JP2004207654A - Illuminator and driver circuit for illumination - Google Patents

Illuminator and driver circuit for illumination Download PDF

Info

Publication number
JP2004207654A
JP2004207654A JP2002377881A JP2002377881A JP2004207654A JP 2004207654 A JP2004207654 A JP 2004207654A JP 2002377881 A JP2002377881 A JP 2002377881A JP 2002377881 A JP2002377881 A JP 2002377881A JP 2004207654 A JP2004207654 A JP 2004207654A
Authority
JP
Japan
Prior art keywords
light
led
circuit
emitting element
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377881A
Other languages
Japanese (ja)
Other versions
JP4439179B2 (en
Inventor
Tatsumi Setomoto
龍海 瀬戸本
Nobuyuki Matsui
伸幸 松井
Tetsushi Tamura
哲志 田村
Masanori Shimizu
正則 清水
Tadashi Yano
正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002377881A priority Critical patent/JP4439179B2/en
Publication of JP2004207654A publication Critical patent/JP2004207654A/en
Application granted granted Critical
Publication of JP4439179B2 publication Critical patent/JP4439179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator capable of preventing the occurrence of uneven illuminance and the breaking of a light-emitting element. <P>SOLUTION: A first circuit in which an LED row 25 connecting 32 pieces of LED bare chips D<SB>11</SB>, D<SB>13</SB>to D<SB>45</SB>and D<SB>47</SB>in series and a constant current circuit 53 are connected in series, and a second circuit in which the LED row 26 connecting the 32 pieces of LED bare chips D<SB>81</SB>, D<SB>83</SB>to D<SB>55</SB>and D<SB>57</SB>in series and the constant current circuit 54 are connected in series, are connected in parallel with a common power supply. Accordingly, since each light-emitting element row can be controlled in a constant current independently, the trouble does not occur that a large current is made to flow through one row, a small amount of a current is only made to flow through the other rows, the distribution of light is unbalanced, and the LED bare chips are damaged by the large current because one constant current circuit is only mounted as conventional devices even when the temperature of the light-emitting sections is increased in the case of a lighting. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、共通電源に対し、複数の発光素子を直列に接続してなる発光素子列を2以上並列に接続して構成される照明装置、その発光素子を点灯させるための照明用駆動回路に関し、特に発光素子を定電流制御するための駆動回路の改良に関する。
【0002】
【従来の技術】
