JP2004208211A - Stereoscopic video imaging apparatus - Google Patents

Stereoscopic video imaging apparatus Download PDF

Info

Publication number
JP2004208211A
JP2004208211A JP2002377670A JP2002377670A JP2004208211A JP 2004208211 A JP2004208211 A JP 2004208211A JP 2002377670 A JP2002377670 A JP 2002377670A JP 2002377670 A JP2002377670 A JP 2002377670A JP 2004208211 A JP2004208211 A JP 2004208211A
Authority
JP
Japan
Prior art keywords
image
convergence
subject
optical systems
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377670A
Other languages
Japanese (ja)
Other versions
JP2004208211A5 (en
Inventor
Yoshinari Onda
能成 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002377670A priority Critical patent/JP2004208211A/en
Publication of JP2004208211A publication Critical patent/JP2004208211A/en
Publication of JP2004208211A5 publication Critical patent/JP2004208211A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a stereoscopic video imaging apparatus suitable for imaging stereoscopic video for binocular stereoscopic view. <P>SOLUTION: The stereoscopic video imaging apparatus includes: a plurality of imaging means; a plurality of optical systems each having a magnification function for respectively forming a parallax image of an object in the plurality of imaging means; a change means for changing a crossing angle of each of the plurality of optical systems to the object; an arithmetic means which uses the crossing angle changed by the change means and focal distances of the plurality of optical systems to calculate an image formation position of the object assumed to be located at infinity; a determination means for determining an allowable angle range for the crossing angles of the plurality of optical systems changed by the change means based upon the arithmetic result of the arithmetic means; and an inhibition means for inhibiting the change means from operating over the allowable angle range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は両眼立体視のための立体映像を撮影するのに好適な立体映像撮像装置に関する
【0002】
【従来の技術】
従来より、両眼立体視のための立体映像(ステレオ画像、視差画像)を撮影する装置として、2つの光学系を用いて被写体を撮像する立体映像撮像装置が種々と提案されている。これら立体映像撮像装置には2つの光学系の光軸が空間の一点で交差するように構成されたものがあり、その交差角度を変更することにより主たる被写体の結像位置が略一致するように構成し、これによって得た立体画像を用いて立体映像を観察する時に観察装置の表示面上に主たる被写体の奥行き位置が認識されるように撮像可能になっている。
【0003】
【発明が解決しようとする課題】
従来の立体映像撮像装置を用いて撮像した立体映像は主たる被写体を観察するときには適するものの、主たる被写体が近距離にあり、背景の被写体までの距離との差が大きいとき、また、観察時の拡大倍率が大きいときなどには図2に示すように背景の被写体B,Cの結像位置が主たる被写体Aから大きく離れていくことになる。
【0004】
観察者がステレオ画像から両眼立体視により立体を認識するときには異なる水平位置に提示された左右眼それぞれの映像(視差画像)の網膜上の結像位置が一致するように眼球を内転させる。この機能を輻輳とよんでいる。無限遠に存在する物体を見るときにはこの輻輳による両眼の視線はほぼ平行状態(輻輳角度0度)となる。現実には輻輳角度がもっとも開いた状態の被写体が存在し、視差画像が観察者の瞳孔間距離よりも離れてしまい平行よりも眼球を外転、すなわち開散しなければ立体視できない場合がある、このとき映像は融像することができないか、もしくは非常に見づらい映像となる。図2に示した例では被写体「A」の文字はちょうどディスプレイDS上で一致して見えるため立体としての距離感もディスプレイ上に感じられる。被写体「B」の文字は平行からやや輻輳した状態で観察されるのでほぼ無限遠に位置する物体としての距離感で認識される。観察者の瞳孔間距離DLよりも視差画像が離れてしまっている被写体「C」の文字は開散しないと融像できないため二重像としてしか認識されない。
【0005】
このように従来の立体映像撮像装置では例えば主被写体が比較的近方にある場合、この主被写体に光軸交差角度を設定している為、観察者の両眼の視線が平行よりも広がってしまう、すなわち開散の状態になってしまい、両眼で一つの画像として認識することができない、すなわち融像できない映像を撮影してしまうことがあった。この現象を回避するためには、撮影者はステレオ画像の見え具合などを確認することによって光軸交差角度を適切に設定する必要があった。
【0006】
本発明は、立体画像の観察時に、画面全体にわたり視差画像が観察眼の開散を防ぐことができ、画面全体にわたり立体画像を良好に観察することができる立体画像を撮影することができる立体映像撮像装置の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明は、2つ(2以上であっても良い。)のカメラ(撮影光学系)の光軸の交差角度を変更する変更手段、すなわち光軸輻輳の変更手段による輻輳角度とズーム機能(変倍機能)を有する光学系の焦点距離に基づき無限遠にあると仮定する被写体の結像位置を演算する演算手段と、前記演算結果に基づき前記変更手段で変更する輻輳を許容する角度範囲を決定する決定手段と、前記変更手段が光学系の光軸輻輳角度が前記輻輳許容範囲を超えて輻輳動作するのを禁止する禁止手段とを用いることにより被写体の存在する奥行き全域において良好な立体視ができる立体映像(視差画像)を撮影している。
【0008】
【発明の実施の形態】
図1は本発明の実施形態1の要部概略である。図1において1は主たる被写体、2は主たる被写体1よりも遠方に位置する遠方被写体、3は無限遠に位置する架空の無限遠被写体である。以下被写体1、2、3を被写体OBと総称する。41は被写体OBから右目用の画像(視差画像)を撮影する右カメラ、42は左目用の画像(視差画像)を撮影する左カメラ、411は右カメラ41に内蔵され被写体OBの映像を後述する右撮像素子に結像する右光学系(撮影光学系)、421は左カメラ42に内蔵され被写体OBの映像を後述する左撮像素子に結像する左光学系(撮影光学系)、412は右光学系411により結像した被写体OBの映像を電気信号に変換する右撮像素子、422は左光学系421により結像した被写体OBの映像を電気信号に変換する左撮像素子、413は右カメラ41の光軸を輻輳させるときの輻輳中心である右カメラ輻輳中心、423は左カメラ42の光軸を輻輳させるときの輻輳中心である左カメラ輻輳中心、414は右カメラ輻輳中心413を中心にして右カメラ41を内転もしくは外転させるためのステッピングモーターである右カメラ輻輳モーター、424は左カメラ輻輳中心423を中心にして左カメラ42を内転もしくは外転させるためのステッピングモーターである左カメラ輻輳モーター、415は右光学系411の焦点距離を変更するズーム用ステッピングモーターである右カメラズームモーター、425は左光学系421の焦点距離を変更するズーム用ステッピングモーターである左カメラズームモーター、416は右カメラ輻輳モーター414を駆動する右カメラ輻輳モーター駆動回路、426は左カメラ輻輳モーター424を駆動する左カメラ輻輳モーター駆動回路、417は右カメラズームモーター415を駆動するための右ズームモーター駆動回路、427は左カメラズームモーター425を駆動するための左ズームモーター駆動回路、5は右撮像素子412と左撮像素子422から得た映像電気信号をビデオテープに記録するVTR、6は右カメラ41と左カメラ42の中心に位置し、主たる被写体1までの距離を測定する測距装置、7は左右の光学系421、411の焦点距離を変更するためのスイッチであるズームスイッチ、8は上記各装置を制御するマイコンで、例えば光軸輻輳の変更手段による輻輳角度とズーム機能(変倍機能)を有する光学系の焦点距離に基づき無限遠にあると仮定する被写体の結像位置を演算する演算手段と、前記演算結果に基づき前記変更手段で変更する輻輳を許容する角度範囲を決定する決定手段と、前記変更手段が光学系の光軸輻輳角度が前記輻輳許容範囲を超えて輻輳動作するのを禁止する禁止手段とを有している。9は観察時の画面サイズを設定する入力手段である観察条件入力スイッチ(スイッチ)、10は右カメラ41および左カメラ42の光軸交差角度である。
【0009】
図3は図1のマイコン8が処理を行なうフローチャートである、ステップ101で処理が開始されるとまずステップ102で撮影光学系の焦点距離情報を初期化し、ステップ103でズームスイッチ7からのズーム情報を取得する、ステップ104でズーム情報を元に光学系411、421の焦点距離情報を変更しズームモーター415、425を駆動して焦点距離を変更する。次にステップ105で演算手段で測距情報を測距装置6の出力から取得し、ステップ106でカメラ41、42の輻輳角度(回転角度)を演算する。ステップ107でマイコン8にあらかじめ入力しておいた観察条件情報とカメラ輻輳角度の演算結果から無限遠被写体の観察時の水平提示距離を演算し、ステップ108で提示距離が標準瞳孔間距離である63mmよりも大きいかどうか比較する。提示距離が63mmよりも大きい場合はステップ109で提示距離が63mmになるようにカメラ輻輳角度(カメラ回転角度)を再演算する。提示距離が63mmよりも小さい場合はステップ110でカメラ回転角度を決定し、ステップ111で輻輳角度演算結果に基づいてカメラ41、42を輻輳駆動(回転)させる。
【0010】
そしてステップ112で撮影を行い、ステップ113で処理を終了する。
【0011】
本実施形態において撮像された2点間の観察時距離は撮像光学系411、421の焦点距離、撮像素子412、422のイメージサイズ、再生機器の画面サイズそして観察距離等から求めることができる。本実施形態例で用いた撮像光学系411、421の焦点距離は3.5−35mm、撮像素子412、422のイメージサイズ(画面サイズ)は1/4(0.25)インチ、再生機器の画面サイズは39インチである。撮影者はあらかじめこの観察時の画面サイズを観察条件としてスイッチ9を用いてマイコン8に入力する。主たる被写体1に中心を向けて撮影する場合、測距装置6によりカメラ41、42から主たる被写体1までの距離Lが測定されマイコン8に送られる。マイコン8内の演算手段はこの測距結果から主たる被写体1に対して右カメラ41と左カメラ42の光軸交差距離が合致するようにするための輻輳の必要量を算出する。このときマイコン8は左右カメラ41、42の焦点距離情報と観察時の倍率情報から無限遠被写体3が観察時に提示されるときの水平方向の提示距離を算出し平均的な観察者の左右瞳孔間の距離である63mmと比較を行なう。主たる被写体1に左右カメラ41、42の光軸41a,42aを向けた場合の光軸交差角度を2θとすると各カメラ41、42の内転角度すなわち輻輳角度はそれぞれθとなる。左右カメラ41、42の輻輳中心413および423の水平距離は63mm(観察者の平均値な眼幅)に設定しているため、カメラ41、42から主たる被写体1までの距離がLであるとすると輻輳角度θは以下の式から求められる。
【0012】
【数1】

Figure 2004208211
【0013】
この時、前述した観察条件において、撮影光学系411、421の焦点距離fにおける無限遠被写体3のステレオ画像上の水平方向提示距離Dは以下の式から求めることができる。即ち表示系の画面サイズ:39インチ撮像素子のイメージサイズ:0.25インチであるから、
