JP2004210619A - Glass panel - Google Patents

Glass panel Download PDF

Info

Publication number
JP2004210619A
JP2004210619A JP2003002137A JP2003002137A JP2004210619A JP 2004210619 A JP2004210619 A JP 2004210619A JP 2003002137 A JP2003002137 A JP 2003002137A JP 2003002137 A JP2003002137 A JP 2003002137A JP 2004210619 A JP2004210619 A JP 2004210619A
Authority
JP
Japan
Prior art keywords
glass
tempered
glass sheets
glass panel
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003002137A
Other languages
Japanese (ja)
Inventor
Toru Futagami
亨 二神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003002137A priority Critical patent/JP2004210619A/en
Publication of JP2004210619A publication Critical patent/JP2004210619A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass panel which can certainly maintain the essential strength of a tempered sheet glass by avoiding strength lowering of the glass panel caused by warping to the thickness direction at a peripheral edge part of the tempered sheet glass which constitutes the glass panel. <P>SOLUTION: The glass panel consists of a pair of tempered glass sheets 1 and 2 placed to be faced each other via a space part V sealed to be airtight by directly joining the peripheral edge parts of the both tempered glass sheets 1 and 2 with a metal material 4. When a warping amount in the thickness direction of the both tempered glass sheets 1 and 2 for a unit length of 100mm in the direction along the peripheral edge parts is Xmm, and surface compressive stress of the both tempered glass sheets 1 and 2 is A kg/cm<SP>2</SP>and a sheet thickness is t mm, an inequality denoted as Xt≤(A+800)/650×(4/t)<SP>3</SP>×0.1 is satisfied. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一対の強化板ガラスを間隙部を介して対面配置し、その両強化板ガラスの周縁部を金属材料で直接接合して前記間隙部を気密に封止してあるガラスパネルに関する。
【0002】
【従来の技術】
この種のガラスパネルにおいて、従来、板ガラスに対する金属材料の濡れ性に着目し、両板ガラスにおける金属材料との接合面の平均表面粗さを所定の粗さ以下に抑えることにより、両板ガラスの接合強度を確保して間隙部の気密性を維持するように構成したものが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−167249号公報
【0004】
【発明が解決しようとする課題】
しかし、上記公報に開示のガラスパネルでは、両板ガラスの接合強度を確保するため、両板ガラスにおける接合面の表面粗さに着目してはいるものの、両板ガラス周縁部における反りについては、特別な考慮は払われていない。
【0005】
本発明者は、ガラスパネルを構成する両板ガラス周縁部における反り量、特に、加熱により強化処理された強化板ガラス周縁部における反り量が、ガラスパネルの全体的な強度に与える影響に着目し、各種の実験を繰り返して新規な結論を知得したものである。
【0006】
本発明は、その新規な結論に基づくもので、その目的は、ガラスパネルを構成する強化板ガラス周縁部における厚み方向への反りに起因するガラスパネルの強度低下を回避して、強化板ガラス本来の強度を確実に確保することのできるガラスパネルを提供することである。
【0007】
【課題を解決するための手段】
請求項1の発明の特徴構成は、一対の強化板ガラスを間隙部を介して対面配置し、その両強化板ガラスの周縁部を金属材料で直接接合して前記間隙部を気密に封止してあるガラスパネルであって、前記両強化板ガラスの周縁部において、その周縁部に沿う方向における単位長さ100mmに対する両強化板ガラスの厚み方向における反り量をX(mm)、各強化板ガラスの表面圧縮応力をA(kg/cm)、板厚をt(mm)として、
【数2】
Xt≦(A+800)/650×(4/t)×0.1
を満たすところにある。
【0008】
すなわち、一対の強化板ガラスを使用してガラスパネルを作製するに際し、各強化板ガラスにおける上記反り量Xが上記した式を満たす限り、後述する各種の実験結果からも明らかなように、ガラスパネルに衝撃が加わった際、各強化板ガラス本来の破砕限界応力未満の衝撃力によって、その周縁部から破砕することが回避され、したがって、ガラスパネル全体の強度向上を図ることができる。
【0009】
【発明の実施の形態】
本発明によるガラスパネルの実施の形態を図面に基づいて説明する。
このようなガラスパネルとしては、例えば、真空複層ガラスがあり、真空複層ガラスPは、図1に示すように、加熱により強化処理された一対の強化板ガラス1,2において、両強化板ガラス1,2の面が、その間に多数のスペーサ3を介在させ、それによって、両強化板ガラス1,2の間に間隙部Vを有する状態で互いに対面するように配置され、両強化板ガラス1,2の周縁部が、金属材料の一例であるハンダ4により直接接合され、両強化板ガラス1,2の間隙部Vが、減圧状態で気密に封止されて構成されている。
【0010】
両強化板ガラス1,2には、その板厚tが2.65〜3.2mm程度の透明なフロートガラスが使用され、両強化板ガラス1,2の間隙部Vが、1.33Pa(1.0×10−2Torr)以下に減圧され、その間隙部V内の気体を吸引して減圧するため、一方の強化板ガラス1には、吸引部5が設けられている。
吸引部5は、図2に示すように、一方の強化板ガラス1に穿設された円形の吸引孔5aと、その吸引孔5aに固着されたガラス細管5b、および、ガラス細管5bを覆うキャップ5cからなり、ガラス細管5bから間隙部V内の気体を吸引して減圧した後、ガラス細管5bの先端を加熱により封じきって、キャップ5cを取り付けることにより構成されている。
スペーサ3は、形状として円柱状が好ましく、両強化板ガラス1,2に作用する大気圧に耐え得るように、圧縮強度が4.9×10Pa(5×10kgf/cm)以上の材料、例えば、ステンレス鋼(SUS304)やインコネル718などにより形成され、直径が0.3〜1.0mm程度、高さが0.15〜1.0mm程度に設定され、各スペーサ3の間の間隔が、20mm程度に設定されている。
【0011】
両強化板ガラス1,2の周縁部を封止するハンダ4は、Sn、Zn、Tiなどを含み、例えば、72.0〜99.9%のSn、0.1〜10.0%のZn、0.001〜3.0%のTiからなり、Pbが0.1%未満あるいは実質的に含まれないものが使用される。
ただし、このハンダ4に関しては、上記した成分以外にも、例えば、ハンダの融点を低下させ、かつ、強化板ガラス1,2への濡れ性を向上させるためにInを添加したり、さらに、ハンダの機械的強度を向上させるためにAgを添加することもでき、それ以外にも、ハンダの濡れ性や機械的強度を改善するため、Bi、Sb、Fe、Ni、Co、Ga、Ge、Pなどを適宜添加することができ、種々の成分からなるハンダを使用することができる。
【0012】
このようなハンダ4は、図3および図4に示す専用のハンダ充填具6により両強化板ガラス1,2の隙間に充填され、そのハンダ充填具6は、ガラスパネル形成用の基台7上に設置されて、強化板ガラス1,2の周縁部に沿って移動する供給塔8や、供給塔8の下端側から側方に張り出して設けられた導入板9などを備え、導入板9は、上下厚みが非常に薄く(0.1mm程度)、横方向に長い扁平な形状に形成されている。