従来、多数の発光ダイオード(LED)を発光部として用いた表示装置等が開発されている。このような装置のLED駆動回路では、複数のLEDを直列接続する構成をとっているが、電源電圧の関係から全てのLEDを直列接続できない場合があり、そのような場合、複数個のLEDを直列に接続したものを複数個並列に接続する構成をとっている。これは、例えば順方向電圧Vfが4(V)のLEDを50個接続する場合、入力電圧が100(V)とすると、単純に計算して1列に25個しか直列に接続できず、2列に並列接続せざるを得ないからである。
【0003】
並列接続する場合、通常、LEDの個数は各列で同一にされる(例えば、特許文献1参照)。これは、従来のLED駆動回路では、一の電流源から出力される電流を並列に接続された各列のLEDに配分して供給する構成をとっており、同一仕様のLEDを用いる場合、各列のLEDの数を同数にしておけば、各列でLEDの内部抵抗の合計値(合成抵抗値)がほぼ同じになり、各列にほぼ同量の電流を流すことができ、各列での発光量のばらつきを少なくできるからである。
【0004】
【特許文献1】
登録実用新案第3016636号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の表示装置等のLED駆動回路を照明装置に適用しようとすると、並列接続された各列の内のある一の列に過剰な電流が流れて照度ムラが発生したり、その列のLEDが破壊に至るという問題が生じる場合がある。これは、次の理由による。すなわち、照明装置では発光量を極力上げるため、表示装置等よりも、多くの電流、例えば表示装置では20(mA)程度とするところ、40(mA)程度という大電流をLEDに常時流し続ける構成をとっており、そのためLEDが大変発熱し易く、発光部が高温になり易い。また、一般にLEDは、温度が上がると内部抵抗が下がり、各LEDの抵抗値のばらつきは、高温の方が大きくなるという特性を有している。
【0006】
したがって、発熱により温度が上がってくると、各LEDの抵抗値のばらつきが大きくなり、そのばらつきによって各列の合成抵抗値の差も低温時よりも大きくなる。そうなると、合成抵抗値の小さい列にそれまでよりも多くの電流が流れ込むことになり、その列では、電流が増えたことにより各LEDの光量が上がるが発熱量も多くなり高温になって、さらに合成抵抗値が下がり、より多くの電流が流れることになる。一方で、合成抵抗値が大きい列には、少ない電流しか流れず光量が低下することになる。この繰り返しにより、各列で発光量に大きな差が生じて行き、その結果、配光がアンバランスになって照射対象面上で照度ムラが発生したり、電流が過剰になった列のLEDが破壊に至ってしまうのである。
【0007】
本発明は、このような問題点に鑑みてなされたものであって、照度ムラが生じたり、発光素子が破壊されてしまうといったことを防止できる照明装置、および照明用駆動回路を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る照明装置は、共通電源に対し、複数の発光素子を直列に接続してなる発光素子列を2以上並列に接続して構成される照明装置であって、各発光素子列の発光素子の個数が同数であると共に、発光素子列それぞれに、当該発光素子列の発光素子と直列に接続される定電流回路が設けられていることを特徴とする。
【0009】
これにより、各発光素子列を独立して定電流制御することができるので、点灯時に発光部が高温になったとしても、従来のように定電流回路を1個しか設けていないため、一方の列に大電流が流れ、他方の列に電流が少ししか流れなくなって配光がアンバランスになったり、大電流によりLEDベアチップが破損に至るといった不具合が生じることがない。
【0010】
また、前記定電流回路が電流調整手段を含むことを特徴とする。これにより、発光素子列に流れる電流量を任意の値に調整することが可能になる。
さらに、前記発光素子が発光ダイオードであることを特徴とする。
また、本発明の照明用駆動回路は、同数の発光素子を直列に接続してなる複数の発光素子列を備える照明光源を駆動するための照明用駆動回路であって、共通電源に対し各発光素子列を並列に接続するための回路を備え、当該回路には、接続される発光素子列それぞれに対し、当該発光素子列の発光素子と直列に接続される定電流回路が設けられていることを特徴とする。
【0011】
これにより、各列の発光素子列を独立して定電流制御することができるので、点灯時に発光部が高温になったとしても、従来のように定電流回路を1個しか設けていないため、一方の列に大電流が流れ、他方の列に電流が少ししか流れなくなって配光がアンバランスになったり、大電流によりLEDベアチップが破損に至るといった不具合が生じることがない。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、実施の形態に係る照明装置1の構成例を示す斜視図であり、説明の都合上一部を破断して示している。
同図に示すように、照明装置1は、一般の白熱電球に代替するものであって、照明光源としての照明ユニット2、照明ユニット2から発せられる光の内の、拡散した光を反射させて前方(同図上方)へ導く反射笠としての2次光学系3、ケース4、ケース4内に収容され、照明ユニット2の発光素子としてのLEDベアチップD11〜D88(図2参照)を発光させるための駆動回路基板5(破線)、および口金6を備えている。口金6は、白熱電球等の一般照明電球に用いられるものと同サイズ(同規格)のものである。
【0013】
駆動回路基板5は、リード線21〜24を介して照明ユニット2と接続されると共に、リード線71、72を介して口金6と接続されており、外部商用電源(ここでは、AC100V)から口金6を介して入力される交流電力を直流電力に変換して照明ユニット2に供給する。光源となる照明ユニット2が板状体であるため、白熱電球等に対し装置自体(特に全長)を小型化することができる。
【0014】
図2は、照明ユニット2の平面図である。
同図に示すように、照明ユニット2は、金属ベースプリント配線板(以下、単に「プリント配線板」という。)20上に、複数個(ここでは、64個)のLEDベアチップD11〜D88(符号については後述)が規則正しく配列されてなる多点光源であり、これらLEDベアチップを一斉に発光させることによって面光源として用いられるものである。
【0015】
図3は、照明ユニット2を、図2のA−A線で切断した場合における矢視断面図である。
同図に示すように、プリント配線板20は、金属板28をベースとした多層(ここでは、2層)プリント配線板である。プリント配線板20は、無機質フィラー入り熱硬化性樹脂からなる絶縁板30、32の表面に、金属からなる配線パターン(同図では、LEDベアチップD11接続のためのパターンとして、44A、40A、40Hが現れている。)が形成されてなる基板34、36が、金属板(ここでは、アルミニウム板)28の上に積層された構成をしている。
【0016】
一方、LEDベアチップD11は、立方体形状をしたInGaN系のLEDベアチップであり、一方の面にアノード電極とカソード電極の両方を有する片面電極タイプのLEDベアチップである。この構成は、他の63個のLEDベアチップも同様である。
本実施の形態において、上記絶縁板30、32には、無機質フィラーとしてアルミナを、熱硬化性樹脂としてエポキシ樹脂を使用したアルミナコンポジット基板が用いられている。また、配線パターンには、銅(Cu)が用いられている。なお、フィラーに用いるのは、アルミナに限られず、点灯時にLEDベアチップから発生する熱を効率よく金属板28に伝導する高熱伝導性を有するものであれば構わない。例えば、シリカやボロンナイトライドなどを用いることができる。また、配線パターンも銅に限られず、金(Au)等を用いることができる。
【0017】
図4は、基板36の平面図であり、図5は、基板34の平面図である。
図4に示すように、基板36の絶縁板32に形成された配線パターン40の形成領域には、64個のLEDベアチップD11〜D88が8行8列のマトリックス状に整然と搭載される。各LEDベアチップの搭載位置を符号Cnm(nは行数を、mは列数を示し、いずれも1〜8の整数である。)で示す。これに合わせて、各搭載位置に搭載されるLEDベアチップをDnmで表す。すなわち、n行m列目の搭載位置に搭載されたLEDベアチップをDnmとする。
【0018】
上記配線パターン40は、各行における奇数列目のLEDベアチップと偶数列目におけるLEDベアチップの各々同士を直列に接続するためのものである。
配線パターン40A、40B、40C、40Dは、給電端子として用いられる。配線パターン40Aには、上記リード線21が、配線パターン40Bには、リード線22が、配線パターン40Cには、リード線23が、配線パターン40Dには、リード線24が接続され、駆動回路基板5からの直流電力を受ける。
【0019】
図5に示す基板34に形成された配線パターンは、前記配線パターン40とビアホール(図4、5における小さい「○」印で示すもの。)を介して層間接続されるパターンである。
当該配線パターン44は、上記したように各行において直列接続された奇数列目のLEDベアチップと、直列接続された偶数列目のLEDベアチップとをさらに直列に接続する。すなわち、LEDベアチップは、各行毎に直列接続されている。例えば、1行目であれば、D11、D13、D15、D17、D12、D14、D16、D18の順に、LEDベアチップ同士が直列接続されている。
【0020】
配線パターン44は、さらに、各行毎に直列接続されたLEDベアチップの第1行目〜第4行目間を行番号の順に直列に接続し、第5行目〜第8行目を同じく行番号順に直列に接続する。すなわち、1行1列目から4行8列目までの32個LEDベアチップD11〜D48(以下、これらのLEDベアチップを「第1グループ」と称する。)がD11、D13・・・D18、D22、D24・・・D28、D21・・・D27、D31・・・D43、D45、D47の順に直列に接続され(図6の符号25参照)、5行1列目から8行8列目までの32個のLEDベアチップD51〜D88(以下、これらのLEDベアチップを「第2グループ」と称する。)がD81、D83、D85、D87、D82、D84・・・D88、D72、D74・・・D58、D51、D53、D55、D57の順に直列に接続されている(図6の符号26参照)。
【0021】
この場合において、第1グループの中では、1行1列目のLEDベアチップD11のアノード電極(不図示)と、配線パターン40Aとが接続され、4行7列目のLEDベアチップD47のカソード電極(不図示)と、配線パターン40Eとが接続され、配線パターン40Eは、配線パターン44Bを介して配線パターン40Bと接続されるようになっており、LEDベアチップD11が高電位側末端、LEDベアチップD47が低電位側末端となる。
【0022】
また、第2グループの中では、8行1列目のLEDベアチップD81のアノード電極(不図示)と、配線パターン40Dとが接続され、5行7列目のLEDベアチップD57のカソード電極(不図示)と、配線パターン40Fとが接続され、配線パターン40Fは、配線パターン44Cを介して配線パターン40Cと接続されるようになっており、LEDベアチップD81が高電位側末端、LEDベアチップD57が低電位側末端となる。
【0023】
図6は、照明装置1の回路構成を示す図である。
