invention is not limited to these examples. In Examples and Comparative Examples,% is based on mass. In addition, “part” means “part by mass”. In addition, the paste liquid viscosity in an Example was measured as follows by amylography.
1) Collect 500 g of an aqueous suspension containing a sample having a solid content of 30 g in a Brabender amylograph dedicated container.
2) Increase the temperature at a rate of 1.5 ° C./min, and hold at the same temperature for 30 minutes after reaching 95 ° C. During this time, the viscosity (BU: Brabender unit) is recorded continuously.
3) Read the maximum viscosity (BU) and the viscosity (BU) after holding at 95 ° C. for 30 minutes, and obtain the paste viscosity.
[0022]
Example 1
Raw tapioca starch was suspended in water to obtain a 40% starch suspension. An aqueous solution containing 7% anhydrous sodium sulfate per starch solids, 2.7% sodium hydroxide per starch solids, then 5.8% 3-chloro, 2-hydroxypropyltrimethylammonium per starch solids A cationizing agent containing chloride was added. The cationization reaction was continued by stirring at 42 ° C. for 7 hours, and then neutralized to pH 6.0 using dilute sulfuric acid. After completion of the reaction, the solution was diluted with water and filtered. The filter cake was suspended in water and then filtered again. The filter cake was dried in an air dryer for 15 hours to obtain purified cationized tapioca starch A having a water content of about 12%. As a result of obtaining the nitrogen amount by the micro Kjeldahl method, the cation substitution degree of the cation starch A was 0.040.
The raw tapioca starch 95, 90, 85, 75 or 50 parts used above was uniformly mixed with cationized tapioca starch A by 5, 10, 15, 25 or 50 parts respectively using a tabletop mixer to obtain a starch composition. . The viscosity of these pastes was measured by amylography.
[0023]
Example 2
In Example 1, only the amounts of the cationizing agent, sodium hydroxide, and anhydrous sodium sulfate were appropriately adjusted to obtain cation starches B and C having cation substitution degrees of 0.050 and 0.020. 10 parts of these cationic starches were uniformly mixed with 90 parts of the raw tapioca starch of Example 1 using a desktop mixer to obtain a starch composition. The viscosity of these pastes was measured by amylography.
[0024]
Comparative Example 1
75 parts of the cationized tapioca starch A obtained in Example 1 was uniformly mixed with 25 parts of the raw tapioca starch used in Example 1 by a desktop mixer to obtain a starch composition. The paste viscosity of this starch composition, raw tapioca starch and cationic starch A was measured by amylography.
[0025]
Comparative Example 2
In Example 1, only the amounts of the cationizing agent, sodium hydroxide, and anhydrous sodium sulfate were appropriately adjusted to obtain cationized tapioca starch F having a degree of cation substitution of 0.004. 90 parts of the raw tapioca starch of Example 1 and 10 parts of cationized tapioca starch F were uniformly mixed with a desktop mixer to obtain a starch composition. About this composition and cationic starch F (single), the paste viscosity was measured by amylography.
[0026]
Reference Example 90 parts of raw tapioca starch of Example 1 are commercially available nonionic starch acetylated tapioca starch (acetyl group substitution degree 0.030), anionic starch as processed starch other than cationic starch 10 parts each of urea phosphorylated tapioca starch (phosphate group substitution degree 0.025) was uniformly mixed with a desktop mixer to obtain a starch composition. The viscosity of these pastes was measured by amylography.
[0027]
[Table 1]
Figure 2004210887
[0028]
As shown in Table 1, the starch compositions of Examples 1 and 2 showed a marked increase in paste viscosity as compared to the raw tapioca starch alone and the cationized tapioca starch alone.
Moreover, the maximum viscosity and 95 degreeC viscosity of the paste liquid obtained from the starch composition of Example 1 were higher than the paste liquid obtained from the starch composition of the comparative example 1 whose cationized tapioca starch compounding quantity is 75 mass parts. . In Comparative Example 2 using cationized starch F having a degree of cation substitution of 0.004, the viscosity of the starch composition having a mixing ratio of unprocessed starch and cationized starch of 90:10 is cationized starch alone. It was lower than the viscosity of the paste solution. Moreover, in a reference example, the starch composition which mix | blended the anionic starch with the raw starch had the highest viscosity and 95 degreeC viscosity lower than the raw starch single and the cationized starch single. Moreover, in the reference example, the starch composition in which nonionic starch was added to raw starch had a slightly higher 95 ° C. viscosity than the raw starch alone and cationized starch, but the maximum viscosity was low.
[0029]
【The invention's effect】
According to the present invention, it is possible to obtain a starch composition having a very high viscosity when heated and gelatinized as compared with only raw tapioca starch or only cationized tapioca starch. Moreover, since the starch composition of this invention does not require the addition of a thickener, it can be manufactured cheaply. Therefore, a high-viscosity starch paste liquid can be provided at low cost from the starch composition of the present invention.

