JP2004208538A - Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture - Google Patents

Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture Download PDF

Info

Publication number
JP2004208538A
JP2004208538A JP2002380211A JP2002380211A JP2004208538A JP 2004208538 A JP2004208538 A JP 2004208538A JP 2002380211 A JP2002380211 A JP 2002380211A JP 2002380211 A JP2002380211 A JP 2002380211A JP 2004208538 A JP2004208538 A JP 2004208538A
Authority
JP
Japan
Prior art keywords
methane
culture
bacterium
temperature
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002380211A
Other languages
Japanese (ja)
Inventor
Jun Tsubota
潤 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002380211A priority Critical patent/JP2004208538A/en
Publication of JP2004208538A publication Critical patent/JP2004208538A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/56

Landscapes

  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for culturing a methane-assimilating bacterium, by which the methane-assimilating bacterium can efficiently be cultured using methane as a carbon source at a low cost, and to provide a feed which has a high nutritive value and can efficiently be produced at a low cost. <P>SOLUTION: This method for culturing the methane-assimilating bacterium is characterized by using a thermophilic methane-assimilating bacterium as the methane-assimilating bacterium and performing the supply of a culture medium into a culture tank and the extraction of the culture liquid to control the concentration of the bacterium in the culture liquid and prevent the rise of the temperature of the culture liquid. The thermophilic methane-assimilating bacterium obtained by the culture method is utilized as a feed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタン資化細菌の培養方法に関する。また、本発明は、栄養価が高く、安価で効率的に生産される飼料に関する。
【0002】
【従来の技術】
地球人口の増加により、21世紀には食糧不足が深刻となることが予測される。
穀物類は、太陽光、土地、時間を必要とするため、食糧が不足したとしても、直ちに増産することはできない。そのような場合、必然的に、家畜等の飼料用の穀物類が人間の食品として使用されることになり、家畜や養殖魚等の飼育や養殖に必要な飼料が不足することが懸念される。
【0003】
1970年代、太陽に依存しない炭素源として、石油や天然ガスが注目された。これを炭素源として微生物を生産し、その微生物をそのまま飼料とする技術(Single Cell Protein, 以下SCPという。)が開発された。石油系のSCPとして、パラフィンを炭素源として用いて生産した微生物を飼料として利用することが実用化されている。しかしながら、今後食糧が不足する時期と、石油が不足する時期はほぼ同じ時期であると予測されるため、石油系SCPが世界の食糧事情を救うとは考えにくい。また、石油系SCPのタンパク質含有量は62〜64%であり(例えば、非特許文献1参照。)、タンパク質含量の点でも満足できるものではない。
【0004】
一方、石油より豊富に存在する天然ガスであるメタンを炭素源として用いてSCPを製造できれば、飼料として極めて有用である。しかしながら、これまでに見つかっているメタン資化細菌は生育温度が中温(30−35℃)のものがほとんどであり(例えば、非特許文献2参照。)、しかもメタン資化細菌はメタン資化の際メタン1mol当たり101kcalという大量の熱を発生するため、常温で生育するメタン資化細菌を用いると除熱のために大規模な冷却設備が必要となり、実用化は困難であった(例えば、非特許文献3参照。)。また、従来のメタン資化細菌は増殖速度が0.08/h程度と遅く、産業利用するには十分でなかった(例えば、非特許文献4参照。)。
【0005】
このような従来技術を背景として、メタン資化細菌を飼料として利用するために、安価で効率的に、メタンを炭素源として用いてメタン資化細菌を培養する技術の開発が求められていた。
【0006】
【非特許文献1】
Industrial Biotechnology Production of Microbial Biomass、A. Vinarov et al、「International Conference on Biomass for Energy, Indusry and Environment (6th) Athens」、1992年、p.566−569
【0007】
【非特許文献2】
Methanotrophic Bacteria、R. Hanson et al、「Microbiorogical Reviews」、アメリカ、1996年6月、第60巻、第2号、p.439−471
【0008】
【非特許文献3】
D.Wang、「Chemical Engoneering」、アメリカ、1968年、第15巻、第99号、
【0009】
【非特許文献4】
Effect of Temperature and Pressure on Growth and Methane Utiliztion bySeveral Methanotrophic Cultures、B. Soni et al、「Applied Biochemistry and Biotechnology」アメリカ、1998年、PartA vol70/72、p.729−738
【0010】
【発明が解決しようとする課題】
そこで本発明の目的は、上記のような従来の問題を解決することである。より詳細には、本発明は、安価で効率的に、メタンを炭素源として用いてメタン資化細菌を培養する方法を提供することを目的とするものである。更に、本発明は、安価で効率的に生産でき、栄養価が高い飼料を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
前記目的を達成するために本発明者は研究を重ねたところ、▲1▼メタン資化細菌を培養する際、好熱性メタン資化細菌、特に50℃以上で良好に生育する好熱性メタン資化細菌を用い、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中の該細菌濃度の制御及び培養液の温度上昇の抑制が可能であること、▲2▼好熱性メタン資化細菌としてメチロカルダム属T−025株(Methylocaldum sp. T−025、FERM P−18645)は、従来のメタン資化細菌に比して増殖速度が速く、有用であること、及び▲3▼上記培養方法で得られたメタン資化細菌は含有タンパク質含量が高く、飼料として有用であることを見出した。本発明は、かかる知見に基づいて完成したものである。
【0012】
即ち、本発明は下記に掲げるメタン資化細菌の培養方法である:
項1. メタン資化細菌を培養する方法であって、メタン資化細菌として好熱性メタン資化細菌を用い、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中の該細菌濃度の制御及び培養液の温度上昇の抑制を行うことを特徴とする、培養方法。
項2. メタン資化細菌を培養する方法であって、メタン資化細菌として好熱性メタン資化細菌を用い、メタンの通気供給、培養槽中に培地の供給及び培養液の抜き取りを行うことによって培養槽中の熱量バランスをとることを特徴とする、培養方法。
項3. 好熱性メタン資化細菌が寄託番号FERM P−18645として入手される細菌である、項1又は2に記載の方法。
【0013】
更に、本発明は、下記に掲げる飼料である:
項4. 項1乃至3のいずれかに記載の方法で得られる好熱性メタン資化細菌を有する飼料。
【0014】
【発明の実施の形態】
本発明のメタン資化細菌の培養方法は、メタン資化細菌として好熱性メタン資化細菌を用い、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中の該細菌濃度の制御及び培養液の温度上昇の抑制を行うことを特徴とするものである。
【0015】
本発明で使用する好熱性メタン資化細菌とは、メタンを炭素源として生育可能であって、高温条件下で生育可能な細菌のことである。当該好熱性メタン資化細菌の生育可能温度として、具体的には、通常40℃程度以上、好ましくは50℃程度以上、更に好ましくは60℃程度以上の範囲を挙げることができる。このように高温条件下で生育する好熱性メタン資化細菌を用いることにより培養温度を高温に設定できるので、培養槽内でメタン資化により生じる熱量を、メタンの供給、培地の供給及び培養液の抜き取りを行うことによって相殺することが可能となる。
【0016】
また、本発明に使用する好熱性メタン資化細菌は、該細菌の高生産性の観点からは、高い比増殖速度で増殖可能な細菌であることが望ましい。高い比増殖速度で増殖可能な好熱性メタン資化細菌として、具体的には、生育至適環境条件下で、比増殖速度(μ)が0.1/時間以上、好ましくは0.15/時間以上程度で増殖可能な細菌を挙げることができる。
【0017】
特に、生育至適温度が50〜65℃で比増殖速度(μ)が0.1/時間以上、好ましくは生育至適温度が50〜65℃で比増殖速度(μ)が0.15/時間以上のメタン資化細菌を使用することが望ましい。かかるメタン資化細菌を使用することによって、培養温度を高温に設定でき、更に該細菌の高い増殖速度を保つように培地の供給・培養液の抜き取り速度を高めることができるので、メタン資化細菌の培養で問題となるメタン資化に起因する培養液の温度の上昇を培地の供給による吸熱及び培養液の抜き取りによる除熱等により効果的に抑制できるので、一層効率的なメタン資化細菌の培養が可能となる。
【0018】
本発明に使用できる好熱性メタン資化細菌は、例えば、温泉等の高温環境から分離することができ、また従来公知のメタン資化細菌を変異処理することによっても得ることもできる。
【0019】
上記好熱性メタン資化細菌としては、具体的には、メチロカルダム(Methylocaldum)属、メチロサーマス(Methylothermus)属、メチロモナス(Methylomonas)属、メチロバクター(Methylobacter)属、メチロコッカス(Methylococcus)属、メチロシナス(Methylosinus)属、メチロシスチス(Methylocystis)属に属する好熱性の細菌を挙げることができる。
【0020】
特に、本発明において、該好熱性メタン資化細菌として、産業技術総合研究所特許生物寄託センターに寄託番号FERM P−18645として寄託されている微生物(メチロカルダム属T−025株(Methylocaldum sp. T−025))を好適に使用することができる。該微生物は、50℃で生育可能であり、比増殖速度も高いという点で、有利である。
【0021】
かかる好熱性メタン資化細菌の培養に使用する培養槽としては、例えば、通常の微生物培養槽に、メタンと空気の混合ガス供給装置或いは供給機構を備えているものが例示される。
【0022】
好熱性メタン資化細菌の培養に使用する培地は、微生物の生育に通常必要とされる窒素、リン、硫黄、カリウム、マグネシウム、一定量の銅イオン、鉄イオン、その他対象メタン資化細菌に特有の微量元素を含む無機塩培地を用いることができ、合成培養液、天然培養液のいずれも用いることができる。尚、培養液中にメタンが供給されるため、その他の炭素源の添加は必須ではない。
【0023】
本発明の培養方法においてメタン資化細菌の炭素源であるメタンは、メタンと空気との混合ガスとして培養液中に通気供給される。供給する該混合ガス中のメタン濃度は、通常1〜80容量%、好ましくは5〜50容量%、更に好ましくは20容量%程度である。メタンは、その採取源については特に限定されず、例えば天然ガス田から産出されるメタン、液化天然ガス中のメタン、都市ガス中のメタン、廃水・廃棄物等のメタン発酵により得られるメタン等を使用できる。また、培養槽から排出されるガス中に培養液中に溶解せずに排出されたメタンが含まれている場合には、該排出ガスをそのまま或いは必要に応じてメタンを補充して、再度培養液中に通気供給することもできる。また、混合ガスは、空気の代わりに酸素を混合したものでもよい。
【0024】
尚、メタンと空気(又は酸素)を混合することによる爆発の恐れを避けるために、混合ガスの代わりに、メタンと空気(又は酸素)を交互に供給してもよい。
【0025】
本発明のメタン資化細菌の培養方法は、培養槽中に培地の供給及び培養液の抜き取りを実施することによって、培養液中の該細菌濃度の制御及び培養液の温度上昇の抑制を行う。即ち、該培養方法は、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中のメタン資化細菌濃度を制御して効率的な培養を行い、併せて培養槽中でメタン資化により不可避的に生じる培養液の温度の上昇を培地の供給による吸熱及び培養液の抜き取りによる除熱によって抑制するものである。
【0026】
かかる培養方法の一つの実施態様として、培地の供給、培養液の抜き取り及びメタンの通気供給を行うことによって、培養液中で所定範囲の細菌濃度を保ちつつ、更に培養槽中でメタン資化により生じる熱量を、培地の供給による吸熱及び培養液の抜き取りによる除熱に加えて、通気供給された混合ガスによる吸熱及び培養液の自然放熱によって相殺して培養槽中の熱量バランスを保持する培養方法を挙げることができる。ここでいう培養槽中の「熱量バランスをとる」或いは「熱量バランスを保持する」とは、培養液の温度に劇的な変化を与えない程度で熱量バランスを保つことであり、例えば培養液の温度が設定培養温度の±5℃程度、好ましくは±2℃程度、更に好ましくは±1℃程度の範囲内となるように熱量バランスを保つことである。このような範囲内で熱量バランスをとることによって、例えば一つの実施態様として、培養槽に大規模な冷却装置を要することなく、メタン資化細菌の培養が可能となる。
【0027】
培養槽中への培地の供給及び培養液の抜き取り方法としては、例えば、培養を行いながら培養液の抜き取り及び培地の供給を逐次実施する方法や、培養を行いながら培養液の抜き取り及び培地の供給を同時に実施する方法等を挙げることができる。また例えば、培地の供給量と培養液の抜き取り量を全体として等しくなるように設定すると、培養を継続的に実施できる点で有利である。
【0028】
尚、供給する培地の温度は、培養温度未満であればよいが、メタン資化により生じる培養液の温度の上昇抑制という観点からは、常温又はそれ以下であることが望ましい。
【0029】
培地の供給及び培養液の抜き取り速度又は量は、所定範囲の菌体濃度を保持する範囲内で、メタン資化により生じる培養液の温度の上昇を抑制できるように設定される。好ましくは、培地の供給及び培養液の抜き取り速度又は量は、所定範囲の菌体濃度を保持する範囲内で、培養槽内でメタン資化により生じる熱量を、培地の供給による吸熱、培養液の抜き取りによる除熱、通気供給された混合ガスによる吸熱及び培養液の自然放熱によって相殺できるように、設定される。具体的には、かかる培地の供給及び培養液の抜き取り速度又は量は、その供給・抜き取り方法、使用する細菌の種類、培養液中の細菌濃度、メタン資化速度、培養温度、供給する培地の温度、混合ガスの供給方法及び量、培養液量、培養液の自然放熱量等に応じて適宜設定される。
【0030】
例えば、培地の供給及び培養液の抜き取り速度又は量の目安として、培養液中のメタン資化細菌濃度が乾燥菌体重量に換算して1g/mL以上、好ましくは5〜15g/mL程度となる範囲内で保たれるように、培養液の抜き取り及び培地の供給速度を設定することを挙げることができる。このような細菌濃度となるように制御することによって、より効率的な培養を行うことが可能となる。
【0031】
また、例えば、培地の供給及び培養液の抜き取り速度又は量の目安として、滞留時間が、0.5〜10日、好ましくは0.5〜5日、更に好ましくは1〜3日程度となる範囲を挙げることができる。
【0032】
前述するように、培養液中に供給される混合ガスは、培養液への炭素源の供給に加えて、該混合ガスの吸熱によってメタン資化により生じる熱量の相殺にも寄与する。このようにメタン資化により生じる熱量を相殺するように混合ガスを供給するには、該混合ガスの供給速度を培養液量、培養槽の深さ、ガス中のメタンの混合割合、ガス分散の方法、培養温度、メタン資化細菌のメタン(及び酸素)利用速度等に応じて適宜設定すればよい。一例として、混合ガスの供給速度として、1Lの培養液に対して1日当たり供給ガス量が0.1〜10L、好ましくは0.2〜5L、更に好ましくは0.4〜2Lとなる速度を挙げることができる。
【0033】
培養液中に該混合ガスを通気供給する方法は特に制限されないが、メタン及び酸素の溶解効果及びメタン資化により生じる熱量の相殺効果の観点からは、培地中で微細な気泡を形成するように培養槽の深い位置から供給し、更に培養槽内部を激しく攪拌することが好ましい。
【0034】
尚、培養槽中における培地の供給位置については特に制限されず、例えば培養槽中の培養液の水位より上部であってもよいし、また該水位より下部であってもよい。更に、培養液の抜き取り位置についても特に制限されず、例えば培養槽中の培養液の水位の上部、中部、又は下部のいずれであってもよい。好ましい一つの実施態様として、供給した培地が培養液中に拡散する前に抜き取られることのないように、培地供給位置及び培養液抜き取り位置が設定さているものが例示される。
【0035】
培養温度は、使用する好熱性メタン資化細菌の生育可能温度又は生育至適温度、培養槽中の熱量バランス等に応じて適宜設定すればよい。一例として、培養温度が30〜65℃、好ましくは40〜65℃、更に好ましくは50〜65℃を挙げることができる。
【0036】
また、培養中の培地のpH、培養槽中の攪拌条件等のその他のパラメータについても、使用する好熱性メタン資化細菌の特性に応じて適宜調整することができる。
【0037】
尚、効率的な培養という観点からは、メタン資化細菌の培養条件は、培養槽中の熱量バランスが保たれる範囲内で、培養槽中で培養するメタン資化細菌が高い比増殖速度を保持するように各種パラメータを設定することが望ましい。
【0038】
斯くして培養されたメタン資化細菌は、タンパク質が菌体内に乾燥重量比で70〜75重量%程度と高い割合で含有されており、栄養価が高いので、飼料として有用である。故に、上記好熱性メタン資化細菌の培養液、該培養液から遠心分離や膜分離等の公知の菌体分離手段を用いて水分を分離したペースト状の菌体、該ペースト状の菌体を乾燥した乾燥菌体、或いは更に該乾燥菌体を破砕、粉砕又はペレット化等の加工したものを飼料として使用することができる。飼料の保存性や易運搬性の観点からは、乾燥状態のものが好ましい。
【0039】
当該飼料は、給餌対象とする動物は特に制限されず、例えば、牛や豚等の家畜、家禽、養殖魚等の飼料として使用することができる。
【0040】
また、当該飼料は、タンパク質含有量が高く、その栄養価が高いので、そのまま単独で飼料として使用してもよく、また配合飼料の一成分として配合して使用してもよい。
【0041】
【実施例】
以下、実施例及び試験例により本発明をより詳細に説明する。ただし、本発明はかかる実施例等によって何ら制限されるものではない。
【0042】
試験例1
メタン資化細菌として、Methylocaldum属T−025株(FERM P−18645)を用いて、該細菌の生育可能温度を検討するために、下記試験を行った。
【0043】
15mlのL字型試験管に、下表1に示す無機塩培地7.25ml及びMethylocaldum属T−025株の前培養液0.25mlを添加し、試験管内の空気を空気:メタン=4:1の混合ガスと置換後、密栓した。上記試験管を11本準備し、各々を48℃から56℃の温度域で振とうしながら培養し、20時間後の培地の濁度(OD)を測定した。
【0044】
【表1】

Figure 2004208538
【0045】
得られた結果を表2に示す。この結果、Methylocaldum属T−025株は、48〜54℃の温度領域で良好に増殖できることが明らかとなった。
【0046】
また、本試験において得られた菌体のタンパク質含有割合を測定した結果、乾燥重量比で76重量%であった。従来飼料として用いられる菌体の一般的なタンパク質含有割合は乾燥重量比で62〜64重量%であるので、Methylocaldum属T−025株は、タンパク質含有割合が高く、飼料として有用であることが確認された。
【0047】
【表2】
Figure 2004208538
【0048】
試験例2
Methylocaldum属T−025株の比増殖速度を評価するために下記試験を行った。500ml容量の三角フラスコに、100mlの表1に示す無機塩培地及びMethylocaldum属T−025株の前培養液1mlを入れ、フラスコ内の空気を空気:メタン=4:1の混合ガスと置換後、密栓した。菌の生育に伴い消費されるメタン及び酸素を補うために、酸素:メタン=1:1の混合ガスを2Lのガスバッグに入れ、これを三角フラスコに接続し、50℃で3日間振とう培養を行った。比較として、同じ装置で、常温菌の代表株であるMethylosinus trichosporium OB3b株(ATCC No. 35070)を用いて、30℃で3日間振とう培養を行った。両培養における対数増殖期の1時間当たりの比増殖速度(μ)を測定した。
【0049】
この結果、Methylocaldum属T−025株の培養では、比増殖速度(μ)が0.17/時間であったのに対して、Methylosinus trichosporium OB3b株の培養では比増殖速度(μ)が0.08/時間であることが確認された。この結果から、Methylocaldum属T−025株を利用すると比増殖速度が常温菌に比して2倍程度であり、該細菌は優れた増殖特性を有していることが明らかとなった。
【0050】
実施例1
100mlの培養槽を用いて、下記条件でMethylocaldum属T−025株の培養を行うと、定常状態では1日当たりの総メタン資化量は500mg程度となり、培養液中の菌濃度が乾燥菌体重量で約10g/Lとなる。
【0051】
培地: 無機塩培地(表1)100m
混合ガス: メタン:空気=1:5
混合ガス供給速度:0.2L/日
培養温度: 50℃
滞留時間: 1日(100ml/日の速度で連続的に培地の供給及び抜き取りを行う。)
本培養における供給する培地を50℃まで昇温するのに必要な1日当たりの熱量は100×(50−20)=3000cal程度であるのに対して、メタン資化により発生する1日当たりの熱量(1日当たり資化されるメタンの量は500mg程度)は500/16×101=3156cal程度であるので、両者の熱量の差は150cal程度と、混合ガスの供給による吸熱や自然放熱で相殺される程度の熱量の差である。このように、本培養では、培養槽内の熱量バランスが保たれるので、特段の冷却装置を使用することなく、培養温度を制御することが可能である。
【0052】
比較例1
生育温度30℃である通常のメタン資化細菌(Methylosinus trichosporium OB3b株(ATCC No. 35070))を用いて、培養温度を30℃とする以外は実施例1と同様の培養を行うと、培養槽内の熱量バランスをとることができず、その結果、培養液の温度の顕著な上昇がみられるため、冷却装置を使用して培養温度を制御する必要がある。
【0053】
本培養における熱量バランスとしては、供給する培地を30℃まで昇温するのに必要な1日当たりの熱量は100×(30−20)=1000cal程度であるのに対して、メタン資化により発生する1日当たりの熱量(1日当たり資化されるメタンの量は500mg程度)は500/16×101=3156cal程度である。故に、メタン資化による発熱量と培地の供給による吸熱量の差は2500cal程度と、混合ガスの供給による吸熱や自然放熱で相殺できる熱量の範囲を超えており、該熱量差を相殺するのに多大なエネルギー(冷却)を要する。
【0054】
【発明の効果】
本発明のメタン資化細菌の培養方法によれば、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中の該細菌濃度を制御して培養効率を向上させることができる。更に、本発明のメタン資化細菌の培養方法によれば、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、細菌濃度の制御と供に、メタン資化細菌の培養で問題となる培養液の温度上昇を抑制することができる。そして更に、本発明の培養方法によれば、培養槽中でメタン資化により生じる熱量を、通気供給された混合ガスによる吸熱、供給された培地による吸熱、培養液の抜き取りによる除熱及び培養液の自然放熱で相殺して、培養槽中の熱量バランスをとることができる。従って、本発明の一つの実施態様として、大規模な冷却装置を使用することなく、メタン資化細菌を効率的に培養することが可能となる。
【0055】
また、本発明の培養方法で得られるメタン資化細菌は、タンパク質含量が乾燥重量で通常70〜76重量%程度と高い割合で含有されており、栄養価が高いため飼料として有用であり、飼料効率(増体重効果)の高い飼料として期待される。
【0056】
更に、本発明の飼料は、地球上に豊富に存在し、また量的にも価格的にも安定して供給される天然ガスを原料として生産されるという点においても有用がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for culturing methane-utilizing bacteria. The present invention also relates to a feed that has high nutritional value, is inexpensive, and is efficiently produced.
[0002]
[Prior art]
It is predicted that the food shortage will become severe in the 21st century due to the increase in the global population.
Cereals require sunlight, land and time, so even if food is scarce, production cannot be increased immediately. In such a case, cereals for feed such as livestock will inevitably be used as human food, and there is a concern that there is a shortage of feed required for raising and breeding livestock and farmed fish. .
[0003]
In the 1970s, oil and natural gas attracted attention as carbon sources independent of the sun. A technology (Single Cell Protein, hereinafter referred to as SCP) has been developed in which microorganisms are produced using this as a carbon source and the microorganisms are used as feed as they are. As a petroleum-based SCP, utilization of microorganisms produced using paraffin as a carbon source as feed has been put to practical use. However, it is unlikely that petroleum-based SCP will save the world's food situation, because it is predicted that the time of food shortage and the time of oil shortage will be almost the same in the future. Further, the protein content of petroleum-based SCP is 62 to 64% (for example, see Non-Patent Document 1), which is not satisfactory in terms of protein content.
[0004]
On the other hand, if SCP can be produced using methane, which is a natural gas that is present in abundance more than petroleum, as a carbon source, it is extremely useful as feed. However, most of the methane-utilizing bacteria found so far have a medium growth temperature (30-35 ° C.) (for example, see Non-Patent Document 2). In this case, since a large amount of heat of 101 kcal is generated per 1 mol of methane, a large-scale cooling facility is required for removing heat when methane assimilating bacteria growing at room temperature are used, and practical use has been difficult (for example, See Patent Document 3.). In addition, the conventional methane assimilating bacterium has a low growth rate of about 0.08 / h, which is not sufficient for industrial use (for example, see Non-Patent Document 4).
[0005]
Against the background of such conventional techniques, there has been a demand for the development of a technique for inexpensively and efficiently cultivating methane-utilizing bacteria using methane as a carbon source in order to utilize the methane-utilizing bacteria as feed.
[0006]
[Non-patent document 1]
Industrial Biotechnology Production of Microbial Biomass, A.M. Vinarov et al, "International Conference on Biomass for Energy, Indusry and Environment (6 th) Athens ", 1992, p. 566-569
[0007]
[Non-patent document 2]
Metanotropic Bacteria, R.A. Hanson et al, "Microbiological Reviews", USA, June 1996, Vol. 60, No. 2, p. 439-471
[0008]
[Non-Patent Document 3]
D. Wang, "Chemical Engineering", USA, 1968, Vol. 15, No. 99,
[0009]
[Non-patent document 4]
Effect of Temperature and Pressure on Growth and Methane Utilization by Several Methanotrophic Cultures, B.E. Soni et al, "Applied Biochemistry and Biotechnology" USA, 1998, Part A vol 70/72, p. 729-738
[0010]
[Problems to be solved by the invention]
Then, an object of the present invention is to solve the above-mentioned conventional problems. More specifically, an object of the present invention is to provide a method for inexpensively and efficiently culturing methane-utilizing bacteria using methane as a carbon source. Further, another object of the present invention is to provide a feed that is inexpensive, can be efficiently produced, and has high nutritional value.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted repeated studies. (1) When culturing methane-utilizing bacteria, thermophilic methane-utilizing bacteria, particularly thermophilic methane-utilizing bacteria that grow well at 50 ° C. or higher. By using a bacterium to supply a culture medium into a culture tank and withdrawing a culture solution, it is possible to control the concentration of the bacteria in the culture solution and to suppress a rise in the temperature of the culture solution. (2) Thermophilic methane Methylocardum sp. T-025 strain (Methylocardum sp. T-025, FERM P-18645) as an assimilating bacterium has a higher growth rate and is more useful than conventional methane assimilating bacteria. The methane-utilizing bacteria obtained by the culture method were found to be high in protein content and useful as feed. The present invention has been completed based on such findings.
[0012]
That is, the present invention is a method for culturing methane-assimilating bacteria listed below:
Item 1. A method for culturing a methane-utilizing bacterium, wherein a thermophilic methane-utilizing bacterium is used as the methane-utilizing bacterium, and the culture medium is supplied to the culturing tank and the culture medium is withdrawn. And controlling the temperature of the culture solution.
Item 2. A method for culturing methane-assimilating bacteria, comprising using a thermophilic methane-assimilating bacterium as the methane-assimilating bacterium, supplying aeration of methane, supplying the culture medium into the culturing tank, and extracting the culture solution. A method for culturing, comprising:
Item 3. Item 3. The method according to Item 1 or 2, wherein the thermophilic methane assimilating bacterium is a bacterium obtained under accession number FERM P-18645.
[0013]
Further, the present invention provides a feed as described below:
Item 4. Item 4. A feed comprising the thermophilic methane-utilizing bacterium obtained by the method according to any one of Items 1 to 3.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for culturing methane-utilizing bacteria of the present invention uses a thermophilic methane-utilizing bacterium as the methane-utilizing bacterium, and supplies the culture medium into the culture tank and withdraws the culture liquid, whereby the bacterial concentration in the culture liquid is reduced. And controlling the temperature rise of the culture solution.
[0015]
The thermophilic methane-utilizing bacterium used in the present invention is a bacterium that can grow using methane as a carbon source and can grow under high-temperature conditions. The temperature at which the thermophilic methane-assimilating bacterium can grow specifically includes a range of usually about 40 ° C. or more, preferably about 50 ° C. or more, and more preferably about 60 ° C. or more. As described above, the culture temperature can be set to a high temperature by using the thermophilic methane-assimilating bacterium that grows under high-temperature conditions. It is possible to cancel out by extracting the.
[0016]
The thermophilic methane-utilizing bacterium used in the present invention is preferably a bacterium that can grow at a high specific growth rate from the viewpoint of high productivity of the bacterium. As a thermophilic methane-assimilating bacterium capable of growing at a high specific growth rate, specifically, a specific growth rate (μ) of 0.1 / hour or more, preferably 0.15 / hour under the optimal growth environment conditions Bacteria that can grow in the above degree can be mentioned.
[0017]
In particular, the specific growth rate (μ) is 0.1 / hour or more at an optimum growth temperature of 50 to 65 ° C., and preferably 0.15 / hour at a specific growth rate of 50 to 65 ° C. It is desirable to use the above methane-utilizing bacteria. By using such a methane-assimilating bacterium, the culture temperature can be set to a high temperature, and further, the supply rate of the culture medium and the speed of withdrawing the culture solution can be increased so as to maintain a high growth rate of the bacterium. The increase in temperature of the culture solution caused by methane utilization, which is a problem in cultivation, can be effectively suppressed by endothermic by supplying the culture medium and heat removal by extracting the culture solution. Culture becomes possible.
[0018]
The thermophilic methane-utilizing bacterium that can be used in the present invention can be isolated, for example, from a high-temperature environment such as a hot spring, or can be obtained by mutating a conventionally known methane-utilizing bacterium.
[0019]
Specific examples of the thermophilic methane-assimilating bacterium include the genus Methylocardum, the genus Methylothermus, the genus Methylomonas, the genus Methylobacter, the genus Methylococcus, and the like. And thermophilic bacteria belonging to the genus Methylocytis.
[0020]
In particular, in the present invention, as the thermophilic methane assimilating bacterium, a microorganism (Methylocardum sp. T-025 strain (Methylocardum sp. T- 025)) can be suitably used. The microorganism is advantageous in that it can grow at 50 ° C. and has a high specific growth rate.
[0021]
Examples of a culture tank used for culturing such thermophilic methane-assimilating bacteria include, for example, an ordinary microorganism culture tank provided with a mixed gas supply device or supply mechanism of methane and air.
[0022]
The medium used for cultivation of thermophilic methane-assimilating bacteria is nitrogen, phosphorus, sulfur, potassium, magnesium, a certain amount of copper ions, iron ions, and other specific methane-assimilating bacteria normally required for the growth of microorganisms. Inorganic salt medium containing a trace element can be used, and either a synthetic culture solution or a natural culture solution can be used. In addition, since methane is supplied to the culture solution, addition of other carbon sources is not essential.
[0023]
In the cultivation method of the present invention, methane, which is a carbon source of methane-utilizing bacteria, is aerated and supplied into the culture solution as a mixed gas of methane and air. The methane concentration in the supplied mixed gas is usually about 1 to 80% by volume, preferably about 5 to 50% by volume, and more preferably about 20% by volume. The source of methane is not particularly limited, and examples thereof include methane produced from natural gas fields, methane in liquefied natural gas, methane in city gas, and methane obtained by methane fermentation of wastewater and waste. Can be used. If the gas discharged from the culture tank contains methane discharged without being dissolved in the culture solution, the discharged gas may be used as it is or may be supplemented with methane as necessary, followed by culturing again. It is also possible to supply aeration into the liquid. The mixed gas may be a mixture of oxygen instead of air.
[0024]
Note that methane and air (or oxygen) may be supplied alternately instead of the mixed gas in order to avoid a risk of explosion due to mixing of methane and air (or oxygen).
[0025]
In the method for culturing methane-utilizing bacteria of the present invention, the concentration of the bacterium in the culture solution and the suppression of the temperature rise of the culture solution are controlled by supplying the medium into the culture tank and extracting the culture solution. That is, the culturing method controls the concentration of methane assimilating bacteria in the culture solution to perform efficient cultivation by supplying the medium into the culture tank and extracting the culture solution. The temperature rise of the culture solution which is inevitably caused by methane utilization is suppressed by heat absorption by supplying the culture medium and heat removal by extracting the culture solution.
[0026]
As one embodiment of such a culturing method, by supplying a medium, extracting a culture solution and supplying aeration of methane, while maintaining a bacterial concentration in a predetermined range in the culture solution, furthermore, methane assimilation is performed in a culture tank. A culture method that maintains the calorie balance in the culture tank by offsetting the generated heat by heat absorption by supplying the culture medium and heat removal by extracting the culture solution, and by heat absorption by the aerated gas mixture and natural heat radiation of the culture solution. Can be mentioned. The term "balance calorie" or "maintain calorie balance" in the culture tank as used herein means to maintain calorie balance to such an extent that the temperature of the culture solution is not drastically changed. The calorie balance is maintained so that the temperature is within a range of about ± 5 ° C. of the set culture temperature, preferably about ± 2 ° C., and more preferably about ± 1 ° C. By balancing the calorific value within such a range, for example, as one embodiment, cultivation of methane-utilizing bacteria can be performed without requiring a large-scale cooling device in the culture tank.
[0027]
Examples of the method of supplying the culture medium into the culture tank and extracting the culture medium include, for example, a method of sequentially performing the extraction of the culture medium and the supply of the culture medium while performing the culture, and the extraction of the culture medium and the supply of the culture medium while performing the culture. At the same time. Further, for example, setting the supply amount of the culture medium and the extraction amount of the culture solution as a whole is advantageous in that the culture can be continuously performed.
[0028]
The temperature of the medium to be supplied may be lower than the culture temperature, but is preferably room temperature or lower from the viewpoint of suppressing a rise in the temperature of the culture solution caused by methane utilization.
[0029]
The supply rate of the culture medium and the extraction rate or amount of the culture solution are set so as to suppress an increase in the temperature of the culture solution caused by methane assimilation within a range in which the cell concentration in a predetermined range is maintained. Preferably, the supply speed of the culture medium and the extraction speed or amount of the culture solution are within a range that maintains a predetermined range of the cell concentration, the amount of heat generated by methane assimilation in the culture tank is absorbed by the supply of the culture medium, It is set so that the heat can be offset by heat removal by extraction, heat absorption by the mixed gas supplied by ventilation, and natural heat release of the culture solution. Specifically, the supply speed and amount of the supply of the culture medium and the extraction of the culture medium are determined by the method of supply and extraction, the type of bacteria used, the bacterial concentration in the culture medium, the rate of methane utilization, the culture temperature, and the culture medium to be supplied. The temperature is appropriately set according to the supply method and amount of the mixed gas, the amount of the culture solution, the amount of spontaneous heat release of the culture solution, and the like.
[0030]
For example, as a measure of the supply rate of the culture medium and the speed or amount of withdrawal of the culture solution, the concentration of methane assimilating bacteria in the culture solution is 1 g / mL or more, preferably about 5 to 15 g / mL, in terms of the dry cell weight. It may be mentioned that the culture medium is withdrawn and the medium supply rate is set so as to be maintained within the range. By controlling such a bacterial concentration, more efficient culture can be performed.
[0031]
In addition, for example, as a measure of the supply speed or the amount of culture medium withdrawal and culture medium supply, the residence time is in the range of 0.5 to 10 days, preferably 0.5 to 5 days, and more preferably about 1 to 3 days. Can be mentioned.
[0032]
As described above, the mixed gas supplied to the culture solution contributes to the offset of the amount of heat generated by methane utilization by the endothermic heat of the mixed gas in addition to the supply of the carbon source to the culture solution. In order to supply the mixed gas so as to offset the heat generated by the methane assimilation, the supply rate of the mixed gas is determined by adjusting the amount of the culture solution, the depth of the culture tank, the mixing ratio of methane in the gas, and the gas dispersion. What is necessary is just to set suitably according to a method, culture temperature, the utilization rate of methane (and oxygen) of methane-utilizing bacteria, and the like. As an example, the supply rate of the mixed gas is such that the supply gas amount per day is 0.1 to 10 L, preferably 0.2 to 5 L, more preferably 0.4 to 2 L per 1 L of the culture solution. be able to.
[0033]
The method of aerating and supplying the mixed gas into the culture solution is not particularly limited, but from the viewpoint of the dissolving effect of methane and oxygen and the effect of offsetting the amount of heat generated by methane assimilation, as to form fine bubbles in the medium. It is preferable to supply the solution from a deep position in the culture tank and further vigorously agitate the inside of the culture tank.
[0034]
In addition, the supply position of the culture medium in the culture tank is not particularly limited, and may be, for example, above the water level of the culture solution in the culture tank or below the water level. Further, the position for extracting the culture solution is not particularly limited, and may be, for example, any of the upper, middle, and lower portions of the water level of the culture solution in the culture tank. As a preferred embodiment, there is exemplified a medium in which a medium supply position and a culture solution withdrawal position are set so that the supplied medium is not extracted before diffusing into the culture solution.
[0035]
The cultivation temperature may be appropriately set according to the temperature at which the thermophilic methane assimilating bacteria to be used can grow or the optimum temperature for growth, the calorie balance in the culturing tank, and the like. As an example, the culture temperature may be 30 to 65 ° C, preferably 40 to 65 ° C, and more preferably 50 to 65 ° C.
[0036]
In addition, other parameters such as the pH of the culture medium during the culture and the stirring conditions in the culture tank can be appropriately adjusted according to the characteristics of the thermophilic methane-assimilating bacterium to be used.
[0037]
From the viewpoint of efficient culture, the culture conditions of the methane-assimilating bacterium are such that the methane-assimilating bacterium cultured in the culture tank has a high specific growth rate within a range in which the calorific value in the culture tank is maintained. It is desirable to set various parameters so as to hold them.
[0038]
The methane assimilating bacteria cultured in this manner are useful as feeds because the cells contain a high percentage of protein in the cells in a dry weight ratio of about 70 to 75% by weight and have a high nutritional value. Therefore, the culture solution of the thermophilic methane assimilating bacterium, a paste-form cell obtained by separating water from the culture solution using a known cell separation means such as centrifugation or membrane separation, the paste-form cell, The dried dried cells or those obtained by further processing such as crushing, crushing or pelletizing the dried cells can be used as feed. From the viewpoint of storage stability and easy transportability of the feed, the feed is preferably in a dry state.
[0039]
The feed is not particularly limited to animals to be fed, and can be used as feed for livestock such as cattle and pigs, poultry, and cultured fish.
[0040]
Further, the feed has a high protein content and a high nutritional value, and thus may be used as a feed alone or as a component of a compound feed.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. However, the present invention is not limited at all by the examples and the like.
[0042]
Test example 1
The following test was carried out to examine the growth temperature of the bacterium using the genus T-025 (FERM P-18645) as a methane assimilating bacterium.
[0043]
To a 15 ml L-shaped test tube, 7.25 ml of an inorganic salt medium shown in Table 1 below and 0.25 ml of a preculture of the strain T-025 of the genus Methylocardum were added, and the air in the test tube was air: methane = 4: 1. After the replacement with the mixed gas of Example 1, the container was sealed. Eleven test tubes were prepared, and each was cultured with shaking in a temperature range of 48 ° C. to 56 ° C., and the turbidity (OD) of the medium was measured after 20 hours.
[0044]
[Table 1]
Figure 2004208538
[0045]
Table 2 shows the obtained results. As a result, it was revealed that the T-025 strain of the genus Methylocalum can be favorably grown in a temperature range of 48 to 54 ° C.
[0046]
In addition, as a result of measuring the protein content of the cells obtained in this test, the dry weight ratio was 76% by weight. Since the general protein content of cells used as conventional feed is 62 to 64% by weight on a dry weight basis, the T-025 strain of the genus Methylocalum has a high protein content and is confirmed to be useful as feed. Was done.
[0047]
[Table 2]
Figure 2004208538
[0048]
Test example 2
The following test was performed to evaluate the specific growth rate of the T-025 strain of the genus Methylocalum. In a 500 ml Erlenmeyer flask, 100 ml of the inorganic salt medium shown in Table 1 and 1 ml of a preculture of the Methylaldum genus T-025 strain were placed, and the air in the flask was replaced with a mixed gas of air: methane = 4: 1. Sealed. In order to supplement the methane and oxygen consumed during the growth of the bacteria, a mixed gas of oxygen: methane = 1: 1 is placed in a 2 L gas bag, connected to an Erlenmeyer flask, and shake-cultured at 50 ° C. for 3 days. Was done. For comparison, shaking culture was performed at 30 ° C. for 3 days using the same apparatus, using a representative strain of room-temperature bacteria, Methyrosinus trichosporium OB3b strain (ATCC No. 35070). The specific growth rate (μ) per hour during the logarithmic growth phase in both cultures was measured.
[0049]
As a result, the specific growth rate (μ) was 0.17 / hour in the culture of the T-025 strain of the genus Methylocalum, whereas the specific growth rate (μ) was 0.08 in the culture of the Methylosinus trichosporium OB3b strain. / Hour. From these results, it was revealed that the specific growth rate was about twice as high as that of a normal-temperature bacterium when the strain M-025 was used, and that the bacterium had excellent growth characteristics.
[0050]
Example 1
In a steady state, the total amount of methane assimilated per day is about 500 mg, and the bacterial concentration in the culture solution is about 100 mg. Becomes about 10 g / L.
[0051]
Medium: 100 m 3 of inorganic salt medium (Table 1)
Mixed gas: methane: air = 1: 5
Mixed gas supply rate: 0.2 L / day Culture temperature: 50 ° C
Residence time: 1 day (the medium is continuously supplied and withdrawn at a rate of 100 ml / day)
The amount of heat per day required to raise the temperature of the medium supplied in the main culture to 50 ° C. is about 100 × (50−20) = 3000 cal, whereas the amount of heat per day generated by methane assimilation ( (The amount of methane assimilated per day is about 500 mg) is about 500/16 × 101 = 3156 cal, so the difference between the two calories is about 150 cal, which is offset by heat absorption and natural heat radiation by the supply of the mixed gas. Is the difference in the amount of heat. As described above, in the main culture, the calorie balance in the culture tank is maintained, so that the culture temperature can be controlled without using a special cooling device.
[0052]
Comparative Example 1
When the same cultivation as in Example 1 was carried out using a normal methane assimilating bacterium (Methyrosinus trichosporium OB3b strain (ATCC No. 35070)) having a growth temperature of 30 ° C., except that the culture temperature was 30 ° C., a culture tank was obtained. It is not possible to balance the amount of heat in the inside, and as a result, the temperature of the culture solution rises remarkably. Therefore, it is necessary to control the culture temperature using a cooling device.
[0053]
As for the calorie balance in the main culture, the calorific value required to raise the temperature of the supplied medium to 30 ° C. per day is about 100 × (30−20) = 1000 cal, but it is generated by methane utilization. The amount of heat per day (the amount of methane assimilated per day is about 500 mg) is about 500/16 × 101 = 3156 cal. Therefore, the difference between the amount of heat generated by methane utilization and the amount of heat absorbed by the supply of the culture medium is about 2500 cal, which exceeds the range of the amount of heat absorbed by the supply of the mixed gas and the amount of heat that can be offset by natural heat radiation. Requires a lot of energy (cooling).
[0054]
【The invention's effect】
According to the method for culturing methane-utilizing bacteria of the present invention, by supplying a medium into a culture tank and extracting a culture solution, the concentration of the bacteria in the culture solution can be controlled to improve the culture efficiency. . Furthermore, according to the method for cultivating methane-utilizing bacteria of the present invention, by supplying a culture medium into the culture tank and extracting the culture solution, the control of the bacterial concentration and the cultivation of methane-utilizing bacteria pose a problem. The temperature rise of the culture solution can be suppressed. Further, according to the culturing method of the present invention, the heat generated by methane utilization in the cultivation tank is absorbed by the mixed gas supplied by aeration, absorbed by the supplied culture medium, heat is removed by extracting the culture solution, and the culture solution is removed. Offset by the natural heat radiation of the cultivation tank. Therefore, as one embodiment of the present invention, it is possible to efficiently culture methane-utilizing bacteria without using a large-scale cooling device.
[0055]
The methane-utilizing bacterium obtained by the culturing method of the present invention has a high protein content, usually about 70 to 76% by dry weight, and is useful as a feed because of its high nutritional value. It is expected as a feed with high efficiency (weight gain effect).
[0056]
Furthermore, the feed of the present invention is useful in that it is produced from natural gas, which is abundant on the earth and supplied stably in terms of quantity and price.