供給塔8は、溶融したハンダ(溶融していないものも含む)4Aを貯留するるつぼ部8a、るつぼ部8aを加熱および保温する電熱ヒータ8b、導入板9が位置する出口8cとるつぼ部8aの底部を結ぶ導出路8dなどを備え、基台7に設けられたレール7a上を移動し、その供給塔8の移動に伴って、両強化板ガラス1,2の間隙部Vに差し込んだ導入板9から両強化板ガラス1,2の周縁部全長にわたって溶融したハンダ4Aを供給して、両強化板ガラス1,2の周縁部を直接接合して間隙部Vを気密に封止するように構成されている。
【0013】
このように両強化板ガラス1,2の周縁部に溶融したハンダ4Aを供給して接合するに際し、両強化板ガラス1,2の周縁部において、両強化板ガラス1,2の厚み方向に反りがあると、強化板ガラス1,2に対するハンダ4Aの濡れ性に起因して両強化板ガラス1,2の接合強度が低下し、間隙部Vの気密性の維持がむずかしくなる。
そこで、従来では、ハンダ4Aの供給からハンダ4Aが固化するまでの間、図5に示すように、両強化板ガラス1,2の周縁部に外力Fを作用させて両強化板ガラス1,2の反り(図中の一点鎖線が反った状態を示す)を矯正し、反りを矯正した状態のまま、両強化板ガラス1,2の周縁部を接合している。そのため、両強化板ガラス1,2の周縁部には、反りの矯正に伴う内部応力が残存し、その内部応力の残存により真空複層ガラスPの強度が低下することになる。
【0014】
本発明は、この反りの矯正に伴う残存内部応力に着目し、各種の実験と解析を重ねた結果に知得した新規な結論に基づくものである。
その実験の一例を説明すると、周縁部に殆ど反りのない板厚4mmの一対の強化板ガラスを使用し、上述した方法により、一辺が350mmの正方形の真空複層ガラスを作製した。その真空複層ガラスの中心近くに600mmの高さから1kgの球体を自由落下させ、落下側の強化板ガラスに発生する最大主応力を測定して図6の(イ)に示す結果を得た。
なお、この図表において、縦軸は最大主応力(Pa)、横軸は時間(秒)、Lは強化板ガラスが破砕する本来の限界応力である。そして、点線は球体の落下点近傍における応力を示し、実線は正方形の強化板ガラスの2辺における周縁部の応力を示す。
【0015】
図6の(イ)に示す図表から明らかなように、球体の落下点近傍では、球体の落下直後において急速に応力が増加し、最大ピークで1.9E+08(Pa)を越える応力が発生し、その後、急速に減衰し再び小さなピークを迎えることになる。
それに対し、周縁部では、球体の落下直後における急速な応力の増加は見られず、時間差を置いた後、最大ピークを迎えることになり、その最大応力は4.5E+07(Pa)程度である。
したがって、両強化板ガラスの周縁部に反りがなければ、真空複層ガラスを構成する強化板ガラスに対して大きな衝撃力が作用した場合、強化板ガラスは球体の落下点近傍から破砕することが理解できる。
【0016】
同様に、端縁部に反りのある板厚4mmの一対の強化板ガラス、具体的には、周縁部に沿う方向における単位長さ100mmに対する反り量X(図5参照)が0.2mmの強化板ガラスを使用して同じ寸法の真空複層ガラスを作製し、上述と同じ実験をして図6の(ロ)に示す結果を得た。
この図表から、強化板ガラスの周縁部には、反りの矯正に伴って1.6E+08(Pa)程度の初期応力が残存しており、そのため、落下点近傍における最大応力が強化板ガラスの限界応力L未満であるにもかかわらず、周縁部における最大応力が限界応力Lを超えて、強化板ガラスはその端縁部から破砕することが理解できる。
したがって、反りの矯正に伴う周縁部の残存初期応力を低く抑えれば、真空複層ガラスにおいて、強化板ガラスにおける周縁部からの破砕を回避することが可能となる。
【0017】
その反りの矯正に伴う周縁部の残存初期応力は、上述した反り量Xに基づいて変化するのは勿論であるが、加熱による強化処理によって生じる強化板ガラスの表面圧縮応力Aと強化板ガラスの板厚tによっても変化し、これらの関係を実験結果から得たのが図7である。
この図表において、縦軸は単位長さ100mmに対する反り量X(mm)、横軸は表面圧縮応力A(kg/cm)で、板厚tが3mm〜6mmまでの4種類の強化板ガラスについての結果であり、各折れ線はその板厚tにおける限界、つまり、真空複層ガラスなどのガラスパネルを構成する強化板ガラスにおいて、周縁部からの破砕を回避する限界を示している。
【0018】
図7の実験結果を含んで他の実験結果から、強化板ガラスの板厚tが4mmの場合、周縁部における単位長さ100mmに対する反り量X(mm)に伴って発生する応力は650(kg/cm)であることが確認された。
したがって、これまでの実験結果から、板厚tが4mmの場合、その強化板ガラスに許容される反り量X(mm)は、強化板ガラスの表面圧縮応力をA(kg/cm)として下記のようになる。
【0019】
【数3】
X≦(A+800)/650×0.1
【0020】
そして、発生する応力は板厚の3乗に反比例するため、板厚をt(mm)とすると、下記の式が成り立つ。
【0021】
【数4】
Xt≦(A+800)/650×(4/t)×0.1
【0022】
したがって、上述した反り量X(mm)が、この式を満たす範囲内にある限り、その強化板ガラスを使用して形成した真空複層ガラスにおいては、たとえ真空複層ガラスの中心近くに衝撃が加わっても、周縁部から破砕することはなく、衝撃が加わった近傍から破砕することになる。
【図面の簡単な説明】
【図1】真空複層ガラスの一部切欠き斜視図
【図2】真空複層ガラスの断面図
【図3】真空複層ガラスの製造過程を示す断面図
【図4】真空複層ガラスの製造過程を示す一部切欠き平面図
【図5】真空複層ガラスの製造過程を模式的に示す断面図
【図6】真空複層ガラスの衝撃実験結果を示す図表
【図7】熱強化板ガラスの反り量と表面圧縮応力との関係を示す図表
【符号の説明】
1,2 強化板ガラス
4 金属材料
P ガラスパネル
V 間隙部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass panel in which a pair of tempered glass sheets are arranged to face each other via a gap, and the peripheral portions of both tempered glass sheets are directly joined with a metal material to hermetically seal the gap.
[0002]
[Prior art]
Conventionally, focusing on the wettability of a metal material with respect to a sheet glass in this type of glass panel, the joining surface strength of the two sheet glasses is controlled by controlling the average surface roughness of the joining surface with the metal material to be equal to or less than a predetermined roughness. There is known a configuration in which the airtightness of the gap is maintained by securing the airtightness (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-167249 A
[Problems to be solved by the invention]
However, in the glass panel disclosed in the above publication, in order to secure the bonding strength between the both glass sheets, although attention is paid to the surface roughness of the bonding surface between the both glass sheets, special consideration is given to the warpage at the peripheral portions of the both glass sheets. Has not been paid.
[0005]
The present inventors have focused on the effect of the amount of warpage at the peripheral edges of both glass sheets constituting the glass panel, in particular, the amount of warpage at the peripheral edge of the tempered glass sheet strengthened by heating, on the overall strength of the glass panel. And repeated the experiment to obtain a new conclusion.
[0006]
The present invention is based on the novel conclusion, and its object is to avoid a decrease in the strength of the glass panel due to warpage in the thickness direction at the periphery of the tempered glass sheet constituting the glass panel, and to reduce the strength of the original tempered glass sheet. Is to provide a glass panel that can reliably secure the glass panel.
[0007]
[Means for Solving the Problems]
According to a feature of the first aspect of the present invention, a pair of tempered glass sheets are disposed to face each other via a gap, and the peripheral edges of the tempered glass sheets are directly joined to each other with a metal material to hermetically seal the gap. In the glass panel, the warpage amount in the thickness direction of the both reinforced glass sheets with respect to a unit length of 100 mm in the direction along the peripheral edge is X (mm), and the surface compressive stress of each reinforced glass sheet is defined as A (kg / cm 2 ) and plate thickness as t (mm)
(Equation 2)
Xt ≦ (A + 800) / 650 × (4 / t) 3 × 0.1
Is where you meet.
[0008]
That is, when producing a glass panel using a pair of tempered glass sheets, as long as the above-mentioned amount of warpage X in each tempered glass sheet satisfies the above-mentioned equation, as will be apparent from various experimental results described later, the impact on the glass panel Is applied, it is possible to avoid crushing from the peripheral edge of the reinforced glass sheet by an impact force less than the crushing limit stress inherent in each reinforced sheet glass, and therefore, it is possible to improve the strength of the entire glass panel.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a glass panel according to the present invention will be described with reference to the drawings.
As such a glass panel, for example, there is a vacuum double glazing. As shown in FIG. 1, the vacuum double glazing P is a pair of tempered glazings 1 and 2 reinforced by heating. , 2 are disposed so as to face each other with a gap V between the tempered glass sheets 1, 2 by interposing a number of spacers 3 therebetween. The periphery is directly joined by solder 4 which is an example of a metal material, and a gap V between both reinforced glass sheets 1 and 2 is hermetically sealed under reduced pressure.
[0010]
A transparent float glass having a thickness t of about 2.65 to 3.2 mm is used for both the tempered glass sheets 1 and 2, and the gap V between the tempered glass sheets 1 and 2 is 1.33 Pa (1.0 mm). In order to reduce the pressure by reducing the pressure in the gap V by reducing the pressure to 10 −2 Torr or less, one of the strengthened glass sheets 1 is provided with a suction unit 5.
As shown in FIG. 2, the suction part 5 includes a circular suction hole 5a formed in one of the strengthened glass sheets 1, a glass tube 5b fixed to the suction hole 5a, and a cap 5c covering the glass tube 5b. After the gas in the gap V is sucked from the thin glass tube 5b and decompressed, the end of the thin glass tube 5b is sealed by heating and a cap 5c is attached.
The spacer 3 preferably has a columnar shape, and has a compressive strength of 4.9 × 10 8 Pa (5 × 10 3 kgf / cm 2 ) or more so as to withstand the atmospheric pressure acting on both reinforced plate glasses 1 and 2 . It is formed of a material, for example, stainless steel (SUS304) or Inconel 718, and has a diameter of about 0.3 to 1.0 mm and a height of about 0.15 to 1.0 mm. Is set to about 20 mm.
[0011]
The solder 4 that seals the peripheral portions of the reinforced glass sheets 1 and 2 contains Sn, Zn, Ti, and the like. For example, 72.0 to 99.9% of Sn, 0.1 to 10.0% of Zn, A material composed of 0.001 to 3.0% Ti and containing less than 0.1% or substantially no Pb is used.
However, in addition to the above-mentioned components, for example, In is added to the solder 4 in order to lower the melting point of the solder and to improve the wettability to the reinforced plate glasses 1 and 2, Ag can be added to improve the mechanical strength. In addition, Bi, Sb, Fe, Ni, Co, Ga, Ge, P, etc. are used to improve the wettability and mechanical strength of the solder. Can be appropriately added, and solder composed of various components can be used.
