JP2004210646A - Antimicrobial agent - Google Patents

Antimicrobial agent Download PDF

Info

Publication number
JP2004210646A
JP2004210646A JP2002378877A JP2002378877A JP2004210646A JP 2004210646 A JP2004210646 A JP 2004210646A JP 2002378877 A JP2002378877 A JP 2002378877A JP 2002378877 A JP2002378877 A JP 2002378877A JP 2004210646 A JP2004210646 A JP 2004210646A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
acid
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002378877A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
能彰 酒谷
Keisuke Watanabe
敬介 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002378877A priority Critical patent/JP2004210646A/en
Publication of JP2004210646A publication Critical patent/JP2004210646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antimicrobial agent capable of imparting antimicrobial activity to equipment and daily necessaries over a long period without requiring such labor as to repeatedly use antimicrobial spray in order to kill microorganisms such as bacteria or fungi floating the interior of a room which adhere and breed on equipment and daily necessaries in a living space. <P>SOLUTION: The antimicrobial agent comprises titanium oxide having ≤180 nm average particle diameter. An antimicrobial method for equipment and daily necessaries in the living space comprises using the antimicrobial agent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生活空間において繁殖する細菌、カビ等の微生物の生育を抑制する抗菌剤に関するものである。
【0002】
【従来の技術】
生活空間内の備品や日用品には、室内を浮遊する細菌やカビが付着して繁殖する場合がある。その結果、例えばエアコンのフィルターや浴室内のヌメリ等が悪臭発生の原因になっている。また、病院でも院内感染等の問題がある。その対策として抗菌剤スプレー等が使用されている。
【0003】
【発明が解決しようとする課題】
本発明は、生活空間内の備品や日用品に付着、繁殖する細菌やカビ等の微生物を、何度も繰り返し抗菌スプレーを使用するなどの手間をかけることなく、長期間に亘って備品や日用品に抗菌活性を付与し得る抗菌剤を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討した結果、平均粒子径が180nm以下である酸化チタンを含有する抗菌剤を使用することにより、細菌やカビの生育を抑制することができることを見出し、本発明を完成するに至った。
【0005】
即ち、本発明は、
1.平均粒子径が180nm以下である酸化チタンを含有することを特徴とする抗菌剤(以下、本発明抗菌剤と記す。)、
2.溶媒中に酸化チタンが分散されてなる上記1.に記載の抗菌剤、3.上記1に記載の抗菌剤を用いる抗菌方法、
を提供するものである。
【0006】
【発明の実施の形態】
本発明の分散液中の酸化チタンは、TiO2なる組成式で示され、その分散液中の平均粒子径(分散粒子径)は180nm以下である。酸化チタンの平均粒子径は、小さいほど好ましく、例えば150nm以下、更には100nm以下であることが好ましい。また、平均粒子径が180nmを超える場合、塗膜にしたときの塗膜の透明性が低下し、塗布媒体表面の色柄等の意匠性が損なわれる不具合が生じる。この酸化チタンは、結晶構造がアナターゼ、ルチルまたはブルッカライト、なかでもアナターゼ単一相であることが好ましい。ここで、平均粒子径とは、体積中位径、即ち累積50%体積径を意味し、例えば、コールターカウンター(電気抵抗法によって、微粒子の数、径、体積を測定する装置、コールター社製)により測定される。
本発明に用いられる酸化チタンは、例えば以下の公報等の記載に準じて製造することができる。即ち、本発明に用いられる酸化チタンとしては、例えば以下のものが挙げられる。
【0007】
(a)X線光電子分光法で酸化チタンの結合エネルギー458eV〜460eVの間にあるチタンのピークの半価幅を4回測定した時の1回目と2回目のチタンのピークの半価幅の平均値をAとし、3回目と4回目のチタンのピークの半価幅の平均値をBとし、前記半価幅A、Bから下式(I)
X=B/A (I)
で示される指数Xが0.97以下であり、かつ紫外可視拡散反射スペクトルを測定したときの、波長220nm〜800nmでのスペクトルの吸光度の積分値をCとし、波長400nm〜800nmでのスペクトルの吸光度の積分値をDとし、前記積分値C,Dから下式(II)
Y=D/C (II)
で示される指数Yが0.14以上である酸化チタン(特開2001−72419号公報)、
【0008】
(b)電子スピン共鳴スペクトルにおいてg値1.930〜2.030の間に3つ以上のピークを有し、かつそれらピークの内の極大となるピークがg値1.990〜2.020の間に存在する酸化チタン(特開2001−190953号公報)、
【0009】
(c)可視光線照射後に測定した電子スピン共鳴スペクトルから求められるスピン濃度Xが1.50×1016spin/g以上であり、可視光線照射後に測定した電子スピン共鳴スペクトルから求められるスピン濃度Xと、可視光線照射前に測定した電子スピン共鳴スペクトルから求められるスピン濃度Yとの比(X/Y)が1.00を超える酸化チタン(特開2001−316116号公報)、
【0010】
(d)X線光電子分光法により8回分析し、チタンの電子状態について、1回目と2回目の分析の積算スペクトル及び7回目と8回目の分析の積算スペクトルを求め、それぞれの積算スペクトルのうち結合エネルギー458eV〜460eVにあるピークを求め、1回目と2回目の分析の積算スペクトルにあるピークの半価幅をA1とし、7回目と8回目の分析の積算スペクトルにあるピークの半価幅をB1としたとき、下式(III)
1=B1/A1 (III)
により算出される指数X1が0.9以下であり、かつ、紫外可視拡散反射スペクトルを測定して、波長250nm〜550nmの吸光度の積分値をC1とし、波長400nm〜550nmの吸光度の積分値をD1としたとき、下式(IV)
1=D1/C1 (IV)
により算出される指数Y1が0.075以上である酸化チタン(特開2001−322816号公報)、
【0011】
(e)X線光電子分光法により8回分析し、チタンの電子状態について、1回目と2回目の分析の積算スペクトルおよび7回目と8回目の分析の積算スペクトルを求めたときに、1回目と2回目の分析の積算スペクトルにおける少なくとも1つのピークの位置が結合エネルギー459〜460eVにあり、7回目と8回目の分析の積算スペクトルにおける少なくとも1つのピークの位置が結合エネルギー458〜459eVにあり、遷移金属の含有量が元素換算で酸化チタン中のチタンに対し0.005〜3.0mol%である酸化チタン(特開2002−29749号公報)、
【0012】
(f)熱天秤質量分析同時測定法により求められるマスクロマトグラムについて、質量数mとイオンの電荷数eの比m/eが28である成分の脱離ピークが600℃以上にある酸化チタン、もしくは熱天秤質量分析同時測定法により求められるマスクロマトグラムについて、質量数mとイオンの電荷数eの比m/eが28である成分の脱離ピークが600℃以上、950℃以下にあり、m/eが14である成分の脱離ピークが600℃以上、950℃以下にある酸化チタン(特開2002−97019号公報)、
【0013】