同図に示すように、商用交流電源(AC100V)を全波整流するダイオードブリッジからなる整流回路51と、整流された直流電流を平滑化する電解コンデンサからなる平滑回路52と、平滑された直流電流を共通電源として、当該共通電源に対し並列に接続される発光素子列としてのLED列25、26と、LED列25と直列に接続される定電流回路53と、LED列26と直列に接続される定電流回路54と、を含んで構成されている。
【0024】
LED列25は、上記第1のグループに含まれる32個のLEDベアチップD11〜D48が直列に接続された回路であり、LED列26は、上記第2のグループに含まれる32個のLEDベアチップD51〜D88が直列に接続された回路である。
整流回路51と、平滑回路52と、定電流回路53、54は、駆動回路基板5に配置されている。すなわち、駆動回路基板5は、照明ユニット2のLED列25、26を除いた部分の回路であり、LED列25、26を共通電源に対し、並列接続するための、照明用駆動回路としての回路構成を備えたものである。
【0025】
なお、同図T点、U点は、駆動回路基板5のリード線71、72との接続端子に相当する部分である。P点は、配線パターン40Aに相当する部分であり、Q点は、配線パターン40Bに相当する部分である。また、R点は、配線パターン40Dに相当する部分であり、S点は、配線パターン40Cに相当する部分である。一方、P′Q′R′S′点は、駆動回路基板5の照明ユニット2とのリード線21、22、24、23の接続端子に相当する部分を示しており、P−P′間がリード線21、Q−Q′間がリード線22、R−R′間がリード線24、S−S′間がリード線23で接続される。
【0026】
定電流回路53は、三端子レギュレータ61の出力端子Voutに電流調整手段としての固定抵抗器62および可変抵抗器63を接続した公知の回路で構成されており、LED列25に流れる電流Iが常に一定となるように制御する。一方、定電流回路54は、定電流回路53と同一のものであり、三端子レギュレータ65、固定抵抗器66および可変抵抗器67を備えており、LED列26に流れる電流Iが常に一定となるように制御する。電流Iの値は、ここでは約40(mA)であり、表示装置等に通常用いる場合に、20(mA)程度とされる場合に比べると大幅に大きい。電流Iの大きさは、各列の可変抵抗器63、67により微調整される。これにより、LED列25、26には、ほぼ同一の電流Iが流れることになる。
【0027】
1列のLEDベアチップの接続個数は、電源電圧、定電流回路の動作電圧等の大きさから決められる。すなわち、整流後の最大電圧を「Vmax」、整流、平滑後の出力にリプルが含まれる場合のリプル電圧を「Vrp」、LEDベアチップ1個の順方向電圧を「Vf」、定電流回路の動作電圧を「Vreg」とすると、LEDベアチップの個数「n」は、式:n={Vmax−(Vrp+Vreg)}/Vfを用いて求めることができる。
【0028】
本実施の形態の構成例の場合、商用電源がAC100(V)であるため、電圧変動(10%)を考慮して入力最大電圧をAC110(V)とすると、整流後の最大電圧Vmaxは、約DC155(V)となる。LEDベアチップは、順方向電圧Vfが約4.0(V)のものであり、定電流回路は、最適動作電圧が約24(V)のものが使用されている。リプル電圧Vrpを余裕を見て約3(V)とすると、上記式から個数nは、32(個)となる。つまり、上記仕様のLEDベアチップ、定電流回路等を用いて回路を構成する場合、一列に直列接続できるLEDベアチップの最大数は、32個ということになる。照明装置の場合、より高い発光光度が求められるため、できるだけ多くのLEDベアチップを接続することが望ましく、その意味では当該最大数を最適数ととらえることができる。このことは、並列接続される別の列でも同じことがいえるので、各列それぞれについて、32個のLEDベアチップを直列接続する構成が最適ということになる。
【0029】
なお、各列を独立して定電流制御する構成の場合、LEDベアチップの個数を列毎に変えることもできる。しかしながら、各列に共通電源として同電圧が印加され、同一の電流Iが流れる構成なので、LEDベアチップが少ない列では、その少ない分のLEDベアチップに本来電流が流れると得られるであろう光エネルギをその列の定電流回路で無駄に熱に変換しているだけになり、照明装置として用いるには効率が大変悪くなる。したがって、各列で同数(接続可能な最大数)とすることが効率が最も良いことになる。
【0030】
これより、本実施の形態の回路構成では、LEDベアチップの最適数は、64個(2列)、96個(3列)・・となるが、その数は、実際にはLEDベアチップ、プリント配線板の大きさ、照明装置として必要な光度等が考慮されて決められることになる。ここでは、白熱電球等の一般電球代替えの照明装置に用いる場合であり、64個のLEDベアチップを用いて必要な光度を確保している。
【0031】
このように本実施の形態の照明装置1は、LED列25に定電流回路53を直列に接続した回路と、LED列26に定電流回路54を直列に接続した回路を、共通電源に対し並列に接続する構成なので、各列で独立した定電流制御を行うことができる。したがって、ある程度の内部抵抗のばらつきを有している多数のLEDベアチップから構成される発光部が点灯時に高温になったとしても、従来のように定電流回路を1個しか設けていないため、一方の列に大電流が流れ、他方の列に電流が少ししか流れなくなって配光がアンバランスになったり、大電流によりLEDベアチップが破損に至るといった不具合が生じることがない。
【0032】
そして、各列で、LEDベアチップの個数を同数(1列に接続可能な最大数)としているので、回路効率、照明装置としてみたときの発光効率を向上できるという効果がある。
なお、本実施の形態では、上記式からLEDベアチップの1列の個数を32個としたが、Vf、Vrp等の値が異なれば、その数も当然に異なり、実際には場合毎に、最適な個数、列数が求められることになる。
【0033】
(変形例)
以上、本発明を実施の形態に基づいて説明してきたが、本発明は、上述の実施の形態に限定されないのは勿論であり、以下のような変形例が考えられる。
(1)上記実施の形態では、商用電源がAC100(V)の場合の回路構成の例を説明したが、それ以外の電圧、例えばAC120(V)、AC230(V)等であっても、上記「Vmax」の値を、その電圧に応じて求め、上記式に適用することによりLEDベアチップの最適な数を求めることができる。
【0034】
(2)また、入力電源が、DC48(V)、DC24(V)、DC12(V)等の直流(DC)電源の場合には、基本的に整流回路、平滑回路等を設ける必要が無く、回路構成をより小型化、簡素化できる。その場合、リプル電圧Vrpを考慮する必要がなければ、上記式を、n=(直流入力電圧V−Vreg)/Vfとして表すことができる。
【0035】
(3)上記実施の形態では、定電流回路53、54をLED列25、26の低電位側に配置する構成としたが、例えば高電位側に配置する回路構成としても良い。また、定電流回路を、隣接する2つのLEDベアチップの間に介在させる構成、第1グループであれば、例えば・・D13、定電流回路53、D15・・を直列接続する回路構成等とすることもできる。要は、各列について、その列のLEDベアチップと定電流回路が直列に接続される回路構成であれば良いのである。
【0036】
(4)上記実施の形態では、LEDベアチップとして同一仕様のものを用いる場合の例を説明したが、各列について、LEDベアチップの個数nを同一にすると共にVfの合計値がほぼ同一になる構成とすれば、別仕様の、例えば発光色が異なるLEDベアチップを同じ列内に接続することもできる。具体的には、各列について、例えば発光色が赤色、緑色、青色の各LEDベアチップを同数ずつ直列に接続する構成等が考えられる。この場合、例えばLEDベアチップを隣接するもの同士で発光色が異なるように直列に接続する構成にすれば、各色が混合し易くなって白色により近い光を発光する照明装置として用いることが可能になる。
【0037】
(5)上記実施の形態では、一方の面にアノード電極とカソード電極の両方を有する片面電極タイプのLEDベアチップを用いた場合の例を説明したが、LEDとしては樹脂モールドされたもの等であっても良く、ベアチップに限定されないのは言うまでもない。また、一方の面にアノード電極を、他方の面にカソード電極を有する両面電極タイプのLEDが用いられる照明装置にも本発明を適用できる。さらに、上記では発光素子としてLEDを用いた場合の例を説明したが、LEDと同様の抵抗特性等を有する発光素子一般に適用可能である。
【0038】
(6)上記実施の形態では、照明装置の一例として、一般の白熱電球に代替する照明装置を開示したが、上記駆動回路が適用される照明装置は、これに限定されず、例えば電気スタンド、懐中電灯等の駆動回路に適用することもできる。
(7)上記実施の形態では、本発明を照明装置に適用した場合の例を説明したが、照明用駆動回路、すなわち、照明ユニット2の各LEDベアチップを駆動するための回路(駆動回路基板5)としてとらえることもできる。
【0039】
【発明の効果】
以上説明したように、本発明に係る照明装置は、共通電源に対し、複数の発光素子を直列に接続してなる発光素子列を2以上並列に接続して構成される照明装置であって、各発光素子列の発光素子の個数が同数であると共に、発光素子列それぞれに、当該発光素子列の発光素子と直列に接続される定電流回路が設けられている。これにより、各発光素子列を独立して定電流制御することができるので、点灯時に発光部が高温になったとしても、従来のように定電流回路を1個しか設けていないため、一方の列に大電流が流れ、他方の列に電流が少ししか流れなくなって配光がアンバランスになったり、大電流によりLEDベアチップが破損に至るといった不具合が生じることがない。
【図面の簡単な説明】
【図1】照明装置1の構成例を示す斜視図である。
【図2】照明ユニット2の平面図である。
【図3】図3は、照明ユニット2を、図2のA−A線で切断した場合における矢視断面図である。
【図4】プリント配線板20の基板36の平面図である。
【図5】プリント配線板20の基板34の平面図である。
【図6】照明装置1の回路構成を示す図である。
【符号の説明】
1 照明装置
2 照明ユニット
5 駆動回路基板
25、26 LED列
53、54 定電流回路
61、65 三端子レギュレータ
62、66 固定抵抗器
63、67 可変抵抗器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lighting device configured by connecting two or more light emitting element columns each having a plurality of light emitting elements connected in series to a common power supply, and an illumination driving circuit for lighting the light emitting elements. In particular, the present invention relates to improvement of a driving circuit for controlling a light emitting element at a constant current.