Claims (1)

未加工タピオカ澱粉及びカチオン化タピオカ澱粉からなる澱粉組成物であって、
前記未加工タピオカ澱粉とカチオン化タピオカ澱粉との混合比が95:5〜50:50(質量比)であり、
前記カチオン化タピオカ澱粉のカチオン置換度が0.01〜0.10であることを特徴とする澱粉組成物。
A starch composition comprising raw tapioca starch and cationized tapioca starch,
The mixing ratio of the raw tapioca starch and the cationized tapioca starch is 95: 5 to 50:50 (mass ratio),
A starch composition, wherein the cationized tapioca starch has a cation substitution degree of 0.01 to 0.10.
JP2002380087A 2002-12-27 2002-12-27 Starch composition Expired - Fee Related JP4067400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380087A JP4067400B2 (en) 2002-12-27 2002-12-27 Starch composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380087A JP4067400B2 (en) 2002-12-27 2002-12-27 Starch composition

Publications (2)

Publication Number Publication Date
JP2004210887A true JP2004210887A (en) 2004-07-29
JP4067400B2 JP4067400B2 (en) 2008-03-26

Family

ID=32816405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380087A Expired - Fee Related JP4067400B2 (en) 2002-12-27 2002-12-27 Starch composition

Country Status (1)

Country Link
JP (1) JP4067400B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000775A3 (en) * 2005-06-28 2007-05-31 Malwa Ind Ltd A process for dyeing of wool or silk and their blends (fibre /yarn/fabric) with indigo
JP2007224099A (en) * 2006-02-22 2007-09-06 Shikishima Starch Kk Adhesive for corrugated cardboard, not containing boron compound
JP2010265389A (en) * 2009-05-15 2010-11-25 Konishi Co Ltd Water-based adhesive composition
US8187342B2 (en) 2003-09-18 2012-05-29 Malwa Industries Limited Process for indigo dyeing of wool and wool blends

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187342B2 (en) 2003-09-18 2012-05-29 Malwa Industries Limited Process for indigo dyeing of wool and wool blends
WO2007000775A3 (en) * 2005-06-28 2007-05-31 Malwa Ind Ltd A process for dyeing of wool or silk and their blends (fibre /yarn/fabric) with indigo
JP2007224099A (en) * 2006-02-22 2007-09-06 Shikishima Starch Kk Adhesive for corrugated cardboard, not containing boron compound
JP2010265389A (en) * 2009-05-15 2010-11-25 Konishi Co Ltd Water-based adhesive composition

Also Published As

Publication number Publication date
JP4067400B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
Khondkar et al. Rheological behaviour of uncross-linked and cross-linked gelatinised waxy maize starch with pectin gels
Obanni et al. Properties of some starch blends
JP5063836B2 (en) Hydrophobic starch derivative
US10723922B2 (en) Starch-based aqueous adhesive compositions and uses thereof
DE69925741T2 (en) ADHESIVE COMPOSITION
CN1171906C (en) Dextrinization of starch
US10689566B2 (en) Coated particles and methods of making and using the same
US5378830A (en) Amphoteric polysaccharide compositions
CA2134035A1 (en) Compositions including cationic polymers and anionic xanthan gum
JP2004501212A (en) Extruding starch
JP4614535B2 (en) Starch oxidation
JP4067400B2 (en) Starch composition
US10316178B2 (en) Starch suspension for adhesive coatings
Babic et al. Preparation and characterization of acetylated tapioca starches
JP5060063B2 (en) Adhesive composition
JP6902813B1 (en) Composition for granulation binder
Muhamedbegović et al. Modification of potato starch
CN1982395A (en) Cation branched-chain starch wood binder and its production
US20230135145A1 (en) Preparing a blend of polysaccharide and ingredient
US20200190222A1 (en) Degraded hydroxyalkylated starches and methods of preparation
JPH0574628B2 (en)
CN117425692A (en) Dimensionally stable adhesive composition comprising enzymatically modified starch
WO2023084025A1 (en) Hydroxypropylated granular starch with low propylene glycol content
Sikora et al. Interactions of cereal starches with selected polysaccharide hydrocolloids
WO2018052495A1 (en) Coated particles and methods of making and using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees