JP2004208384A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004208384A
JP2004208384A JP2002373376A JP2002373376A JP2004208384A JP 2004208384 A JP2004208384 A JP 2004208384A JP 2002373376 A JP2002373376 A JP 2002373376A JP 2002373376 A JP2002373376 A JP 2002373376A JP 2004208384 A JP2004208384 A JP 2004208384A
Authority
JP
Japan
Prior art keywords
legs
phase
semiconductor switching
switching element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002373376A
Other languages
Japanese (ja)
Inventor
Hideki Oguchi
英樹 大口
Junichi Ito
淳一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002373376A priority Critical patent/JP2004208384A/en
Publication of JP2004208384A publication Critical patent/JP2004208384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of energizing elements as much as possible and to suppress the low order harmonic waves in a converter for converting three-phase AC power into dc. <P>SOLUTION: Three arms are constituted of two sets of legs made of two semiconductor switching elements and one set of legs made of two diodes. The ends of the respective three sets of the legs are connected to each other, and connecting points of the elements are respectively connected to the phases of the three-phase AC inputs. The four semiconductor switching elements constituting the two sets of the legs are subjected to 120° conductivity PWM control. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、三相交流を直流に変換する装置に関するものであり、詳しくは、スイッチング素子を用いて電源電圧より低い出力電圧を得るために構成された降圧形整流回路に関する。
【0002】
【従来の技術】
図2に三相ダイオードブリッジと降圧チョッパ回路により構成された従来の降圧形整流回路を示す。この整流回路では、三相交流をダイオードブリッジ10により直流に変換し、降圧チョッパ回路20を駆動することにより所望の直流出力電圧vdcを得ている。(特許文献1を参照)。ここでダイオードブリッジ10の入力線間電圧の実効値をvacとすると、このダイオードブリッジ10の直流出力電圧Eは下記(1)式で表されることはよく知られている。
=1.35vac・・・(1)
スイッチング素子10Sはパルス幅制御(以下PWM制御)を行う。この降圧チョッパ回路の入出力の電圧(Eとvdc)の関係は、スイッチング素子10Sのオン時間Tonとスイッチング周期(もしくはキャリア周期)Tで表されるオンデューティ比D(=Ton/T)を用いて下記(2)式で表される。但し、0≦D≦1である。
dc=D・E=1.35・D・vac・・・(2)
ダイオードブリッジの出力側にコンデンサが接続されたコンデンサインプット形整流回路では、電源電圧がコンデンサ充電電圧より高い場合に限り入力電流が流れる。したがって、ダイオードブリッジの入力電流はピーク値の高い電流波形を有する。
【0003】
ここで電源周波数を50Hzとする三相交流電源における相電圧v、v、v、線間電圧vUV、vVW、vWUと入力電流i、i、iのシミュレーション波形を図3に示す。この図3から各線間電圧が最大及び最小の時に、ピーク値の高い入力電流が流れていることが分かる。
ここで、相電圧、線間電圧及び入力電流のFFT(Fast Fourier Transform)による高調波解析結果を図4に示す。入力電流の基本波成分(1次=50Hz)を100%とすると5次高調波成分が80%、7次高調波成分が60%含まれ、低次高調波成分が多く含まれていることが分かる。
【0004】
【特許文献1】
特開平5−260757号公報
【0005】
【発明が解決しようとする課題】
図2に示したような従来の降圧形整流回路の場合、例えばU相からW相へ電流が流れる際には、ダイオード1D→スイッチング素子10S→リアクトルL1→負荷→ダイオード6Dの電流経路で通流し、この場合の通過素子数は5となる。このように、三相ダイオードブリッジと降圧チョッパ回路の2つの電力変換装置を組み合わせた回路では電流の通過素子数が多くなり、これに応じて素子における損失が大きくなってしまう。さらに、コンデンサインプット形のダイオード整流回路においては、その入力電流には大きな低次高調波成分が含まれてしまう。
【0006】
このため、本発明における目的は、1つの電力変換回路によって降圧形整流回路を構成し、回路構成の簡略化と、電流の通過素子数を減らすことで従来方式と比較して損失低減を図り、さらには入力電流の低次高調波成分を低減できる降圧形整流回路を提供することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、本発明では、三相交流入力を直流に変換する電力変換装置において、
2個の半導体スイッチング素子を互いに極性を同じにして直列接続したレッグを2組と、2個のダイオードを互いに極性を同じにして直列接続したレッグを1組と、を備え、これら3組のレッグのそれぞれの端部を、互いのレッグの半導体スイッチング素子またはダイオードの極性が同じになるようにして接続し、かつこの3組のレッグの接続点と三相の交流入力の各相とをそれぞれ接続した。
なお、本発明においては半導体スイッチング素子を逆耐圧を持つようにしてもよい。
【0008】
【発明の実施の形態】
図1に本発明の第1の実施形態を示す。
ここでは2組のスイッチングレッグと1組のダイオードレッグとを並列に接続している。図1においては、逆耐圧を持つ半導体スイッチング素子を用いた場合を示しているが、従来のように逆耐圧を持たない半導体スイッチング素子を用いる場合には、スイッチング素子と直列にダイオードを接続するべきであるが、結果電流の通過素子数が増加してしまうことになる。このため、図1に示すような逆耐圧を持つ半導体スイッチング素子を使用するほうが損失面では好ましい。
【0009】
スイッチング素子1S〜4SにPWM制御を行わせることによって、直流電流idcを制御し、整流回路の出力電圧vdcを所望の直流電圧に制御する。
次に図1の動作について説明する。
ここでは120°導通形の整流回路として動作させる。ここで、120°導通形とは、三相の各相の電流が3組のレッグの上側(下側)の素子が120°毎に通電して切り替わる方式のことを指す。すなわち、ここでは1S、2S、3D(4S、5S、6D)が順次120°毎に切り替わり通電する。ここで電源周波数を50Hzとした場合の相電圧v、v、vと入力電流i、i、iのシミュレーション波形を図5に、図5に示す区間Aの拡大波形を図6に示す。ちなみにここではスイッチング周波数(キャリア周波数)を10kHzとした例を示している。
ところで、ここでは詳細は省略するが、図1における降圧動作は、電流idcの指令値を基準としてスイッチング制御を行う、いわゆる電流形の制御を行うことで達成させている。この実施形態では、スイッチング素子にはキャリア波と、基準電流(一般にidcの指令値idc )に相当する直流量と、を比較して生成したPWM信号を与えてスイッチング制御を施している。
【0010】
このときの相電圧および入力電流のFFT解析結果を図7に示す。入力電流の基本波成分を100%とすると5次高調波成分は20%、7次高調波成分は14%程度になっている。このように、従来方式と比較すると、低次高調波成分が大幅に低減されていることが分かる。なお、低減したい低次高調波成分として、13次高調波(すなわち650Hz)までを考慮する場合、スイッチング周波数としてはこの次数より大きい、例えば電源周波数の20倍以上とすることで好ましい結果を得られることはいうまでもない。すなわち、7次高調波(350Hz)までを考慮する場合には、少なくとも電源周波数の7倍より大きいスイッチング周波数が望まれる。
【0011】
また、この図1において例えばU相からW相へ電流が流れる際には、スイッチング素子1S→リアクトルL1→負荷→ダイオード6Dという経路になるから、通過素子数は4となる。このため、従来と比べて通過素子数が低減できる。
【0012】
【発明の効果】
従来の降圧形整流回路では、ダイオードブリッジと降圧チョッパ回路の2つの電力変換回路を用いるため、通過素子数が多くなり、損失面で問題があった。さらに、コンデンサインプット形のダイオード整流回路においては、入力電流に含まれる低次高調波成分が大きいという問題も無視できなかった。
本発明では、1つの電力変換回路により電源電圧を降圧できるため、従来方式と比較して回路構成の簡略化及び効率改善、また入力電流に含まれる低次高調波成分の低減が可能となる降圧形整流回路を提供できる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す回路構成図