[0002]
[Prior art]
Conventionally, display devices and the like using a large number of light emitting diodes (LEDs) as light emitting units have been developed. The LED drive circuit of such a device employs a configuration in which a plurality of LEDs are connected in series. However, there is a case where all the LEDs cannot be connected in series due to the power supply voltage. A configuration in which a plurality of devices connected in series are connected in parallel is adopted. For example, if 50 LEDs with a forward voltage Vf of 4 (V) are connected, and if the input voltage is 100 (V), only 25 LEDs can be connected in series in one column, and 2 This is because they must be connected in parallel to the columns.
[0003]
When connected in parallel, the number of LEDs is usually the same in each column (for example, see Patent Document 1). This is because, in the conventional LED drive circuit, a current output from one current source is distributed to and supplied to the LEDs in each column connected in parallel. If the number of LEDs in a row is the same, the total value (combined resistance value) of the internal resistances of the LEDs in each row becomes almost the same, and almost the same amount of current can flow in each row. This is because variation in the amount of light emission can be reduced.
[0004]
[Patent Document 1]
Japanese Utility Model Registration No. 3016636 [0005]
[Problems to be solved by the invention]
However, when an LED drive circuit such as the above-described conventional display device is applied to a lighting device, an excessive current flows in one of the columns connected in parallel, causing illuminance unevenness, LED may be destroyed. This is for the following reason. That is, in order to increase the amount of light emission in the lighting device as much as possible, a larger current than the display device or the like, for example, about 20 (mA) in the display device, and a large current of about 40 (mA) is continuously applied to the LED. Therefore, the LED easily generates heat, and the light emitting portion easily becomes high in temperature. In general, LEDs have a characteristic that the internal resistance decreases as the temperature rises, and that the variation in the resistance value of each LED increases at higher temperatures.
[0006]
Therefore, when the temperature rises due to heat generation, the variation in the resistance value of each LED increases, and the variation causes the difference in the combined resistance value in each row to be larger than at low temperatures. In that case, more current flows into the column with the smaller combined resistance value than before, and in that column, the amount of current of each LED increases due to the increase in current, but the amount of heat generated also increases and the temperature rises, The combined resistance value decreases, and more current flows. On the other hand, in a column having a large combined resistance value, only a small amount of current flows and the amount of light decreases. As a result of this repetition, a large difference occurs in the amount of light emission in each row, and as a result, the light distribution becomes unbalanced, causing uneven illuminance on the irradiation target surface, or the LED in the row in which the current is excessive becomes excessive. It will be destroyed.
[0007]
The present invention has been made in view of such a problem, and provides an illumination device and an illumination drive circuit that can prevent illuminance unevenness from occurring or a light emitting element from being destroyed. Aim.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a lighting device according to the present invention is a lighting device configured by connecting two or more light emitting element arrays each having a plurality of light emitting elements connected in series to a common power supply in parallel. The number of light emitting elements in each light emitting element row is the same, and each light emitting element row is provided with a constant current circuit connected in series with the light emitting element in the light emitting element row.
[0009]
As a result, each light emitting element row can be independently controlled with a constant current, so that even if the light emitting section becomes hot at the time of lighting, only one constant current circuit is provided as in the related art. A large current does not flow in one row, and only a small amount of current flows in the other row, so that the light distribution is not unbalanced, and the large current does not cause a problem such as damage to the LED bare chip.