(g)酸化チタン結晶の酸素サイトの一部を窒素原子で置換した酸化チタン、酸化チタン結晶の格子間に窒素を原子をドーピングした酸化チタン、酸化チタンの結晶粒界に窒素原子をドーピングしたもの(WO 01/10552パンフレット)、
【0014】
(h)安定した酸素欠陥を有する酸化チタンであって、真空中、77K、暗黒下で測定された電子スピン共鳴スペクトルにおいて、g値が2.003〜2.004であるシグナルが観測され、かつこのg値が2.003〜2.004であるシグナルは、真空中、77Kにおいて少なくとも420〜600nmの光を照射下で測定したとき、暗黒下で測定された場合よりシグナル強度が大きい酸化チタン(特許3252136号公報)、
【0015】
(i)表面にハロゲン化白金化合物(PtCl2、PtCl4、PtCl4・2H2O、H2 [Pt(OH)2Cl4]・nH2O、PtBr2、PtBr4、PtI2、PtI4、PtF4、塩化白金酸、塩化白金酸塩、ブロモ白金錯塩、ヨウ化白金酸塩など)を含有している紡錘形状酸化チタン(特開2002−239395号公報)または
【0016】
(j)L表示系においてa値がー1以下、b値が4以上であり、且つBET比表面積が40〜500m2/gであることを特徴とする酸化チタン(特開2002−370026号公報)等。
【0017】
また、本発明抗菌剤は、硫酸チタン、オキシ硫酸チタンのようなチタン化合物と、水と、チタン化合物中のチタンに対しモル比(式量比)で0.05倍以上、好ましくは0.5倍以上、より好ましくは1倍以上、また5倍以下の過酸化物(例えば、過酸化水素)とを混合し、次に、この混合物とアンモニア水のような塩基とをpH3〜5、2℃〜65℃の条件で反応させ、得られる生成物をアンモニア存在下に保持した後、110〜200℃の空気中で乾燥し、この乾燥物を300℃〜400℃の空気中で焼成して得られる焼成物、またはこの焼成物に、酸化チタン以外の酸点をもつ金属酸化物(例えば、酸化タングステン、酸化ニオブ)もしくは塩基性金属化合物(例えば、酸化亜鉛、酸化セリウム)を保持させたものであってもよい。
【0018】
さらには、水酸化チタンをアンモニアガスおよび水蒸気の存在下で熱処理した後、焼成する方法(特開2001-278625号公報); 非晶質水酸化チタンをアンモニア水に接触させた後、焼成する方法(特開2001-278626号公報); オキシ蓚酸チタンアンモニウムを分子状酸素存在下で焼成する方法(特開2001-278627号公報); 非晶質水酸化チタンに硫酸アンモニウムを添加した後、焼成する方法(特開2001-302241号公報); 窒素原子含有量が、400℃の空気中で焼成した後の重量を基準に、3.3重量%以上である水酸化チタンを焼成する方法(特開2001-335321号公報); 水酸化チタン、チタン酸、オキシ硫酸チタンのような酸化チタン前駆体をアンモニア含有ガス雰囲気下、300〜600℃で焼成する方法(特開2001-354422号公報); 固体であり、かつ非晶質であるオキシ硫酸チタンとアンモニアのような窒素含有化合物とを反応させ、得られる生成物を焼成する方法(特開2002-29750号公報); 純度99%以上のオキシ硫酸チタンと、これを中和するための必要量を越える量のアンモニアを混合し反応させ、得られる生成物を焼成する方法(特開2002-47012号公報); 硫酸チタンもしくはオキシ硫酸チタンと、チタンを除く遷移元素成分と、水とを混合し、これを乾燥して固形物を得、この固形物を熱分解する方法(特開2002-60221号公報); 硫酸チタンもしくはオキシ硫酸チタンの酸性溶液と含窒素塩基性有機化合物を反応させ、得られる生成物を焼成する方法(特開2002-87818号公報); X線吸収微細構造解析法によりチタンK吸収端の広域X線吸収微細構造スペクトルを測定し、このスペクトルをフーリエ変換して得られる動径構造関数を微分して1次微分スペクトルを求めるとき、この一次微分スペクトルの原子間距離1.4〜2.8Åの範囲について、そのスペクトル強度が極大となる原子間距離が1.4〜1.7Åと2.2〜2.5Åにあり、そのスペクトル強度が極小となる原子間距離が1.9〜2.2Åと2.5〜2.8Åにあり、かつ原子間距離1.4〜1.7Åのスペクトル強度の極大値をA、2.2〜2.5Åのスペクトル強度の極大値をB、1.9〜2.2Åのスペクトル強度の極小値をC、2.5〜2.8Åのスペクトル強度の極小値をDとしたときに、式(V)
4=(B−D)/(A−C) (V)
で表される指数X4が0.06以上である水酸化チタンを焼成する方法(特開2002-193618号公報); 硫酸チタンもしくはオキシ硫酸チタンとアンモニア水をpH2〜5.5、温度90℃以下で反応させ、得られる生成物を焼成する方法(特開2002-249319号公報); 硫酸チタンもしくはオキシ硫酸チタンの酸性溶液とカルボン酸のアンモニウム塩を混合して加水分解し、この生成物を焼成する方法(特開2002-325615号公報)などにより得られるものであってもよい。
【0019】
本発明抗菌剤は、粉状、粒状、塊状等の固形状であってもよいが、酸化チタンが溶媒中に分散された分散液(以下、本分散液と記す。)のものが使用し易く便利である。
【0020】
本分散液に含有される溶媒は、例えば、イオン交換水、過酸化水素水のような水性媒体、エタノール、メタノール、2−プロパノール、ブタノールのようなアルコール性媒体、アセトン、2−ブタノンのようなケトン性媒体、ヘキサン、ヘプタンのようなパラフィン化合物媒体、ベンゼン、フェノール、トルエン、キシレン、アニリンのような芳香族化合物媒体などが挙げられ、なかでも水性媒体、アルコール性媒体が好ましい。
本分散液中の酸化チタン含有量は、本分散液の全量に対して、通常2重量%以上、好ましくは5重量%以上であり、また30重量%以下である。
【0021】
本分散液には、通常、分散剤が含有される。本分散剤に含有される分散剤としては、例えば、無機酸、無機塩基、有機酸、有機塩基または有機酸塩などが挙げられる。無機酸の具体例は、塩酸のような二元酸(水素酸ともいう)、硝酸、硫酸、リン酸、過塩素酸、炭酸のようなオキソ酸(酸素酸ともいう)などであり、無機塩基の具体例は、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムなどであり、有機酸の具体例は、ギ酸、酢酸、プロピオン酸のようなモノカルボン酸、蓚酸、グルタル酸、コハク酸、マロン酸、マレイン酸、アジピン酸のようなジカルボン酸、クエン酸のようなトリカルボン酸、グリシンのようなアミノ酸などであり、有機塩基の具体例は、尿素などであり、また有機酸塩の具体例は、蓚酸アンモニウム、蓚酸ナトリウムのようなカルボン酸塩などである。本分散剤中における分散剤の含有量は、酸化チタン1モル(1グラム式量)に対して、通常0.005モル以上、好ましくは0.01モル以上、さらに好ましくは0.03モル以上、また400モル以下、好ましくは5モル以下である。
【0022】
本分散液は、通常平均粒子径が180nm以下である酸化チタン、分散剤、溶媒等を混合する方法によって調製される。
酸化チタン、分散剤、溶媒等を混合する際に用いられる装置としては、溶媒中に酸化チタンを分散させることが可能な装置であればどのような装置であっても良いが、例えば、媒体攪拌式分散機、転動ボールミル、振動ボールミル等が挙げられ、なかでも媒体攪拌式分散機の使用が好ましい。
このような装置では、媒体として、例えば、材質がジルコニア、アルミナまたはガラスであり、直径0.65mm以下、好ましくは0.5mm以下、さらに好ましくは0.3mm以下のビーズなどが用いられる。混合は、2段階以上に分けて行ってもよく、例えば、1段目では、直径が相対的に大きい媒体を入れた装置を用い、2段目以降では、直径が順次小さいものを入れた装置を用いて行うことができる。混合を多段階で行うことにより、効率的に酸化チタン粉末を溶媒中に分散させ、かつ均一に酸化チタンが分散した分散液が調整される。混合する際の温度は、90℃未満、好ましくは80℃以下、さらに好ましくは65℃以下、また10℃以上、好ましくは20℃以上である。
【0023】
また、必要に応じて、酸化チタン、分散剤、溶媒等の混合物に対し酸化チタン含有量の調整またはpHの調整等の処理が行われる。通常、pHの調整は酸又は塩基を添加することで行われる。pH調整に用いられる酸または塩基としては、酸として塩酸、硝酸、リン酸、硫酸、蓚酸等、塩基としてアンモニア、尿素、ヒドラジン、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム等が挙げられる。また分散処理前または処理後、無機化合物(シリカ、アルミナ、ゼオライト、モレキュラーシーブ、活性炭、リン酸カルシウム、酸化亜鉛、ジルコニア、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、水酸化バリウム、酸化ランタン、酸化セリウム、水酸化ランタン、水酸化セリウム、非晶質酸化チタン、非晶質シリカ、非晶質アルミナなど)または有機化合物(結合剤など)を混合することができ、必要に応じて分散処理後、混合物に残存する酸化チタン凝集粒のような粗大粒子を除去する操作または酸化チタン含有量を調整する操作を行ってもよい。
【0024】
上記のようにして得られた酸化チタン分散液は、そのまま又は添加剤と混合された後、生活空間内の備品や日用品に処理される。
本発明抗菌剤を生活空間内の備品や日用品に処理する方法としては、例えばスピンコート、ディップコート、ドクターブレード、スプレーまたはハケ塗りなどの方法が挙げられる。これらの方法により処理された備品や日用品の表面に膜が形成され、抗菌性が付与される。
【0025】
本分散液に任意に混合される添加剤としては、例えば、非晶質シリカ、シリカゾル、水ガラス、オルガノポリシロキサンのような珪素化合物、非晶質アルミナ、アルミナゾル、水酸化アルミニウムのようなアルミニウム化合物、ゼオライト、カオリナイトのようなアルミノ珪酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウムのようなアルカリ土類金属(水)酸化物、リン酸カルシウム、モレキュラーシーブまたは活性炭、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、LaまたはCeのような金属元素の水酸化物またはこれらの金属元素の非晶質酸化物、有機ポリシロキサン化合物の重縮合物、燐酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂などが挙げられる。これらは1種または2種以上組み合わせて用いることができ、これらの他にも公知の無機系、有機系バインダーの添加も勿論可能である。
【0026】
本発明抗菌剤により抗菌性が付与される備品や日用品としては、例えばガラス、プラスチック、金属、タイル、陶磁器、コンクリート等の素材からなる製品全般が挙げられ、特に本発明抗菌剤はガラス、タイル、陶磁器製品への抗菌性付与に使用するのが好ましい。
本分散液は、調製後速やかに使用するのが好ましいが、保存する場合は、光が当たらない条件で行うことが好ましい。
【0027】
本発明抗菌剤の施用量は、平均粒子径が180nm以下である酸化チタンの量に換算して、1mあたり通常1〜10000mg、好ましくは10〜5000mgである。尚、該施用量は製剤形態、施用場所、カビ、細菌の生育発生の程度等により変わりうる。
【0028】
本発明抗菌剤は、生活空間内の備品や日用品のみならず、壁面に生育する細菌・カビ等の微生物の除菌および生育抑制、さらには生活空間そのものである部屋を浮遊するカビや細菌の防除にも使用される。
【0029】
本発明抗菌剤により有効に防除される細菌・カビ等の微生物としては、例えば以下のものが挙げられる。
Aspergillus niger, A. flavus, A. fumigatus, A. oryzae等のAspergillus属、Chaetonium globosum等のChaetomium属、Cladosporium cladosporioides等のCladosporium属、Gliocladium virens等のGliocladium属、Aureobasidium pullulans等のAureobasidium属、Penicillium funiculosum等のPenicillium属、Rhizopusoryzae等のRhizopus属、Fusarium属、Alternaria alternata等のAlternaria属、Tyromyces属、Coriolus属、Myrothecium属、Mucor属、 Epicoccum属、Trichoderma属、Phoma属、Geotrichum属、 Monilia属などの糸状菌等の微生物。
【0030】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、本実施例中の酸化チタン分散液中の酸化チタンの結晶構造については、酸化チタン分散液を40℃で加熱しながらエバポレーターにて溶媒を除去し、得られる酸化チタン粉末を以下の方法で測定に用いた。また酸化チタンの平均粒子径については、酸化チタン分散液をそのまま以下の方法で測定した。
【0031】
平均粒子径(nm):
サブミクロン粒度分布測定装置(商品名:N4Plus、コールター製)を用いて、酸化チタン分散液の粒度分布を測定し、累積50体積%径を求め、これを平均粒子径とした。
【0032】
結晶構造:
X線回折装置(商品名:RAD-IIA、理学電機製)を用いて、試料のX線回折スペクトルを測定し、そのスペクトルから結晶構造を求めた。
【0033】
以下、本発明の抗菌方法に用いられる酸化チタン分散液の製造方法を示す。
【0034】
実施例1
〔酸化チタンの粉末の調製〕
オキシ硫酸チタン(商品名:TM結晶、外観:白色固体、テイカ製)3324gをイオン交換水2216gに溶解させて、オキシ硫酸チタン水溶液を調製した。氷冷下、上のオキシ硫酸チタン水溶液に31%過酸化水素水1503gを添加して、赤紫色の混合溶液を得た。電極と、このpH電極に接続され、25重量%アンモニア水(試薬特級、和光純薬工業製)を供給してpHを一定に調整する機構を有するpHコントローラーとを備えた反応容器にイオン交換水4700gを入れた。pHコントローラーのpH設定を4とした。またアンモニア水を供給するときの速度は50ml/分に設定した。この反応容器では、容器内の液のpHが設定値より低くなると、アンモニア水が供給されはじめ、pHが設定値になるまで前記速度にて連続供給される。この反応容器に、内容物を158rpmで攪拌しながら、上で得られた混合溶液を50ml/分で添加し、pHコントローラーにより反応容器に供給されるアンモニア水と反応させた。このときの反応温度は、25℃〜55℃の範囲であった。得られた生成物を攪拌しながら1時間保持し、ついで25重量%アンモニア水(試薬特級、和光純薬工業製)を供給して、スラリーを得た。反応容器に供給されたアンモニア水の合計量は3684gであり、オキシ硫酸チタンを水酸化チタンに変えるために必要な量の2倍であった。上のスラリーを濾過し、得られた固形物をイオン交換水で洗浄し、150℃の空気中で17時間乾燥して、酸化チタン前駆体粉末を得た。この酸化チタン前駆体粉末を 370℃の空気中で1時間焼成した後、室温まで冷却して、酸化チタン粉末を得た。この酸化チタン粉末の結晶相はアナターゼであった。
【0035】
〔本分散液の調製〕
イオン交換水2578gにシュウ酸二水和物(和光特級試薬)105.7gを溶解した。得られた水溶液と上の酸化チタン粉末670gを媒体攪拌式分散機(商品名:ダイノーミルKDL-PILOT A型、シンマルエンタープライゼス製)に入れ、媒体:直径0.3mmのジルコニア製ビーズ4.2kg、攪拌速度:周速14m/秒、処理液循環:あり、循環液量:8L/時(初回のみ25L/時)、処理時間:130分の条件で混合した。得られた混合物中の酸化チタンは、平均粒子径が86nm、結晶相がアナターゼであった。
【0036】
〔酸化チタン膜の形成〕
酸化チタン膜は図1に記載の方法で塗布した。上の酸化チタン分散液を水で5重量%に希釈し、これをスポイト1に取り、このスポイト1を用いて20°の角度で傾けた縦80mm、横80mm、厚さ3mmの硝子板3の全面に酸化チタン分散液3を塗布した。この塗布する操作を4回繰り返し、硝子板の端4に溜まっている余分な酸化チタン分散液を拭き取り、110℃で乾燥した。その後18Wブラックライトを光源として用いて光を照射し、塗膜中に含まれている分散剤を除去した。これにより、光触媒用酸化チタンが担持されたガラス板を得た。
【0037】
次に、抗菌試験例を示す。
試験例1(黄色ブドウ球菌(Staphylococcus aureus)に対する活性)
滅菌した試験管立てを深い長型ステンレスバット(間口55cm、奥行き33cm、深さ15cm)の中央におき、バット内に水4Lを加えた。この上に、上記の実施例1及び比較例1で得た硝子板と、無処理の硝子板を置いた。各硝子板の上にLB培地で3日間震とう培養した黄色ブドウ球菌(Staphylococcus aureus)の培養液を1000分の1に希釈した希釈液を200μlずつ乗せてから、希釈菌液の乾燥を防ぐためにポリエチレンフィルムで覆った。
24時間後、ガラス板上の黄色ブドウ球菌の菌液を滅菌水で洗い流してLBA培地に入れ、24〜26℃で2日間培養して黄色ブドウ球菌の生育状態を観察した。生育状態は下記の判定基準に従って判断した。その結果を表1に示す。
<判定基準>
0:生育なし:全くバクテリアのColonyが見られず、きれいに生育していない状態
0〜1:バクテリアのColony(白い粒状のもの)が一シャーレに約2〜5個位存在する状態
1:僅かに生育:バクテリアのColonyが一シャーレに約10個〜20個のみ存在する状態
2:やや生育:バクテリアのColonyが一シャーレに約20個〜100個位存在する状態
3:やや著しく生育:バクテリアのColonyが一シャーレにおよそ見た目で100個以上存在する状態
4:著しく生育:やや見た目では判定し辛い位(約1000個〜)にバクテリアのColonyが存在する状態
5:目視で生育できないほど激しく生育:見た目でも培地がバクテリアのColonyでほぼ真っ白く埋まっている状態
【表1】

Figure 2004210646
上記表1のように、可視光反応型酸化チタンを担持させた実施例1の硝子板は黄色ブドウ球菌の生育を顕著に阻害した。
【0038】
試験例2(大腸菌に対する活性)
黄色ブドウ球菌の代わりに大腸菌を用いること以外は試験例1と同様の試験を行った。その結果を表2に示す。
【表2】
Figure 2004210646
上記表2のように、可視光反応型酸化チタンを担持させた実施例1の硝子板は大腸菌の生育を顕著に阻害した。
【0039】
試験例3(コウジカビ:Aspergillus nigerに対する活性)
滅菌した試験管立てを深い長型ステンレスバット(間口55cm、奥行き33cm、深さ15cm)の中央におき、バット内に水4Lを加えた。この上に、上述の実施例1及び比較例1で得た硝子板と、無処理の硝子板を置いた。この上にコウジカビ(Aspergillus niger)の胞子液(冷凍保存から解凍し、0.005%のジオクチルスルホン酸水溶液)を1000倍に希釈した希釈液を200μlずつ乗せてから、直径4cmのシャーレの蓋をかぶせて乾燥を防いだ。
24時間後、ガラス板上のコウジカビの菌液を0.005%のジオクチルスルホン酸水溶液で洗い流してPDA培地に入れ、24〜26℃で5日間培養してコウジカビの生育状態を観察した。生育状態は下記の判定基準に従って判断した。その結果を表1に示す。
<判定基準>
生育状態は下記のように6段階で判定した。
0:生育なし、
1:僅かに生育:カビのColonyが一シャーレに約1〜5個のみ存在する状態
2:やや生育:カビのColonyが一シャーレに約20個〜100個位存在する状態
3:やや著しく生育:カビのColonyが一シャーレにおよそ見た目で100個以上存在する状態
4:著しく生育:やや見た目では判定し辛い位(約1000個〜)にカビのColonyが存在する状態
5:目視で生育できないほど激しく生育:見た目でも培地がカビのColonyでほぼ埋まっている状態
【表3】
Figure 2004210646
上記の表3のように可視光反応型酸化チタンを担持させた実施例1の硝子板から回収したカビ胞子液を培養しても、カビは生育せず、可視光反応型酸化チタンには防カビ活性が認められた。
【0040】
【発明の効果】
本発明により、効力に優れた抗菌剤が提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antibacterial agent that suppresses the growth of microorganisms such as bacteria and mold that propagate in a living space.
[0002]
[Prior art]
Bacteria and mold floating in the room may adhere to equipment and daily necessities in the living space and propagate. As a result, for example, a filter of an air conditioner or a slime in a bathroom is a cause of the generation of offensive odor. Also, hospitals have problems such as nosocomial infections. As a countermeasure, an antimicrobial spray or the like is used.
[0003]
[Problems to be solved by the invention]
The present invention can be applied to fixtures and daily necessities for a long period of time without the hassle of repeatedly using antimicrobial sprays on microorganisms such as bacteria and mold that adhere to and propagate on fixtures and daily necessities in living space. It is an object to provide an antibacterial agent capable of imparting antibacterial activity.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, have found that the use of an antibacterial agent containing titanium oxide having an average particle diameter of 180 nm or less can suppress the growth of bacteria and mold. Thus, the present invention has been completed.
[0005]
That is, the present invention
1. An antibacterial agent containing titanium oxide having an average particle diameter of 180 nm or less (hereinafter, referred to as the antibacterial agent of the present invention);
2. 2. the antibacterial agent according to the above 1, wherein titanium oxide is dispersed in a solvent; An antibacterial method using the antibacterial agent according to 1 above,
Is provided.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The titanium oxide in the dispersion of the present invention is represented by a composition formula of TiO 2 , and the average particle diameter (dispersion particle diameter) in the dispersion is 180 nm or less. The average particle diameter of the titanium oxide is preferably as small as possible, for example, 150 nm or less, more preferably 100 nm or less. When the average particle diameter exceeds 180 nm, the transparency of the coating film when formed is reduced, and a problem occurs in that the design properties such as the color pattern on the surface of the coating medium are impaired. This titanium oxide preferably has a crystal structure of anatase, rutile or brookite, especially an anatase single phase. Here, the average particle diameter means a volume median diameter, that is, a cumulative 50% volume diameter. For example, a Coulter counter (a device for measuring the number, diameter, and volume of fine particles by an electric resistance method, manufactured by Coulter Corporation) Is measured by
The titanium oxide used in the present invention can be produced, for example, according to the descriptions in the following publications. That is, the titanium oxide used in the present invention includes, for example, the following.
[0007]
(A) Average of the half widths of the first and second titanium peaks when the half width of the titanium peak between 458 eV and 460 eV of titanium oxide was measured four times by X-ray photoelectron spectroscopy. The value of A is defined as A, and the average value of the half widths of the third and fourth titanium peaks is defined as B.
X = B / A (I)
Is an index X of 0.97 or less, and when the ultraviolet-visible diffuse reflection spectrum is measured, the integrated value of the absorbance of the spectrum at a wavelength of 220 nm to 800 nm is C, and the absorbance of the spectrum at a wavelength of 400 nm to 800 nm Is defined as D, and from the integrated values C and D, the following equation (II) is used.
Y = D / C (II)
A titanium oxide having an index Y of 0.14 or more (JP-A-2001-72419);
[0008]
(B) In the electron spin resonance spectrum, there are three or more peaks between g values of 1.930 to 2.030, and the maximum peak among those peaks has a g value of 1.990 to 2.020. Titanium oxide (JP-A-2001-190953) present between the two,
[0009]
(C) the spin concentration X determined from the electron spin resonance spectrum measured after irradiation with visible light is 1.50 × 10 16 spin / g or more, and the spin concentration X determined from the electron spin resonance spectrum measured after irradiation with visible light A titanium oxide (X / Y) having a ratio (X / Y) of more than 1.00 to a spin concentration Y determined from an electron spin resonance spectrum measured before irradiation with visible light (JP-A-2001-316116);
[0010]
(D) Analyzed eight times by X-ray photoelectron spectroscopy, and for the electronic state of titanium, the integrated spectra of the first and second analyzes and the integrated spectra of the seventh and eighth analyzes were obtained. the peak in the binding energy 458eV~460eV, 1 time and the half width of a peak in the accumulated spectrum of the second analysis and a 1, 7 th and peak of half width in the integrated spectrum of the eighth analysis Is B 1 , the following formula (III)
X 1 = B 1 / A 1 (III)
And the index X 1 calculated is 0.9 or less by, and, by measuring the ultraviolet-visible diffuse reflection spectrum, an integrated value of absorbance at a wavelength of 250nm~550nm and C 1, the integral value of the absorbance at a wavelength 400nm~550nm Is D 1 , the following formula (IV)
Y 1 = D 1 / C 1 (IV)
Titanium oxide having an index Y1 calculated by the formula of 0.075 or more (JP-A-2001-322816);
[0011]
(E) X-ray photoelectron spectroscopy was performed eight times to determine the electronic state of titanium. When the integrated spectrum of the first and second analyzes and the integrated spectrum of the seventh and eighth analyzes were determined, the first time The position of at least one peak in the integrated spectrum of the second analysis is at a binding energy of 459 to 460 eV, and the position of at least one peak in the integrated spectra of the seventh and eighth analysis is at a binding energy of 458 to 459 eV. Titanium oxide having a metal content of 0.005 to 3.0 mol% with respect to titanium in titanium oxide in terms of element (JP-A-2002-29749);
[0012]
(F) a mass spectrometry obtained by a thermobalance mass spectrometry simultaneous measurement method, a titanium oxide having a desorption peak of a component having a ratio m / e of 28 of mass number m and charge number e of ions at 600 ° C. or higher; Alternatively, regarding a mass chromatogram obtained by a thermobalance mass spectrometry simultaneous measurement method, the desorption peak of a component having a ratio m / e of 28, which is the mass number m and the charge number e of the ion, is 600 ° C. or more and 950 ° C. or less, a titanium oxide having a desorption peak of a component having an m / e of 14 at 600 ° C. or more and 950 ° C. or less (JP-A-2002-97019);
[0013]
(G) Titanium oxide in which a part of the oxygen site of the titanium oxide crystal is replaced with a nitrogen atom, titanium oxide in which nitrogen is doped between lattices of the titanium oxide crystal, and nitrogen atom doped in the crystal grain boundary of titanium oxide (WO 01/10552 pamphlet),
[0014]
(H) a titanium oxide having stable oxygen vacancies, and a signal having a g value of 2.003 to 2.004 in an electron spin resonance spectrum measured in vacuum at 77 K in the dark, and The signal having a g-value of 2.003 to 2.004 is a titanium oxide having a larger signal intensity when measured under irradiation of at least 420 to 600 nm light in vacuum at 77K than at darkness. Japanese Patent No. 3252136),
[0015]
(I) Platinum halide compounds (PtCl 2 , PtCl 4 , PtCl 4 .2H 2 O, H 2 [Pt (OH) 2 Cl 4 ] .nH 2 O, PtBr 2 , PtBr 4 , PtI 2 , PtI 4 Spindle-shaped titanium oxide (JP-A-2002-239395) or PtF 4 , chloroplatinic acid, chloroplatinate, bromoplatinum complex, iodoplatinate or the like.
(J) L * in a * b * display system a * Nega 1 or less, the b * value is 4 or more, and titanium oxide BET specific surface area is characterized by a 40~500m 2 / g ( JP-A-2002-370026) and the like.
[0017]
The antibacterial agent of the present invention comprises a titanium compound such as titanium sulfate or titanium oxysulfate, water and a molar ratio (formula ratio) to titanium in the titanium compound of 0.05 times or more, preferably 0.5 times or more. A peroxide (e.g., hydrogen peroxide) is mixed at least 3 times, more preferably at least 1 times, and at most 5 times, and then the mixture is mixed with a base such as aqueous ammonia at a pH of 3 to 5, 2 ° C. The reaction is carried out under conditions of ~ 65 ° C, the resulting product is kept in the presence of ammonia, and then dried in air at 110-200 ° C, and the dried product is calcined in air at 300 ° C-400 ° C. The fired product obtained, or a metal oxide having an acid point other than titanium oxide (eg, tungsten oxide, niobium oxide) or a basic metal compound (eg, zinc oxide, cerium oxide) held on the fired product There may be.
[0018]
Furthermore, a method of baking after heat-treating titanium hydroxide in the presence of ammonia gas and water vapor (Japanese Patent Laid-Open No. 2001-278625); A method of baking after contacting amorphous titanium hydroxide with aqueous ammonia (Japanese Patent Application Laid-Open No. 2001-278626); A method of firing titanium ammonium oxyoxalate in the presence of molecular oxygen (Japanese Patent Application Laid-Open No. 2001-278627); A method of adding ammonium sulfate to amorphous titanium hydroxide and then firing. (Japanese Patent Application Laid-Open No. 2001-302241); a method of firing titanium hydroxide having a nitrogen atom content of 3.3% by weight or more based on the weight after firing in air at 400 ° C. A method of firing a titanium oxide precursor such as titanium hydroxide, titanic acid, or titanium oxysulfate at 300 to 600 ° C. in an ammonia-containing gas atmosphere (Japanese Patent Application Laid-Open No. 2001-354422); Yes and amorphous Reaction of titanium oxysulfate with a nitrogen-containing compound such as ammonia and calcining the resulting product (JP-A-2002-29750); titanium oxysulfate having a purity of 99% or more and neutralization A method of mixing and reacting ammonia in an amount exceeding the amount necessary for the reaction and calcining the resulting product (Japanese Patent Laid-Open No. 2002-47012); titanium sulfate or titanium oxysulfate, and a transition element component other than titanium, A method of mixing water and drying to obtain a solid, and thermally decomposing the solid (Japanese Patent Application Laid-Open No. 2002-60221); an acidic solution of titanium sulfate or titanium oxysulfate and a nitrogen-containing basic organic compound And calcination of the resulting product (Japanese Patent Application Laid-Open No. 2002-87818); a broad X-ray absorption fine structure spectrum at the titanium K absorption edge is measured by an X-ray absorption fine structure analysis method. When a first-order differential spectrum is obtained by differentiating the radial structure function obtained by the Rie transform, an atomic distance between the atoms at which the spectrum intensity is maximized in the range of the interatomic distance of 1.4 to 2.8 ° of the first-order differential spectrum. The distance is between 1.4 and 1.7 and between 2.2 and 2.5, the interatomic distance at which the spectral intensity is minimal is between 1.9 and 2.2 and between 2.5 and 2.8, and The maximum value of the spectrum intensity at the interatomic distance of 1.4 to 1.7 ° is A 4 , the maximum value of the spectrum intensity of 2.2 to 2.5 ° is B 4 , and the minimum value of the spectrum intensity at 1.9 to 2.2 ° Is defined as C 4 , and the minimum value of the spectrum intensity of 2.5 to 2.8 ° is defined as D 4.
X 4 = (B 4 −D 4 ) / (A 4 −C 4 ) (V)
How in index X 4 represented the calcining titanium hydroxide is 0.06 or more (JP 2002-193618); titanium sulfate or titanium oxysulfate with the ammonia water PH2~5.5, temperature 90 ° C. A method in which the following reaction is performed and the resulting product is calcined (Japanese Patent Application Laid-Open No. 2002-249319); an acidic solution of titanium sulfate or titanium oxysulfate and an ammonium salt of a carboxylic acid are mixed and hydrolyzed. It may be obtained by a firing method (Japanese Patent Application Laid-Open No. 2002-325615) or the like.
[0019]
The antibacterial agent of the present invention may be in the form of a solid such as powder, granules, or lump, but a dispersion in which titanium oxide is dispersed in a solvent (hereinafter referred to as the present dispersion) is easily used. It is convenient.
[0020]
Solvents contained in the present dispersion include, for example, ion exchange water, aqueous media such as hydrogen peroxide, ethanol, methanol, 2-propanol, alcoholic media such as butanol, acetone, and 2-butanone. Examples thereof include a ketone medium, a paraffin compound medium such as hexane and heptane, and an aromatic compound medium such as benzene, phenol, toluene, xylene, and aniline. Among them, an aqueous medium and an alcoholic medium are preferable.
The content of titanium oxide in the present dispersion is usually 2% by weight or more, preferably 5% by weight or more, and 30% by weight or less based on the total amount of the present dispersion.
[0021]
The present dispersion usually contains a dispersant. Examples of the dispersant contained in the present dispersant include an inorganic acid, an inorganic base, an organic acid, an organic base, and an organic acid salt. Specific examples of the inorganic acid include a binary acid (also referred to as hydrogen acid) such as hydrochloric acid, and an oxo acid (also referred to as oxyacid) such as nitric acid, sulfuric acid, phosphoric acid, perchloric acid, and carbonic acid. Specific examples of ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide and the like, specific examples of organic acids, formic acid, acetic acid, monocarboxylic acids such as propionic acid, Oxalic acid, glutaric acid, succinic acid, malonic acid, maleic acid, dicarboxylic acids such as adipic acid, tricarboxylic acids such as citric acid, amino acids such as glycine, and specific examples of organic bases include urea. Specific examples of the organic acid salt include carboxylate such as ammonium oxalate and sodium oxalate. The content of the dispersant in the present dispersant is usually 0.005 mol or more, preferably 0.01 mol or more, more preferably 0.03 mol or more, based on 1 mol of titanium oxide (1 gram amount). Also, it is 400 mol or less, preferably 5 mol or less.
[0022]
The dispersion is usually prepared by mixing titanium oxide having an average particle diameter of 180 nm or less, a dispersant, a solvent and the like.
As a device used when mixing the titanium oxide, the dispersant, the solvent, and the like, any device may be used as long as the device can disperse the titanium oxide in the solvent. Examples thereof include a dispersing machine, a rolling ball mill, and a vibrating ball mill, and among them, a medium stirring dispersing machine is preferably used.
In such an apparatus, as the medium, for example, beads made of zirconia, alumina or glass and having a diameter of 0.65 mm or less, preferably 0.5 mm or less, and more preferably 0.3 mm or less are used. The mixing may be performed in two or more stages. For example, in the first stage, an apparatus containing a medium having a relatively large diameter is used, and in the second and subsequent stages, an apparatus containing sequentially smaller diameter media is used. Can be performed. By performing the mixing in multiple stages, the titanium oxide powder is efficiently dispersed in the solvent, and a dispersion liquid in which the titanium oxide is uniformly dispersed is prepared. The temperature at the time of mixing is less than 90 ° C, preferably 80 ° C or less, more preferably 65 ° C or less, and 10 ° C or more, preferably 20 ° C or more.
[0023]
If necessary, the mixture of titanium oxide, dispersant, solvent and the like is subjected to treatment such as adjustment of the content of titanium oxide or adjustment of pH. Usually, the pH is adjusted by adding an acid or a base. Examples of the acid or base used for pH adjustment include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, and oxalic acid as the acid, and ammonia, urea, hydrazine, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, and water as the base. Rubidium oxide and the like. Before or after the dispersion treatment, an inorganic compound (silica, alumina, zeolite, molecular sieve, activated carbon, calcium phosphate, zinc oxide, zirconia, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, strontium hydroxide, water Barium oxide, lanthanum oxide, cerium oxide, lanthanum hydroxide, cerium hydroxide, amorphous titanium oxide, amorphous silica, amorphous alumina, etc.) or organic compounds (binders, etc.) can be mixed and required After the dispersion treatment, an operation of removing coarse particles such as aggregated titanium oxide particles remaining in the mixture or an operation of adjusting the titanium oxide content may be performed.
[0024]
The titanium oxide dispersion obtained as described above is treated as it is or after being mixed with additives, and then processed into furniture and daily necessities in a living space.
Examples of the method for treating the antibacterial agent of the present invention into equipment and daily necessities in a living space include methods such as spin coating, dip coating, doctor blade, spraying or brushing. A film is formed on the surface of equipment and daily necessities treated by these methods, and antibacterial properties are imparted.
[0025]
Examples of additives optionally mixed in the dispersion include amorphous silica, silica sol, water glass, silicon compounds such as organopolysiloxane, amorphous alumina, alumina sol, and aluminum compounds such as aluminum hydroxide. Alkaline earth metal (water) oxidation such as aluminosilicate, zeolite, kaolinite, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide Material, calcium phosphate, molecular sieve or activated carbon, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt , Cu, Ag, Au, Zn, Cd, Ga, In, Tl, Ge, Sn, b, hydroxide of metal element such as Bi, La or Ce or amorphous oxide of these metal elements, polycondensate of organic polysiloxane compound, phosphate, fluorine polymer, silicon polymer, acrylic resin , Polyester resins, melamine resins, urethane resins, alkyd resins and the like. These can be used alone or in combination of two or more. In addition to these, known inorganic and organic binders can of course be added.
[0026]
Examples of equipment and daily necessities to which antibacterial properties are imparted by the antibacterial agent of the present invention include, for example, glass, plastics, metals, tiles, ceramics, and all products made of materials such as concrete. It is preferably used for imparting antibacterial properties to ceramic products.
The present dispersion is preferably used immediately after preparation, but when it is stored, it is preferably used under conditions that do not expose to light.
[0027]
The application amount of the antibacterial agent of the present invention is usually 1 to 10,000 mg, preferably 10 to 5000 mg per 1 m 2 in terms of the amount of titanium oxide having an average particle size of 180 nm or less. The application amount may vary depending on the form of the preparation, the place of application, the mold, the degree of bacterial growth and the like.
[0028]
The antimicrobial agent of the present invention is useful not only for removing fixtures and daily necessities in a living space, but also for removing and suppressing the growth of microorganisms such as bacteria and fungi that grow on walls, and for controlling fungi and bacteria floating in a room that is the living space itself. Also used for.
[0029]
Examples of microorganisms such as bacteria and molds that can be effectively controlled by the antibacterial agent of the present invention include the following.
Aspergillus niger, A. flavus, A. fumigatus, A. oryzae etc., Aspergillus genus, Chaetonium genus such as Chaetonium globosum, Cladosporium genus such as Cladosporium cladosporioides, Gliocladium genus such as Gliocladium virens, Aureobasidium pullulicus etc. Penicillium genus, Rhizopus genus such as Rhizopusoryzae, Fusarium genus, Alternaria genus such as Alternaria alternata, Tyromyces genus, Coriolus genus, Myrothecium genus, Mucor genus, Epicoccum genus, Trichoderma genus, Phoma genus, Geotrichum genus, Monilia genus, etc. Etc. microorganisms.
[0030]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
In addition, about the crystal structure of the titanium oxide in the titanium oxide dispersion liquid in this example, the solvent was removed with an evaporator while heating the titanium oxide dispersion liquid at 40 ° C., and the obtained titanium oxide powder was obtained by the following method. Used for measurement. The average particle diameter of the titanium oxide was measured by using the titanium oxide dispersion as it was by the following method.
[0031]
Average particle size (nm):
The particle size distribution of the titanium oxide dispersion was measured using a submicron particle size distribution analyzer (trade name: N4Plus, manufactured by Coulter Co.), and the cumulative 50% by volume diameter was determined, which was defined as the average particle diameter.
[0032]
Crystal structure:
The X-ray diffraction spectrum of the sample was measured using an X-ray diffractometer (trade name: RAD-IIA, manufactured by Rigaku Denki), and the crystal structure was determined from the spectrum.
[0033]
Hereinafter, a method for producing a titanium oxide dispersion used in the antibacterial method of the present invention will be described.
[0034]
Example 1
(Preparation of titanium oxide powder)