【0014】
【数2】
Figure 2004208211
【0015】
となる。マイコン8内の禁止手段はこの無限遠被写体3の提示距離Dが標準瞳孔間距離63mmよりも短い場合にはカメラ輻輳モーター駆動回路416および426を駆動して左右カメラ41および42を等分に輻輳させ、63mmよりも長いときにはマイコン8はその角度まで輻輳させることを禁止し無限遠被写体3の提示距離が63mmになるときの左右カメラ41および42の輻輳角度を算出し相当する角度になるよう変更手段としてのカメラ輻輳モーター駆動回路416および426によって左右カメラ輻輳モーター414および424を駆動する。
【0016】
前述の水平方向提示距離Dの式から焦点距離fにおいて水平提示距離Dが63mmとなるための輻輳角度θはマイコン8内の決定手段により下記の式から求めることができる。
【0017】
【数3】
Figure 2004208211
【0018】
また、ズームスイッチ7により撮影光学系411、421の焦点距離の変更の入力があった場合はマイコン8は左右ズームモーター駆動回路416、426により左右ズームモーター415、425を等分に駆動し左右カメラ41、42の撮影光学系411、421の焦点距離を等しく変更する。このときマイコン8は焦点距離の変更によって生じた倍率変化から観察倍率の変化を算出し、その結果、無限遠被写体3の左右撮像素子412、422から得られる視差画像の観察時の水平提示距離を再計算する。 この無限遠被写体3の視差画像観察時の水平提示距離が63mmよりも長いときにはマイコン8内の演算手段は無限遠被写体3の提示距離が63mmになるときの左右カメラ41および42の輻輳角度を算出し、相当する角度になるよう変更手段としてのカメラ輻輳モーター駆動回路416および426によって左右カメラ輻輳モーター414および424を駆動する。
【0019】
以上のように駆動する本実施形態の立体映像撮像装置で撮影したステレオ画像は図4のようになり、全ての距離における被写体に対し即ち画面全体にわたり良好な立体視が可能な視差画像(立体画像)を得ることができる。
【0020】
以上のように各実施形態によれば、マイコンにより撮影時の画面サイズを考慮して無限遠被写体の水平提示位置を演算し、カメラの輻輳角度を制御することで観察時の視差画像が観察眼の開散を防ぐようなステレオ画像を撮影することができる。
【0021】
また、撮影系がズームによって変化した焦点距離とそれに伴う再生時の画面サイズ変化に応じてカメラの輻輳角度を制御することで観察時の視差画像が観察眼の開散を防ぐようなステレオ画像を撮影することができる。
【0022】
また、主たる被写体までの距離に応じて自動的にカメラの輻輳角度を変更することが可能である構成においても観察時の視差画像が観察眼の開散を防ぐようなステレオ画像を撮影することができる。
【0023】
(実施様態1)
複数の撮像手段と、前記複数の撮像手段に各々被写体の視差画像を形成する変倍機能を有する複数の光学系と、前記複数の光学系の被写体に対する交差角度を変更する変更手段と、前記変更手段による交差角度と該複数の光学系の焦点距離とを用いて無限遠にあると仮定する被写体の結像位置を演算する演算手段と、前記演算手段による演算結果に基づき前記変更手段による複数の光学系の交差角度の許容する角度範囲を決定する決定手段と、前記変更手段が前記許容される角度範囲を超えて動作することを禁止する禁止手段とを有していることを特徴とする立体映像撮像装置。
【0024】
(実施様態2)
前記複数の撮像手段で得た複数の視差画像を観察するときの画面サイズを入力する入力手段を有し、前記決定手段は、該入力手段からの入力信号を用いて前記複数の光学系の交差角度の許容する角度範囲を決定していることを特徴とする実施様態1の立体映像撮像装置。
【0025】
(実施様態3)
前記変更手段は、前記複数の光学系の焦点距離を同時かつ等価に変更可能にしており、前記演算手段は前記変更手段により変更された前記複数の光学系の任意の焦点距離において無限遠被写体の結像位置を演算することを特徴とする実施様態1又は2に記載の立体映像撮像装置。
【0026】
(実施様態4)
前期被写体のうち主たる被写体までの距離を測定する測距手段と、前記決定手段は前期測距手段の測距結果に基づき前記複数の光学系の光軸交差距離が等しくなるように交差角度を決定しており、前記決定手段の結果に基づき前記変更手段を駆動する駆動手段とを備えていることを特徴とする実施様態1または2記載の立体映像撮像装置。
【0027】
(実施様態5)
前記演算手段は前記観察条件に応じて設定変更可能な結像位置係数入力手段を備えることを特徴とする実施様態1から3記載の立体映像撮像装置。
【0028】
【発明の効果】
本発明によれば、立体画像の観察時に、画面全体にわたり視差画像が観察眼の開散を防ぐことができ、画面全体にわたり立体画像を良好に観察することができる立体画像を撮影することができる立体映像撮像装置を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を1の要部概略図
【図2】従来の立体映像撮像装置の要部概略図
【図3】本発明の実施形態におけるマイコン処理のフローチャートを示した図である
【図4】本発明における立体映像の観察時の説明図
【符号の説明】
1・・・主たる被写体
2・・・遠方の被写体
3・・・無限遠の被写体
41・・・右カメラ
42・・・左カメラ
411・・・右光学系
421・・・左光学系
412・・・右撮像素子
422・・・左撮像素子
413・・・右カメラ輻輳中心
423・・・左カメラ輻輳中心
414・・・右カメラ輻輳モーター
424・・・左カメラ輻輳モーター
415・・・右カメラズームモーター
425・・・左カメラズームモーター
416・・・右カメラ輻輳モーター駆動回路
426・・・左カメラ輻輳モーター駆動回路
417・・・右ズームモーター駆動回路
427・・・左ズームモーター駆動回路
5・・・VTR
6・・・測距装置
7・・・ズームスイッチ
8・・・観察倍率入力スイッチ
10・・・光軸交差角度[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stereoscopic video imaging apparatus suitable for capturing a stereoscopic video for binocular stereoscopic vision.
[Prior art]
2. Description of the Related Art Conventionally, various types of stereoscopic image capturing apparatuses that capture images of a subject using two optical systems have been proposed as apparatuses for capturing a stereoscopic image (stereo image, parallax image) for binocular stereoscopic viewing. Some of these stereoscopic image pickup devices are configured such that the optical axes of two optical systems intersect at one point in space, and by changing the angle of intersection, the imaging positions of the main objects substantially coincide with each other. When observing a three-dimensional image using the three-dimensional image obtained thereby, imaging can be performed such that the depth position of the main subject is recognized on the display surface of the observation device.
[0003]
[Problems to be solved by the invention]
A stereoscopic image captured using a conventional stereoscopic image capturing device is suitable for observing a main subject, but when the main subject is at a short distance and the difference from the distance to the background subject is large, or when the main subject is enlarged. When the magnification is large, for example, as shown in FIG. 2, the imaging positions of the background subjects B and C are largely separated from the main subject A.
[0004]
When the observer recognizes a stereoscopic image from the stereoscopic image by binocular stereoscopic vision, the eyeball is turned inward so that the imaging positions on the retina of the images (parallax images) of the left and right eyes presented at different horizontal positions match. This function is called congestion. When viewing an object at infinity, the lines of sight of the eyes due to this convergence are in a substantially parallel state (angle of convergence 0 degrees). In reality, there is a subject whose convergence angle is the widest, and the parallax image may be farther than the distance between the pupils of the observer and abduct the eyeball more than parallel, that is, it may not be possible to stereoscopically view unless it diverges. At this time, the image cannot be fused or becomes very hard to see. In the example shown in FIG. 2, the character of the subject “A” looks exactly on the display DS, so that a sense of distance as a three-dimensional object is also felt on the display. Since the character of the subject "B" is observed in a slightly convergence state from parallel, it is recognized as a distance as an object located at almost infinity. The character of the subject "C" in which the parallax image is farther than the interpupillary distance DL of the observer cannot be fused unless it is diverged, and is recognized only as a double image.
[0005]
As described above, in the conventional stereoscopic video imaging apparatus, for example, when the main subject is relatively close, since the optical axis intersection angle is set for the main subject, the line of sight of both eyes of the observer is wider than parallel. In other words, the image may be in a state of divergence and may not be recognized as one image by both eyes, that is, an image that cannot be fused may be taken. In order to avoid this phenomenon, the photographer needs to appropriately set the optical axis crossing angle by checking the appearance of the stereo image.