Claims (4)

メタン資化細菌を培養する方法であって、メタン資化細菌として好熱性メタン資化細菌を用い、培養槽中に培地の供給及び培養液の抜き取りを行うことによって、培養液中の該細菌濃度の制御及び培養液の温度上昇の抑制を行うことを特徴とする、培養方法。A method for culturing a methane-utilizing bacterium, wherein a thermophilic methane-utilizing bacterium is used as the methane-utilizing bacterium, by supplying a culture medium into a culturing tank and extracting the culture liquid, the concentration of the bacterium in the culture liquid is reduced. And controlling the temperature of the culture solution. メタンの通気供給、培養槽中に培地の供給及び培養液の抜き取りを行うことによって培養槽中の熱量バランスをとることを特徴とする、請求項1に記載の培養方法。The cultivation method according to claim 1, wherein the amount of heat in the cultivation tank is balanced by supplying aeration of methane, supplying the culture medium into the cultivation tank, and extracting the culture solution. 好熱性メタン資化細菌が寄託番号FERM P−18645として入手される細菌である、請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the thermophilic methane assimilating bacterium is a bacterium obtained under accession number FERM P-18645. 請求項1乃至3のいずれかに記載の方法で得られる好熱性メタン資化細菌を有する飼料。A feed comprising the thermophilic methane-utilizing bacterium obtained by the method according to any one of claims 1 to 3.
JP2002380211A 2002-12-27 2002-12-27 Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture Pending JP2004208538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380211A JP2004208538A (en) 2002-12-27 2002-12-27 Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380211A JP2004208538A (en) 2002-12-27 2002-12-27 Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture

Publications (1)

Publication Number Publication Date
JP2004208538A true JP2004208538A (en) 2004-07-29

Family

ID=32816506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380211A Pending JP2004208538A (en) 2002-12-27 2002-12-27 Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture

Country Status (1)

Country Link
JP (1) JP2004208538A (en)

Similar Documents

Publication Publication Date Title
US20240060191A1 (en) Microorganisms and artificial ecosystems for the production of protein, food, and useful co-products from c1 substrates
Matassa et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria
Tsapekos et al. Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste
JP2019517775A5 (en)
JP2014530752A (en) Equilibrium system and method for production of microbial products
CN105722985A (en) Microbial conversion of methane
WO2012077250A1 (en) Method and system for producing and supplying biogas using mixed microalgae
EP4073255A1 (en) Strains and processes for single cell protein or biomass production
CN104726366B (en) The Denitrifying Phosphate Accumulating Organisms of one plant of high-efficient denitrification and dephosphorization and its application
Williams et al. Effect of nickel on biological methane generation from a laboratory poultry waste digester
JP2009279534A (en) Method for treating organic waste
US20070082387A1 (en) Method of hydrogen production combining a bioreactor with a nuclear reactor and associated apparatus
JP2024509263A (en) Method and system for growing microbial masses
JP2004208538A (en) Method for culturing methane-assimilating bacterium and feed having bacterium obtained by the culture
CN101497871B (en) Alcohol fermentation anaerobic high temperature bacterium culture medium, preparation and use thereof
US10400255B2 (en) Method of converting marine fish waste to biomethane
JPS5860992A (en) Preparation of hydrogen from green alga utilizing light and darkness cycle
Tian et al. Nutrient recovery from cyanobacteria biomasses using purple nonsulfur bacterium Rhodopseudomonas palustris.
JP2004208537A (en) Method for producing amino acid from methane-containing gas
US20230270082A1 (en) System and process for recycling biogenic carbon dioxide
Barnharst et al. Process optimization of aquaculture wastewater treatment using a mycoalgae biofilm
CN117229980B (en) Weissella sinica fermented feed and application and deodorization effect thereof
CN102154129A (en) Rhodosporidium paludigenum for degrading gossypol and application thereof
CN102154130A (en) Gossypol degrading strain and application thereof
Sunish et al. Microbial Biomass