[0010]
Further, the constant current circuit includes a current adjusting unit. This makes it possible to adjust the amount of current flowing through the light emitting element array to an arbitrary value.
Further, the light emitting device is a light emitting diode.
Further, the illumination driving circuit of the present invention is an illumination driving circuit for driving an illumination light source including a plurality of light emitting element arrays in which the same number of light emitting elements are connected in series. A circuit for connecting the element arrays in parallel is provided, and the circuit is provided with a constant current circuit connected in series to the light emitting elements of the light emitting element arrays for each of the connected light emitting element arrays. It is characterized by.
[0011]
As a result, the light emitting element rows of each row can be independently controlled with a constant current. Even if the light emitting section becomes hot at the time of lighting, only one constant current circuit is provided as in the related art. A large current does not flow in one row and a small amount of current flows in the other row, so that the light distribution is not unbalanced and the large current does not cause a problem such as damage to the LED bare chip.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view illustrating a configuration example of a lighting device 1 according to an embodiment, and is partially cut away for convenience of description.
As shown in FIG. 1, a lighting device 1 is a substitute for a general incandescent light bulb, and reflects a diffused light of a light emitted from the lighting unit 2 and the lighting unit 2 as a lighting light source. The secondary optical system 3 serving as a reflection shade for guiding forward (upward in the figure), the case 4, and housed in the case 4, emit light from the LED bare chips D 11 to D 88 (see FIG. 2) serving as light emitting elements of the lighting unit 2. A drive circuit board 5 (broken line) and a base 6 are provided. The base 6 has the same size (standard) as that used for general lighting bulbs such as incandescent bulbs.
[0013]
The drive circuit board 5 is connected to the lighting unit 2 via the lead wires 21 to 24, and also connected to the base 6 via the lead wires 71 and 72, and is connected to an external commercial power supply (here, AC100V) from the base. 6 is supplied to the lighting unit 2 by converting AC power inputted through the DC power supply 6 into DC power. Since the lighting unit 2 serving as a light source is a plate-like body, the size of the device itself (especially, the entire length) can be reduced with respect to an incandescent lamp or the like.
[0014]
FIG. 2 is a plan view of the lighting unit 2.
As shown in the figure, the lighting unit 2 includes a plurality of (here, 64) LED bear chips D 11 to D 88 on a metal base printed wiring board (hereinafter, simply referred to as “printed wiring board”) 20. (The symbols will be described later) are multi-point light sources arranged regularly, and are used as a surface light source by causing these LED bare chips to emit light at the same time.
[0015]
FIG. 3 is a cross-sectional view of the lighting unit 2 taken along line AA in FIG.
As shown in the figure, the printed wiring board 20 is a multilayer (here, two layers) printed wiring board based on a metal plate 28. The printed wiring board 20, the surface of the insulating plate 30 and 32 made of an inorganic filler-containing thermosetting resin, the wiring pattern (FIG made of metal, as a pattern for the LED bare chips D 11 connected, 44A, 40A, 40H Are formed on the metal plate (in this case, an aluminum plate) 28.
[0016]
On the other hand, LED bare chips D 11 is an LED bare chip InGaN system in which the cubic shape, an LED bare chip of single-sided electrode type having both the anode electrode and the cathode electrode on one surface. This configuration is the same for the other 63 LED bare chips.
In the present embodiment, an alumina composite substrate using alumina as the inorganic filler and epoxy resin as the thermosetting resin is used for the insulating plates 30 and 32. Further, copper (Cu) is used for the wiring pattern. The filler used is not limited to alumina, and may be any filler having high thermal conductivity that efficiently transfers the heat generated from the LED bare chip to the metal plate 28 during lighting. For example, silica or boron nitride can be used. Further, the wiring pattern is not limited to copper, and gold (Au) or the like can be used.
[0017]
FIG. 4 is a plan view of the substrate 36, and FIG. 5 is a plan view of the substrate 34.
As shown in FIG. 4, in the formation region of the wiring pattern 40 formed on the insulating plate 32 of the substrate 36, 64 LED bare chips D 11 to D 88 are orderly mounted in a matrix of 8 rows and 8 columns. The mounting position of each LED bare chip is indicated by a symbol Cnm (n indicates the number of rows, m indicates the number of columns, and each is an integer of 1 to 8). In accordance with this, the LED bare chip mounted at each mounting position is represented by Dnm. That is, the LED bare chip mounted at the mounting position of the n-th row and the m-th column is Dnm.