[0006]
The present invention provides a stereoscopic image capable of capturing a stereoscopic image in which a parallax image can prevent the divergence of an observation eye over the entire screen when observing the stereoscopic image, and the stereoscopic image can be favorably observed over the entire screen. It is intended to provide an imaging device.
[0007]
[Means for Solving the Problems]
According to the present invention, a changing means for changing the intersection angle of the optical axes of two (or more than two) cameras (photographing optical systems), that is, a convergence angle and a zoom function (changing) by the optical axis convergence changing means. Calculating means for calculating an image forming position of a subject assumed to be at infinity based on the focal length of an optical system having a magnification function; and determining an angle range allowing convergence to be changed by the changing means based on the calculation result. The determination means to perform, and good stereoscopic vision in the entire depth where the subject is present by using the changing means using the prohibition means that prohibits the optical axis convergence angle of the optical system from performing the convergence operation beyond the convergence allowable range, You are shooting a possible stereoscopic image (parallax image).
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a main subject, 2 denotes a distant subject located farther than the main subject 1, and 3 denotes an imaginary infinity subject located at infinity. Hereinafter, the subjects 1, 2, and 3 are collectively referred to as a subject OB. Reference numeral 41 denotes a right camera that captures an image for the right eye (parallax image) from the subject OB, reference numeral 42 denotes a left camera that captures an image for the left eye (parallax image), and reference numeral 411 denotes an image of the subject OB that is built in the right camera 41 and will be described later. A right optical system (photographing optical system) that forms an image on the right image sensor, 421 is a left optical system (photographing optical system) that is built in the left camera 42 and forms an image of the subject OB on a left image sensor described later, and 412 is a right lens A right image sensor 422 for converting an image of the object OB formed by the optical system 411 into an electric signal is a left image sensor 422 for converting an image of the object OB formed by the left optical system 421 into an electric signal. 423 is the center of convergence when the optical axis of the left camera is congested, 423 is the center of convergence of the left camera which is the center of convergence when the optical axis of the left camera 42 is congested, and 414 is the center of convergence of the right camera 413. Right A right camera convergence motor 424 is a stepping motor for inverting or abducting the camera 41. A left camera convergence motor 424 is a stepping motor for inverting or abducting the left camera 42 about the center 423 of the left camera convergence. A motor 415 is a right camera zoom motor that is a zoom stepping motor that changes the focal length of the right optical system 411. A motor 415 is a left camera zoom motor that is a zoom stepping motor that changes the focal length of the left optical system 421. A right camera convergence motor driving circuit 426 for driving the right camera convergence motor 414, a left camera convergence motor driving circuit for driving the left camera convergence motor 424, a right zoom motor driving circuit 417 for driving the right camera zoom motor 415, 427 is the left camera zoom The left zoom motor drive circuit for driving the motor 425, 5 is a VTR for recording the video electric signal obtained from the right image sensor 412 and the left image sensor 422 on a video tape, and 6 is the center of the right camera 41 and the left camera 42. A distance measuring device for measuring the distance to the main subject 1 located; a zoom switch 7 for changing the focal length of the left and right optical systems 421 and 411; and a microcomputer 8 for controlling the above devices; For example, calculating means for calculating an image forming position of an object assumed to be at infinity based on a convergence angle by means of changing optical axis convergence and a focal length of an optical system having a zoom function (magnification function); Determining means for determining an angle range allowing convergence to be changed by the changing means based on the change means; and the changing means performs convergence operation when the optical axis convergence angle of the optical system exceeds the convergence allowable range. And a prohibiting means for prohibiting. Reference numeral 9 denotes an observation condition input switch (switch) as input means for setting a screen size at the time of observation. Reference numeral 10 denotes an optical axis crossing angle of the right camera 41 and the left camera 42.
[0009]
FIG. 3 is a flowchart in which the microcomputer 8 of FIG. 1 performs the processing. When the processing is started in step 101, first, in step 102, the focal length information of the photographing optical system is initialized, and in step 103, the zoom information from the zoom switch 7 is output. In step 104, the focal length information of the optical systems 411 and 421 is changed based on the zoom information, and the zoom motors 415 and 425 are driven to change the focal length. Next, in step 105, the distance measuring information is obtained from the output of the distance measuring device 6 by the calculating means, and in step 106, the convergence angles (rotation angles) of the cameras 41 and 42 are calculated. In step 107, the horizontal presentation distance at the time of observing the subject at infinity is calculated from the observation condition information and the calculation result of the camera convergence angle which have been input to the microcomputer 8 in advance. In step 108, the presentation distance is 63 mm, which is the standard interpupillary distance. Compare if greater than. If the presentation distance is larger than 63 mm, the camera convergence angle (camera rotation angle) is recalculated in step 109 so that the presentation distance becomes 63 mm. If the presentation distance is smaller than 63 mm, the camera rotation angle is determined in step 110, and the cameras 41 and 42 are driven for convergence (rotation) based on the result of the convergence angle calculation in step 111.
[0010]
Then, photographing is performed in step 112, and the process ends in step 113.
[0011]
In this embodiment, the observation distance between the two points imaged can be obtained from the focal lengths of the imaging optical systems 411 and 421, the image sizes of the imaging elements 412 and 422, the screen size of the playback device, the observation distance, and the like. The focal lengths of the imaging optical systems 411 and 421 used in this embodiment are 3.5 to 35 mm, the image size (screen size) of the imaging elements 412 and 422 is 1/4 (0.25) inch, and the screen size of the playback device is 39 inches. It is. The photographer inputs the screen size at the time of the observation to the microcomputer 8 using the switch 9 as an observation condition in advance. When the image is taken with the center directed to the main subject 1, the distance L from the cameras 41 and 42 to the main subject 1 is measured by the distance measuring device 6 and sent to the microcomputer 8. The calculating means in the microcomputer 8 calculates the necessary amount of convergence for making the optical axis intersection distance of the right camera 41 and the left camera 42 coincide with the main subject 1 from the distance measurement result. At this time, the microcomputer 8 calculates a horizontal presentation distance when the subject 3 at infinity is presented at the time of observation from the focal length information of the left and right cameras 41 and 42 and the magnification information at the time of observation, and calculates the distance between the left and right pupils of the average observer. Is compared with 63 mm, which is the distance of Assuming that the optical axis crossing angle when the optical axes 41a and 42a of the left and right cameras 41 and 42 are directed to the main subject 1 is 2θ, the adduction angle of each of the cameras 41 and 42, that is, the convergence angle is θ. Since the horizontal distance between the convergence centers 413 and 423 of the left and right cameras 41 and 42 is set to 63 mm (average eye width of the observer), it is assumed that the distance from the cameras 41 and 42 to the main subject 1 is L. The convergence angle θ is obtained from the following equation.
[0012]
(Equation 1)
Figure 2004208211
[0013]
At this time, under the observation conditions described above, the horizontal presentation distance D on the stereo image of the subject 3 at infinity at the focal length f of the imaging optical systems 411 and 421 can be obtained from the following equation. That is, since the screen size of the display system is 39 inches and the image size of the image sensor is 0.25 inches,
[0014]
(Equation 2)
Figure 2004208211
[0015]
It becomes. When the presenting distance D of the subject 3 at infinity is shorter than the standard interpupillary distance 63 mm, the prohibiting means in the microcomputer 8 drives the camera convergence motor driving circuits 416 and 426 to divide the left and right cameras 41 and 42 equally. If it is longer than 63 mm, the microcomputer 8 prohibits the convergence to that angle and calculates the convergence angle of the left and right cameras 41 and 42 when the presentation distance of the subject 3 at infinity becomes 63 mm, and changes it to the corresponding angle. The left and right camera convergence motors 414 and 424 are driven by camera convergence motor drive circuits 416 and 426 as means.
[0016]
The convergence angle θ for obtaining the horizontal presentation distance D of 63 mm at the focal length f from the above-described expression of the horizontal presentation distance D can be obtained from the following expression by the determination means in the microcomputer 8.
[0017]
[Equation 3]
Figure 2004208211
[0018]
When the zoom switch 7 receives an input for changing the focal length of the photographing optical systems 411 and 421, the microcomputer 8 drives the left and right zoom motors 415 and 425 equally by the left and right zoom motor drive circuits 416 and 426, and the left and right cameras The focal lengths of the imaging optical systems 411 and 421 of 41 and 42 are changed equally. At this time, the microcomputer 8 calculates the change in the observation magnification from the change in magnification caused by the change in the focal length. As a result, the horizontal presentation distance when observing the parallax images of the subject 3 at infinity obtained from the left and right imaging elements 412 and 422 is calculated. Recalculate. When the horizontal presentation distance of the subject 3 at infinity when observing a parallax image is longer than 63 mm, the calculating means in the microcomputer 8 calculates the convergence angle of the left and right cameras 41 and 42 when the presentation distance of the subject 3 at infinity is 63 mm. Then, the left and right camera convergence motors 414 and 424 are driven by the camera convergence motor drive circuits 416 and 426 as changing means so as to have a corresponding angle.
[0019]
FIG. 4 shows a stereo image captured by the stereoscopic video imaging apparatus of the present embodiment driven as described above, and a parallax image (stereo image) capable of performing a good stereoscopic view of the subject at all distances, that is, over the entire screen. ) Can be obtained.
[0020]
As described above, according to each embodiment, the parallax image at the time of observation is obtained by calculating the horizontal presentation position of the subject at infinity by taking into account the screen size at the time of shooting by the microcomputer and controlling the convergence angle of the camera. It is possible to capture a stereo image that prevents the spread of the image.
[0021]
Also, by controlling the convergence angle of the camera according to the focal length changed by the zooming and the screen size change at the time of playback, the parallax image at the time of observation prevents stereoscopic images that prevent the eye from diverging. You can shoot.
[0022]
Further, even in a configuration in which the convergence angle of the camera can be automatically changed according to the distance to the main subject, it is possible to capture a stereo image in which the parallax image at the time of observation prevents the eye from diverging. it can.
[0023]
(Embodiment 1)
A plurality of imaging units; a plurality of optical systems each having a scaling function for forming a parallax image of the subject on the plurality of imaging units; a changing unit configured to change an intersection angle of the plurality of optical systems with the subject; Calculating means for calculating an image forming position of a subject assumed to be at infinity using the intersection angle by the means and the focal length of the plurality of optical systems; and a plurality of the changing means based on the calculation result by the calculating means. A three-dimensional object comprising: a determination unit that determines an allowable angle range of the intersection angle of the optical system; and a prohibition unit that prohibits the changing unit from operating beyond the allowable angle range. Video imaging device.
[0024]
(Embodiment 2)
Input means for inputting a screen size when observing a plurality of parallax images obtained by the plurality of imaging means, wherein the deciding means intersects the plurality of optical systems using an input signal from the input means; The three-dimensional image pickup apparatus according to the first embodiment, wherein an angle range allowed by the angle is determined.
[0025]
(Embodiment 3)
The changing means is capable of changing the focal lengths of the plurality of optical systems simultaneously and equivalently, and the calculating means is capable of changing the focal length of an infinitely distant subject at an arbitrary focal length of the plurality of optical systems changed by the changing means. The stereoscopic video imaging apparatus according to the first or second embodiment, wherein the imaging position is calculated.
[0026]
(Embodiment 4)
A distance measuring means for measuring a distance to a main subject among the previous subjects, and the determining means determines an intersection angle based on a result of the distance measurement by the previous distance measuring means so that optical axis intersection distances of the plurality of optical systems become equal. 3. The stereoscopic video imaging apparatus according to claim 1, further comprising a driving unit that drives the changing unit based on a result of the determining unit.
[0027]
(Embodiment 5)
The three-dimensional image pickup apparatus according to any one of embodiments 1 to 3, wherein the arithmetic unit includes an imaging position coefficient input unit that can change a setting according to the observation condition.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, at the time of observation of a stereoscopic image, the parallax image can prevent the divergence of an observation eye over the whole screen, and can capture the stereoscopic image which can observe the stereoscopic image well over the entire screen. A three-dimensional image pickup device can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a main part of an embodiment of the present invention. FIG. 2 is a schematic diagram of a main part of a conventional stereoscopic video imaging device. FIG. 3 is a diagram showing a flowchart of a microcomputer process in the embodiment of the present invention. FIG. 4 is an explanatory view at the time of observing a stereoscopic video in the present invention.
Reference Signs List 1 ... Main subject 2 ... Distant subject 3 ... Infinity subject 41 ... Right camera 42 ... Left camera 411 ... Right optical system 421 ... Left optical system 412 ... Right image sensor 422 Left image sensor 413 Right camera convergence center 423 Left camera convergence center 414 Right camera convergence motor 424 Left camera convergence motor 415 Right camera zoom Motor 425: Left camera zoom motor 416: Right camera congestion motor drive circuit 426: Left camera congestion motor drive circuit 417 ... Right zoom motor drive circuit 427 ... Left zoom motor drive circuit 5 ...・ VTR
6 Distance measuring device 7 Zoom switch 8 Observation magnification input switch 10 Optical axis crossing angle

Claims (1)

複数の撮像手段と、前記複数の撮像手段に各々被写体の視差画像を形成する変倍機能を有する複数の光学系と、前記複数の光学系の被写体に対する交差角度を変更する変更手段と、前記変更手段による交差角度と該複数の光学系の焦点距離とを用いて無限遠にあると仮定する被写体の結像位置を演算する演算手段と、前記演算手段による演算結果に基づき前記変更手段による複数の光学系の交差角度の許容する角度範囲を決定する決定手段と、前記変更手段が前記許容される角度範囲を超えて動作することを禁止する禁止手段とを有していることを特徴とする立体映像撮像装置。A plurality of imaging units; a plurality of optical systems each having a scaling function for forming a parallax image of the subject on the plurality of imaging units; a changing unit configured to change an intersection angle of the plurality of optical systems with the subject; Calculating means for calculating an image forming position of a subject assumed to be at infinity using an intersection angle by means and a focal length of the plurality of optical systems; and a plurality of changing means based on a calculation result by the calculating means. A three-dimensional object comprising: determining means for determining an allowable angle range of the intersection angle of the optical system; and prohibiting means for prohibiting the changing means from operating beyond the allowable angle range. Video imaging device.