【図2】従来技術を示す回路構成図
【図3】図2の回路におけるシミュレーション波形図
【図4】図2の回路におけるFFT解析図
【図5】図1の回路におけるシミュレーション波形図
【図6】図5の拡大波形図
【図7】図1の回路におけるFFT解析図
【符号の説明】
1S〜4S、10S…スイッチング素子、1D〜6D…ダイオード、L1…リアクトル、10…三相ダイオードブリッジ、20…降圧チョッパ回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for converting three-phase alternating current to direct current, and more particularly to a step-down rectifier circuit configured to obtain an output voltage lower than a power supply voltage by using a switching element.
[0002]
[Prior art]
FIG. 2 shows a conventional step-down rectifier circuit composed of a three-phase diode bridge and a step-down chopper circuit. In this rectifier circuit, a desired DC output voltage v dc is obtained by converting three-phase AC into DC by the diode bridge 10 and driving the step-down chopper circuit 20. (See Patent Document 1). Now the effective value of the input line voltage of the diode bridge 10 and v ac, dc output voltage E d of the diode bridge 10 is well known is represented by the following equation (1).
E d = 1.35v ac ··· (1 )
The switching element 10S performs pulse width control (hereinafter, PWM control). Relationship between the input and output voltage of the step-down chopper circuit (E d and v dc) is the on-duty ratio represented by the switching element on-time T on and the switching period (or carrier cycle) of 10S T c D c (= T on / T c ) and is expressed by the following equation (2). However, 0 ≦ D c ≦ 1.
v dc = D c · E d = 1.35 · D c · v ac (2)
In a capacitor input type rectifier circuit in which a capacitor is connected to the output side of a diode bridge, an input current flows only when the power supply voltage is higher than the capacitor charging voltage. Therefore, the input current of the diode bridge has a current waveform with a high peak value.
[0003]
Here the phase voltages in the three-phase AC power supply to the power supply frequency and 50Hz v U, v V, v W, the line voltage v UV, v VW, v WU input current i U, i V, a simulation waveform of i W As shown in FIG. It can be seen from FIG. 3 that the input current having a high peak value flows when each line voltage is the maximum and the minimum.
Here, FIG. 4 shows a harmonic analysis result of the phase voltage, the line voltage, and the input current by FFT (Fast Fourier Transform). Assuming that the fundamental component of the input current (1st order = 50 Hz) is 100%, the 5th harmonic component is 80%, the 7th harmonic component is 60%, and the low harmonic component is large. I understand.
[0004]
[Patent Document 1]
JP-A-5-260575 [0005]
[Problems to be solved by the invention]
In the case of the conventional step-down rectifier circuit as shown in FIG. 2, for example, when a current flows from the U-phase to the W-phase, the current flows through a current path of the diode 1D → the switching element 10S → the reactor L1 → the load → the diode 6D. In this case, the number of passing elements is 5. As described above, in a circuit in which the two power converters of the three-phase diode bridge and the step-down chopper circuit are combined, the number of current passing elements increases, and accordingly, the loss in the elements increases. Furthermore, in a capacitor input type diode rectifier circuit, the input current contains a large low-order harmonic component.
[0006]
Therefore, an object of the present invention is to form a step-down rectifier circuit by one power conversion circuit, simplify the circuit configuration, and reduce the number of current passing elements to reduce the loss as compared with the conventional method. Another object of the present invention is to provide a step-down rectifier circuit capable of reducing low-order harmonic components of an input current.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a power conversion device that converts a three-phase AC input into a DC.
There are two sets of legs in which two semiconductor switching elements are connected in series with the same polarity, and one set of legs in which two diodes are connected in series with the same polarity. Are connected so that the polarity of the semiconductor switching elements or diodes of the legs is the same, and the connection points of the three pairs of legs are connected to the respective phases of the three-phase AC input. did.
In the present invention, the semiconductor switching element may have a reverse breakdown voltage.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first embodiment of the present invention.