3,324 g of titanium oxysulfate (trade name: TM crystal, appearance: white solid, manufactured by Teica) was dissolved in 2,216 g of ion-exchanged water to prepare an aqueous solution of titanium oxysulfate. Under ice cooling, 1503 g of 31% aqueous hydrogen peroxide was added to the above aqueous solution of titanium oxysulfate to obtain a red-purple mixed solution. Ion-exchanged water is supplied to a reaction vessel equipped with an electrode and a pH controller connected to the pH electrode and having a mechanism for supplying 25% by weight ammonia water (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and adjusting the pH to a constant value. 4700 g were charged. The pH setting of the pH controller was set to 4. The speed at which the aqueous ammonia was supplied was set at 50 ml / min. In this reaction vessel, when the pH of the liquid in the vessel becomes lower than the set value, the ammonia water starts to be supplied and is continuously supplied at the above-mentioned rate until the pH reaches the set value. While stirring the content at 158 rpm, the mixed solution obtained above was added to the reaction vessel at 50 ml / min, and reacted with aqueous ammonia supplied to the reaction vessel by a pH controller. The reaction temperature at this time was in the range of 25 ° C to 55 ° C. The obtained product was held for 1 hour while stirring, and then 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries) was supplied to obtain a slurry. The total amount of aqueous ammonia supplied to the reaction vessel was 3,684 g, twice the amount required to convert titanium oxysulfate to titanium hydroxide. The above slurry was filtered, and the obtained solid was washed with ion-exchanged water and dried in air at 150 ° C. for 17 hours to obtain a titanium oxide precursor powder. This titanium oxide precursor powder was fired in air at 370 ° C. for 1 hour, and then cooled to room temperature to obtain a titanium oxide powder. The crystal phase of this titanium oxide powder was anatase.
[0035]
(Preparation of the present dispersion)
105.7 g of oxalic acid dihydrate (Wako special grade reagent) was dissolved in 2578 g of ion-exchanged water. The obtained aqueous solution and 670 g of the above titanium oxide powder are placed in a medium stirring type disperser (trade name: Dynomill KDL-PILOT A type, manufactured by Shinmaru Enterprises), and the medium is 4.2 kg of zirconia beads having a diameter of 0.3 mm. Stirring speed: peripheral speed: 14 m / sec, processing liquid circulation: present, circulating liquid amount: 8 L / hour (first time: 25 L / hour), and processing time: 130 minutes. The titanium oxide in the obtained mixture had an average particle size of 86 nm and a crystalline phase of anatase.
[0036]
[Formation of titanium oxide film]
The titanium oxide film was applied by the method described in FIG. The above titanium oxide dispersion was diluted to 5% by weight with water, taken into a dropper 1, and a glass plate 3 having a length of 80 mm, a width of 80 mm, and a thickness of 3 mm was tilted at an angle of 20 ° using the dropper 1. A titanium oxide dispersion 3 was applied to the entire surface. This coating operation was repeated four times, and the excess titanium oxide dispersion remaining on the end 4 of the glass plate was wiped off and dried at 110 ° C. Thereafter, light was irradiated using 18 W black light as a light source to remove the dispersant contained in the coating film. As a result, a glass plate carrying titanium oxide for photocatalyst was obtained.
[0037]
Next, an antibacterial test example will be described.
Test Example 1 (Activity against Staphylococcus aureus)
A sterilized test tube stand was placed at the center of a deep long stainless steel bat (width 55 cm, depth 33 cm, depth 15 cm), and 4 L of water was added into the bat. On this, the glass plates obtained in Example 1 and Comparative Example 1 and an untreated glass plate were placed. On each glass plate, 200 μl of a diluted solution of Staphylococcus aureus, which was cultured with shaking in LB medium for 3 days, was diluted by a factor of 1000, and then 200 μl was added. Covered with polyethylene film.
Twenty-four hours later, the bacterial solution of Staphylococcus aureus on the glass plate was washed away with sterile water, placed in an LBA medium, and cultured at 24-26 ° C for 2 days to observe the growth of Staphylococcus aureus. The growth state was determined according to the following criteria. Table 1 shows the results.
<Judgment criteria>
0: No growth: No bacterial colony was seen at all, and the plant was not growing well 0: 1: About 2 to 5 bacterial colonies (white granules) were present per petri dish 1: Slightly Growth: Bacterial Colony with only about 10-20 pieces per Petri dish 2: Slightly growing: Bacterial Colony with about 20-100 pieces per Petri dish
3: Slightly growing: bacterial colony is present in a petri dish at about 100 or more in appearance 4: Severe growth: bacterial colony is present in a position that is difficult to judge by a little appearance (about 1000 or more) 5: Growing so violently that it cannot grow visually: the medium is almost completely buried in the colony of bacteria even if it looks like [Table 1]
Figure 2004210646
As shown in Table 1 above, the glass plate of Example 1 carrying visible light reactive titanium oxide significantly inhibited the growth of Staphylococcus aureus.
[0038]
Test example 2 (activity against E. coli)
The same test as in Test Example 1 was performed except that Escherichia coli was used instead of S. aureus. Table 2 shows the results.
[Table 2]
Figure 2004210646
As shown in Table 2 above, the glass plate of Example 1 loaded with visible light reactive titanium oxide markedly inhibited the growth of Escherichia coli.
[0039]
Test Example 3 (Aspergillus niger: activity against Aspergillus niger)
A sterilized test tube stand was placed at the center of a deep long stainless steel bat (width 55 cm, depth 33 cm, depth 15 cm), and 4 L of water was added into the bat. On this, the glass plate obtained in the above-mentioned Example 1 and Comparative Example 1, and the untreated glass plate were placed. A 200 μl diluent obtained by diluting a spore liquid of Aspergillus (Aspergillus niger) (thawed from frozen storage and thawing from a 0.005% aqueous solution of dioctyl sulfonic acid) by 1,000 times was put on each of the spores, and the lid of a petri dish having a diameter of 4 cm was placed thereon. Covered to prevent drying.
Twenty-four hours later, the bacterial solution of Aspergillus on the glass plate was washed away with a 0.005% aqueous solution of dioctylsulfonic acid, placed in a PDA medium, and cultured at 24-26 ° C for 5 days to observe the growth of Aspergillus. The growth state was determined according to the following criteria. Table 1 shows the results.
<Judgment criteria>
The growth state was determined in six stages as described below.
0: No growth,
1: Slight growth: Only about 1 to 5 mold colonies are present in one petri dish 2: Slightly growing: About 20 to 100 mold colonies are present in one petri dish 3: Slightly growing: Mold colony is present in a petri dish at about 100 or more in appearance 4: Remarkably growing: Mold colony is present in a position that is slightly difficult to judge (approximately 1000 or more) 5: Violently unable to grow visually Growth: The medium is almost completely buried in the mold Colony, even if it looks as follows [Table 3]
Figure 2004210646
Even if the mold spore solution collected from the glass plate of Example 1 supporting the visible light-reactive titanium oxide as shown in Table 3 above was cultured, no mold grew and the visible light-reactive titanium oxide was prevented from growing. Mold activity was observed.
[0040]
【The invention's effect】
According to the present invention, an antibacterial agent having excellent efficacy can be provided.