[0012]
Such a solder 4 is filled in the gap between both tempered glass sheets 1 and 2 by a dedicated solder filling tool 6 shown in FIGS. 3 and 4, and the solder filling tool 6 is placed on a base 7 for forming a glass panel. It is provided with a supply tower 8 which is installed and moves along the periphery of the tempered glass sheets 1, 2, and an introduction plate 9 which is provided to protrude from the lower end side of the supply tower 8 to the side, and the like. The thickness is very thin (about 0.1 mm) and formed in a flat shape that is long in the lateral direction.
The supply tower 8 includes a crucible portion 8a for storing molten solder (including unmelted one) 4A, an electric heater 8b for heating and keeping the temperature of the crucible portion 8a, an outlet 8c where the introduction plate 9 is located, and a crucible portion 8a. An introduction plate 9 which is provided with a lead-out path 8d connecting the bottoms and the like, moves on a rail 7a provided on the base 7, and moves along with the supply tower 8 so as to be inserted into the gap V between the tempered glass sheets 1, 2. The molten solder 4A is supplied over the entire length of the peripheral portions of both the reinforced plate glasses 1 and 2, and the peripheral portions of the both reinforced plate glasses 1 and 2 are directly joined to hermetically seal the gap V. .
[0013]
As described above, when the molten solder 4A is supplied to and bonded to the peripheral portions of the tempered glass sheets 1 and 2, if the peripheral edges of the tempered glass sheets 1 and 2 are warped in the thickness direction of the tempered glass sheets 1 and 2. Due to the wettability of the solder 4A to the reinforced glass plates 1 and 2, the bonding strength of the reinforced glass plates 1 and 2 is reduced, and it becomes difficult to maintain the airtightness of the gap V.
Therefore, conventionally, from the supply of the solder 4A to the solidification of the solder 4A, as shown in FIG. (The dashed line in the figure indicates a warped state), and the peripheries of the tempered glass sheets 1 and 2 are joined while the warpage is corrected. For this reason, internal stresses associated with the correction of the warp remain at the peripheral portions of the reinforced plate glasses 1 and 2, and the strength of the vacuum double glazing P decreases due to the remaining internal stress.
[0014]
The present invention focuses on the residual internal stress accompanying the correction of the warp, and is based on a novel conclusion obtained based on the results of repeated experiments and analyzes.
To explain an example of the experiment, a pair of tempered glass sheets having a plate thickness of 4 mm and having almost no warp at the peripheral portion was used, and a vacuum double-glazed glass having a side of 350 mm was produced by the above-described method. A 1 kg sphere was dropped freely from a height of 600 mm near the center of the vacuum insulated glass, and the maximum principal stress generated in the strengthened glazing on the falling side was measured to obtain the result shown in FIG.
In this table, the vertical axis represents the maximum principal stress (Pa), the horizontal axis represents time (seconds), and L represents the original limit stress at which the strengthened sheet glass is broken. The dotted line indicates the stress in the vicinity of the falling point of the sphere, and the solid line indicates the stress at the peripheral edge on two sides of the square strengthened glass sheet.
[0015]
As is clear from the chart shown in FIG. 6 (a), near the drop point of the sphere, the stress rapidly increases immediately after the sphere falls, and a stress exceeding 1.9E + 08 (Pa) occurs at the maximum peak, After that, it rapidly decays and again reaches a small peak.
On the other hand, in the peripheral portion, a rapid increase in stress is not seen immediately after the sphere drops, and after a time lag, the maximum peak is reached, and the maximum stress is about 4.5E + 07 (Pa).
Therefore, it can be understood that if there is no warpage in the peripheral portions of both tempered glass sheets, when a large impact force acts on the tempered glass sheets constituting the vacuum double-glazed glass, the tempered glass sheets are crushed from near the drop point of the sphere.
[0016]
Similarly, a pair of tempered glass sheets having a thickness of 4 mm with a warped edge, specifically, a tempered glass sheet having a warp amount X (see FIG. 5) of 0.2 mm per unit length of 100 mm in a direction along the peripheral edge. Was used to produce a vacuum double-glazed glass having the same dimensions, and the same experiment as described above was performed to obtain the results shown in FIG.
According to this chart, an initial stress of about 1.6E + 08 (Pa) remains at the peripheral edge of the reinforced sheet glass due to the correction of the warp. Therefore, the maximum stress near the drop point is less than the critical stress L of the reinforced sheet glass. Nevertheless, it can be understood that the maximum stress at the peripheral edge exceeds the limit stress L, and the reinforced sheet glass fractures from the edge.
Therefore, if the residual initial stress in the peripheral portion due to the correction of the warp is suppressed to a low level, it is possible to avoid crushing of the tempered sheet glass from the peripheral portion in the vacuum double glazing.
[0017]
The residual initial stress of the peripheral portion due to the correction of the warp, of course, changes based on the above-described warp amount X. FIG. 7 shows that these relationships are obtained from the experimental results, which vary depending on t.
In this chart, the vertical axis represents the amount of warpage X (mm) with respect to a unit length of 100 mm, the horizontal axis represents the surface compressive stress A (kg / cm 2 ), and the thickness t of the four types of strengthened sheet glass from 3 mm to 6 mm. As a result, each broken line indicates a limit in the plate thickness t, that is, a limit in avoiding crushing from a peripheral edge portion in a strengthened plate glass constituting a glass panel such as a vacuum double glazing.
[0018]
According to other experimental results including the experimental result of FIG. 7, when the thickness t of the reinforced sheet glass is 4 mm, the stress generated with the amount of warpage X (mm) in the peripheral portion with respect to a unit length of 100 mm is 650 (kg / kg). cm 2 ).
Therefore, from the experimental results so far, when the sheet thickness t is 4 mm, the warpage amount X (mm) allowed for the reinforced sheet glass is as follows, assuming that the surface compressive stress of the reinforced sheet glass is A (kg / cm 2 ). become.
[0019]
[Equation 3]
X ≦ (A + 800) /650×0.1
[0020]
Since the generated stress is inversely proportional to the cube of the plate thickness, if the plate thickness is t (mm), the following formula is established.
[0021]
(Equation 4)
Xt ≦ (A + 800) / 650 × (4 / t) 3 × 0.1
[0022]
Therefore, as long as the above-mentioned warpage X (mm) is within the range satisfying this equation, in a vacuum double glazing formed by using the tempered glass sheet, an impact is applied near the center of the vacuum double glazing. However, the particles are not crushed from the peripheral portion, but are crushed from near the impact.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of a vacuum insulating glass. FIG. 2 is a cross-sectional view of the vacuum insulating glass. FIG. 3 is a cross-sectional view showing a manufacturing process of the vacuum insulating glass. FIG. 5 is a partially cutaway plan view showing the manufacturing process. FIG. 5 is a cross-sectional view schematically showing the manufacturing process of the vacuum insulated glass. FIG. 6 is a table showing the impact test results of the vacuum insulated glass. Chart showing the relationship between the amount of warpage and the surface compressive stress [Explanation of symbols]
1, tempered glass 4 metal material P glass panel V gap