Here, two sets of switching legs and one set of diode legs are connected in parallel. FIG. 1 shows a case where a semiconductor switching element having a reverse breakdown voltage is used. However, when a semiconductor switching element having no reverse breakdown voltage is used as in the conventional case, a diode should be connected in series with the switching element. However, as a result, the number of current passing elements increases. For this reason, it is preferable in terms of loss to use a semiconductor switching element having a reverse breakdown voltage as shown in FIG.
[0009]
By causing the PWM control to the switching element 1S~4S, controls the DC current i dc, controls the output voltage v dc of the rectifier circuit to a desired DC voltage.
Next, the operation of FIG. 1 will be described.
Here, it is operated as a 120 ° conduction type rectifier circuit. Here, the term “120 ° conduction type” refers to a method in which the currents of the three phases are switched by energizing the upper (lower) elements of the three legs every 120 °. That is, here, 1S, 2S, and 3D (4S, 5S, and 6D) are sequentially switched at every 120 ° to energize. FIG. 5 shows the simulated waveforms of the phase voltages v U , v V , and v W and the input currents i U , i V , and i W when the power supply frequency is 50 Hz. FIG. 5 shows the enlarged waveform of the section A shown in FIG. 6 is shown. Incidentally, here, an example in which the switching frequency (carrier frequency) is set to 10 kHz is shown.
By the way, although the details are omitted here, the step-down operation in FIG. 1 is achieved by performing a so-called current-type control that performs switching control based on a command value of the current idc . In this embodiment, the subjecting the carrier wave to the switching element, and the reference current DC amount corresponding to (command value i dc * generally i dc), a given switching control PWM signal generated by comparing the .
[0010]
FIG. 7 shows the results of FFT analysis of the phase voltage and the input current at this time. Assuming that the fundamental component of the input current is 100%, the fifth harmonic component is about 20% and the seventh harmonic component is about 14%. Thus, it can be seen that low-order harmonic components are significantly reduced as compared with the conventional system. When considering up to the 13th harmonic (that is, 650 Hz) as the lower harmonic component to be reduced, a preferable result can be obtained by setting the switching frequency higher than this order, for example, 20 times or more the power supply frequency. Needless to say. That is, when considering up to the seventh harmonic (350 Hz), a switching frequency larger than at least seven times the power supply frequency is desired.
[0011]
In FIG. 1, for example, when a current flows from the U-phase to the W-phase, the path is the switching element 1S → reactor L1 → load → diode 6D, so that the number of passing elements is four. Therefore, the number of passing elements can be reduced as compared with the conventional case.
[0012]
【The invention's effect】
In the conventional step-down rectifier circuit, since two power conversion circuits of a diode bridge and a step-down chopper circuit are used, the number of passing elements increases, and there is a problem in terms of loss. Further, in the capacitor input type diode rectifier circuit, the problem that the low-order harmonic component contained in the input current is large cannot be ignored.
In the present invention, since the power supply voltage can be reduced by one power conversion circuit, the circuit configuration can be simplified and the efficiency can be improved as compared with the conventional method, and the low-order harmonic component included in the input current can be reduced. A rectifier circuit can be provided.
[Brief description of the drawings]
1 is a circuit configuration diagram showing an embodiment of the present invention; FIG. 2 is a circuit configuration diagram showing a conventional technique; FIG. 3 is a simulation waveform diagram in the circuit of FIG. 2; FIG. 4 is an FFT analysis diagram in the circuit of FIG. FIG. 5 is a simulation waveform diagram of the circuit of FIG. 1; FIG. 6 is an enlarged waveform diagram of FIG. 5; FIG. 7 is an FFT analysis diagram of the circuit of FIG.
1S to 4S, 10S: switching element, 1D to 6D: diode, L1: reactor, 10: three-phase diode bridge, 20: step-down chopper circuit