Claims (3)

平均粒子径が180nm以下である酸化チタンを含有することを特徴とする抗菌剤。An antibacterial agent comprising titanium oxide having an average particle size of 180 nm or less. 溶媒中に酸化チタンが分散されてなる請求項1に記載の抗菌剤。The antibacterial agent according to claim 1, wherein titanium oxide is dispersed in a solvent. 請求項1に記載の抗菌剤を用いることを特徴とする抗菌方法。An antibacterial method using the antibacterial agent according to claim 1.
JP2002378877A 2002-12-27 2002-12-27 Antimicrobial agent Pending JP2004210646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378877A JP2004210646A (en) 2002-12-27 2002-12-27 Antimicrobial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378877A JP2004210646A (en) 2002-12-27 2002-12-27 Antimicrobial agent

Publications (1)

Publication Number Publication Date
JP2004210646A true JP2004210646A (en) 2004-07-29

Family

ID=32815564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378877A Pending JP2004210646A (en) 2002-12-27 2002-12-27 Antimicrobial agent

Country Status (1)

Country Link
JP (1) JP2004210646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515662A (en) * 2009-12-23 2013-05-09 クローダ インターナショナル パブリック リミティド カンパニー Particulate titanium dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515662A (en) * 2009-12-23 2013-05-09 クローダ インターナショナル パブリック リミティド カンパニー Particulate titanium dioxide
US9682869B2 (en) 2009-12-23 2017-06-20 Croda International Plc Particulate titanium dioxide

Similar Documents

Publication Publication Date Title
KR101397500B1 (en) Copper-and-titanium-containing composition and production method therefor
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
TWI490037B (en) Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same
JP4374869B2 (en) Manufacturing method of ceramic dispersion
JP5957175B2 (en) Antibacterial membrane and antibacterial member
TW201924651A (en) Deodorizing/antibacterial/antifungal agent, method of preparation thereof, and member having deodorizing/antibacterial/antifungal agent on surface
JP5512934B2 (en) Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
WO2002085989A1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
EP2133311B1 (en) Zirconium oxalate sol
JP2004026553A (en) Titanium oxide dispersion and preservation container for the same
TW201605459A (en) Anti-viral composition, method for producing the composition, and virus inactivation method
CN105899077A (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
JP2011063473A (en) Method for producing metal oxide-containing titanium oxide compound
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
TWI581713B (en) Antiviral compositions, antiviral agents, photocatalysts and virus inactivation methods
JP2015097989A (en) Virus removing agent and virus removing method
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
WO2011045623A1 (en) Titanium dioxide nanostructured materials comprising silver and their use as antimicrobials
JP2004210646A (en) Antimicrobial agent
JP5383156B2 (en) Sulfur-containing titanium oxide compound, method for producing sulfur-containing titanium oxide compound, sulfur-containing titanium oxide compound dispersion, and method for producing sulfur-containing titanium oxide compound dispersion
JP2008093630A (en) Method of manufacturing photocatalyst dispersion
KR20030043536A (en) Synthesis of highly active photocatalytic TiO2-sol by hydrothermal method
JP4763492B2 (en) Photocatalyst dispersion and method for producing the same
JP2012017238A (en) Method for producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
JP2004161573A (en) Titanium oxide sol, titanium oxide coating film, and its forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051017

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

RD05 Notification of revocation of power of attorney

Effective date: 20080512

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Effective date: 20090522

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A02