Claims (1)

一対の強化板ガラスを間隙部を介して対面配置し、その両強化板ガラスの周縁部を金属材料で直接接合して前記間隙部を気密に封止してあるガラスパネルであって、
前記両強化板ガラスの周縁部において、その周縁部に沿う方向における単位長さ100mmに対する両強化板ガラスの厚み方向における反り量をX(mm)、各強化板ガラスの表面圧縮応力をA(kg/cm)、板厚をt(mm)として、
Figure 2004210619
を満たすガラスパネル。
A glass panel in which a pair of tempered glass sheets are arranged to face each other via a gap portion, and the gap portions are hermetically sealed by directly joining peripheral edges of the both tempered glass sheets with a metal material,
In the peripheral portions of the both reinforced glass sheets, the amount of warpage in the thickness direction of the both reinforced glass sheets with respect to a unit length of 100 mm in the direction along the peripheral portions is X (mm), and the surface compressive stress of each reinforced glass sheet is A (kg / cm 2). ), And the plate thickness is t (mm),
Figure 2004210619
Meet the glass panel.
JP2003002137A 2003-01-08 2003-01-08 Glass panel Withdrawn JP2004210619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002137A JP2004210619A (en) 2003-01-08 2003-01-08 Glass panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002137A JP2004210619A (en) 2003-01-08 2003-01-08 Glass panel