Claims (2)

三相交流入力を直流に変換する電力変換装置であって、
2個の半導体スイッチング素子を互いに極性を同じにして直列接続したレッグを2組と、2個のダイオードを互いに極性を同じにして直列接続したレッグを1組と、を備え、これら3組のレッグのそれぞれの端部を、互いのレッグの半導体スイッチング素子またはダイオードの極性が同じになるようにして接続し、かつこの3組のレッグの接続点と三相の交流入力の各相とをそれぞれ接続してなることを特徴とする電力変換装置。
A power converter for converting a three-phase AC input to a DC,
There are two sets of legs in which two semiconductor switching elements are connected in series with the same polarity, and one set of legs in which two diodes are connected in series with the same polarity. Are connected so that the polarity of the semiconductor switching elements or diodes of the legs is the same, and the connection points of the three pairs of legs are connected to the respective phases of the three-phase AC input. A power converter characterized by comprising:
前記半導体スイッチング素子は、逆耐圧を持つ半導体スイッチング素子であることを特徴とする請求項1に記載の電力変換装置。The power converter according to claim 1, wherein the semiconductor switching element is a semiconductor switching element having a reverse breakdown voltage.
JP2002373376A 2002-12-25 2002-12-25 Power converter Pending JP2004208384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373376A JP2004208384A (en) 2002-12-25 2002-12-25 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373376A JP2004208384A (en) 2002-12-25 2002-12-25 Power converter