JP2002377670A 2002-12-26 2002-12-26 Stereoscopic video imaging apparatus Pending JP2004208211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377670A JP2004208211A (en) 2002-12-26 2002-12-26 Stereoscopic video imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377670A JP2004208211A (en) 2002-12-26 2002-12-26 Stereoscopic video imaging apparatus

Publications (2)

Publication Number Publication Date
JP2004208211A true JP2004208211A (en) 2004-07-22
JP2004208211A5 JP2004208211A5 (en) 2006-02-16

Family

ID=32814779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377670A Pending JP2004208211A (en) 2002-12-26 2002-12-26 Stereoscopic video imaging apparatus

Country Status (1)

Country Link
JP (1) JP2004208211A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047496A (en) * 2007-08-17 2009-03-05 Fujifilm Corp Stereoscopic imaging device, control method of stereoscopic imaging device, and program
JP4654318B1 (en) * 2010-06-16 2011-03-16 武蔵オプティカルシステム株式会社 Optical convergence angle adjusting stereoscopic image capturing apparatus and optical convergence angle adjusting stereoscopic image capturing method
CN102914262A (en) * 2012-09-29 2013-02-06 北京控制工程研究所 Non-cooperative target abutting measurement method based on additional sighting distance
CN103477280A (en) * 2011-04-07 2013-12-25 索尼公司 Stereoscopic video imaging apparatus, convergence distance adjustment method, and program for convergence distance adjustment method
CN103828362A (en) * 2011-10-03 2014-05-28 索尼公司 Imaging apparatus and video recording and reproducing system
JP2015043607A (en) * 2014-10-10 2015-03-05 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and recording medium
US9172944B2 (en) 2010-05-28 2015-10-27 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
CN106931879A (en) * 2017-01-23 2017-07-07 成都通甲优博科技有限责任公司 A kind of binocular error measurement method, apparatus and system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047496A (en) * 2007-08-17 2009-03-05 Fujifilm Corp Stereoscopic imaging device, control method of stereoscopic imaging device, and program
US9172944B2 (en) 2010-05-28 2015-10-27 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
US9699440B2 (en) 2010-05-28 2017-07-04 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
JP4654318B1 (en) * 2010-06-16 2011-03-16 武蔵オプティカルシステム株式会社 Optical convergence angle adjusting stereoscopic image capturing apparatus and optical convergence angle adjusting stereoscopic image capturing method
JP2012002974A (en) * 2010-06-16 2012-01-05 Musashi Optical System Co Ltd Optical convergence angle adjustment three-dimensional image pickup device and optical convergence angle adjustment three-dimensional image pickup method
CN103477280A (en) * 2011-04-07 2013-12-25 索尼公司 Stereoscopic video imaging apparatus, convergence distance adjustment method, and program for convergence distance adjustment method
CN103828362A (en) * 2011-10-03 2014-05-28 索尼公司 Imaging apparatus and video recording and reproducing system
CN103828362B (en) * 2011-10-03 2016-12-21 索尼公司 Imaging device and videograph and playback system
CN102914262A (en) * 2012-09-29 2013-02-06 北京控制工程研究所 Non-cooperative target abutting measurement method based on additional sighting distance
JP2015043607A (en) * 2014-10-10 2015-03-05 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and recording medium
CN106931879A (en) * 2017-01-23 2017-07-07 成都通甲优博科技有限责任公司 A kind of binocular error measurement method, apparatus and system
CN106931879B (en) * 2017-01-23 2020-01-21 成都通甲优博科技有限责任公司 Binocular error measurement method, device and system

Similar Documents

Publication Publication Date Title
KR101446767B1 (en) Stereoscopic imaging device
US6864910B1 (en) Optical apparatus
US8090251B2 (en) Frame linked 2D/3D camera system
JP5814692B2 (en) Imaging apparatus, control method therefor, and program
JP2001142166A (en) 3d camera
US8879902B2 (en) Integrated 2D/3D camera with fixed imaging parameters
JP2012521580A (en) Stereo camera with automatic control of interpupillary distance
KR20130018828A (en) Stereo camera with preset modes
JP2002232913A (en) Double eye camera and stereoscopic vision image viewing system
JP2004208211A (en) Stereoscopic video imaging apparatus
JPH06339155A (en) Three-dimensional image pickup system
JPH09215012A (en) Stereoscopic video photographing device and stereoscopic video photographing recording and reproducing device using the same
JP2003222804A (en) Optical viewing apparatus and stereoscopic image input optical system used for the same
KR20140134043A (en) System and method for providing three dimensional image
US8593508B2 (en) Method for composing three dimensional image with long focal length and three dimensional imaging system
JPH08201940A (en) Stereoscopic image pickup device
WO2006016534A1 (en) Imaging device
JP2003107601A (en) Device and method for photographing three-dimensional image
JP2012227653A (en) Imaging apparatus and imaging method
JP2011217229A (en) Imaging apparatus and display method
JP2000308090A (en) Video displaying and processing device, video photographing and processing device, and camera controller
JPWO2013046833A1 (en) Image display device and image pickup device
JP2001016619A (en) Image pickup device, its convergence distance decision method, storage medium and optical device
JP2001016620A (en) Image pickup device, its convergence distance decision method, storage medium and optical device
JP4235291B2 (en) 3D image system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217