Publications (1)

Publication Number Publication Date
JP2004210619A true JP2004210619A (en) 2004-07-29

Family

ID=32819966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002137A Withdrawn JP2004210619A (en) 2003-01-08 2003-01-08 Glass panel

Country Status (1)

Country Link
JP (1) JP2004210619A (en)

Similar Documents

Publication Publication Date Title
JP4203235B2 (en) Glass panel
JP4049607B2 (en) Glass panel manufacturing method and glass panel manufactured by the method
JP2003321255A (en) Translucent glass panel
WO2018207435A1 (en) Double glazing and method for manufacturing same
WO2002044098A1 (en) Glass panel
JPWO2019093321A1 (en) Glass panel
JP2008201662A (en) Method for manufacturing evacuated double glazing unit
WO2016130854A1 (en) Vacuum insulated glass unit with glass-to-metal seal and methods of assembling same
US20020064610A1 (en) Glass panel
CN103183467B (en) The method of manufacture vacuum insulation glass plate and thus manufactured glass plate
US20120131882A1 (en) Method for producing a laminated vacuum-tight connection between a glass pane and a metal frame, and laminated glass pane connection
JP2004210619A (en) Glass panel
JP2001172059A (en) Reduced pressured double glazing and method for producing the same
JP2002241149A (en) Glass panel
JP2002226236A (en) Glass panel and method for manufacturing the same
JP2002255593A (en) Method for manufacturing low pressure double glazing
JP2002167246A (en) Method of fabricating glass panel
US20200040645A1 (en) Vacuum Insulated Glazing Unit
JP2002326843A (en) Method for manufacturing glass panel and heating device of glass panel
CN111315702A (en) Glass panel
EP4073337B1 (en) Triple pane vacuum insulated glass unit
KR101453305B1 (en) Method for manufacturing vacuum glass panel
WO2020050302A1 (en) Vacuum glass and method for manufacturing same
JP2002167245A (en) Method of fabricating glass panel
JP2007153722A (en) Method of manufacturing pair glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A761 Written withdrawal of application

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A761