Publications (1)

Publication Number Publication Date
JP2004208384A true JP2004208384A (en) 2004-07-22

Family

ID=32811669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373376A Pending JP2004208384A (en) 2002-12-25 2002-12-25 Power converter

Country Status (1)

Country Link
JP (1) JP2004208384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187020A (en) * 2020-09-27 2021-01-05 申彦峰 Switching semiconductor device parallel circuit and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187020A (en) * 2020-09-27 2021-01-05 申彦峰 Switching semiconductor device parallel circuit and control method thereof

Similar Documents

Publication Publication Date Title
Abdelhakim et al. Three-phase split-source inverter (SSI): Analysis and modulation
Hava et al. A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters
US20160276964A1 (en) Power conversion device and power conversion method
Dabour et al. Analysis and implementation of space-vector-modulated three-phase matrix converter
JP5880289B2 (en) Power converter
Schettino et al. Overview and experimental analysis of MC SPWM techniques for single-phase five level cascaded H-bridge FPGA controller-based
Lee et al. An improved phase-shifted PWM method for a three-phase cascaded H-bridge multi-level inverter
Ahmed Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique
JP5493783B2 (en) Three-phase inverter device
Afsharian et al. Space vector demonstration and analysis of zero-voltage switching transitions in three-phase isolated PWM rectifier
Sajadian et al. Three-phase DC-AC converter with five-level four-switch characteristic
Nguyen et al. Carrier-based PWM technique for three-to-five phase indirect matrix converters
Maswood et al. A novel suppressed-link rectifier-inverter topology with near unity power factor
Khaled et al. Efficient solution of the DC-link hard switching inverter of the PV system
US10581336B2 (en) Three-phase AC/AC converter with quasi-sine wave HF series resonant link
JP2008086197A5 (en)
JP2004222338A (en) Power conversion device
Nezamuddin et al. Design of a highly efficient microinverter
Babu et al. Novel non-isolated high step-down three phase interleaved DC-DC converter with capacitor voltage division techniques
JP2016178760A (en) Multiplexable single cell structure for use in power conversion system
JP2004208384A (en) Power converter
Martins et al. PWM-based control of a cascaded three-phase multilevel inverter
Ashraf et al. An efficient single-phase ac-to-ac buck and boost matrix converter
Shanthi et al. Comparative study on various unipolar PWM strategies for single phase five-level cascaded inverter
Kato et al. Control method for a three-port interface converter using an indirect matrix converter with an active snubber circuit