[0018]
The wiring pattern 40 is for connecting the LED bare chips in the odd-numbered columns and the LED bare chips in the even-numbered columns in each row in series.
The wiring patterns 40A, 40B, 40C, and 40D are used as power supply terminals. The lead 21 is connected to the wiring pattern 40A, the lead 22 is connected to the wiring pattern 40B, the lead 23 is connected to the wiring pattern 40C, and the lead 24 is connected to the wiring pattern 40D. 5 receives the DC power.
[0019]
The wiring pattern formed on the substrate 34 shown in FIG. 5 is a pattern that is interlayer-connected to the wiring pattern 40 via a via hole (indicated by a small “○” in FIGS. 4 and 5).
As described above, the wiring pattern 44 further connects the series-connected odd-numbered LED bear chips and the series-connected even-numbered LED bear chips in series in each row. That is, the LED bare chips are connected in series for each row. For example, if the first line, in the order of D 11, D 13, D 15 , D 17, D 12, D 14, D 16, D 18, LED bare chips are connected to each other in series.
[0020]
The wiring pattern 44 further connects the first to fourth rows of the LED bare chips connected in series for each row in series in the order of row numbers, and the fifth to eighth rows have the same row numbers. Connect in series in order. That is, 32 from the first row first column to the fourth row 8 column LED bare chips D 11 to D 48 (hereinafter, these LED bare chips is referred to as a "first group".) Is D 11, D 13 · · · D 18 , D 22 , D 24 ... D 28 , D 21 ... D 27 , D 31 ... D 43 , D 45 , and D 47 are connected in series in this order (see reference numeral 25 in FIG. 6), 32 from 5 row first column to the 8 rows and 8 column LED bare chips D 51 to D 88 (hereinafter, these LED bare chips is referred to as a "second group".) is D 81, D 83, D 85 , D 87, D 82, D 84 ··· D 88, D 72, D 74 ··· D 58, D 51, D 53, D 55, in the order of D 57 are connected in series (code 6 26 reference).
[0021]
In this case, among the first group, and the anode electrode of the first row and first column of the LED bare chips D 11 (not shown), the wiring pattern 40A is connected, the cathode of the fourth row 7 column of LED bare chips D 47 an electrode (not shown), a wiring pattern 40E is connected to the wiring pattern 40E is adapted to be connected to the wiring pattern 40B via the wiring pattern 44B, LED bare chips D 11 is the high potential side terminal, LED The bare chip D 47 is the lower potential side terminal.
[0022]
Further, among the second group, and the anode electrode 8 row and first column of the LED bare chips D 81 (not shown), a wiring pattern 40D are connected, the cathode electrode of the fifth line 7 column of LED bare chips D 57 ( and not shown), it is connected to the wiring pattern 40F is, the wiring pattern 40F is adapted to be connected to the wiring pattern 40C through the wiring pattern 44C, LED bare chips D 81 is the high potential side terminal, LED bare chips D 57 is the lower potential end.
[0023]
FIG. 6 is a diagram illustrating a circuit configuration of the lighting device 1.
As shown in the figure, a rectifier circuit 51 composed of a diode bridge for full-wave rectification of a commercial AC power supply (AC 100 V), a smoothing circuit 52 composed of an electrolytic capacitor for smoothing the rectified DC current, and a smoothed DC current Are used as a common power supply, LED strings 25 and 26 as light emitting element strings connected in parallel to the common power supply, a constant current circuit 53 connected in series with the LED string 25, and a LED connected in series with the LED string 26. And a constant current circuit 54.
[0024]
LED row 25, the first 32 LED bare chips D 11 to D 48 in the group is a circuit connected in series, LED string 26, 32 of the LED included in the second group bare chip D 51 to D 88 is a circuit connected in series.
The rectifier circuit 51, the smoothing circuit 52, and the constant current circuits 53 and 54 are arranged on the drive circuit board 5. That is, the drive circuit board 5 is a circuit of a portion excluding the LED arrays 25 and 26 of the illumination unit 2, and a circuit as an illumination drive circuit for connecting the LED arrays 25 and 26 in parallel to a common power supply. It has a configuration.
[0025]
Note that points T and U in the figure are portions corresponding to connection terminals with the lead wires 71 and 72 of the drive circuit board 5. Point P is a portion corresponding to wiring pattern 40A, and point Q is a portion corresponding to wiring pattern 40B. The point R is a portion corresponding to the wiring pattern 40D, and the point S is a portion corresponding to the wiring pattern 40C. On the other hand, points P'Q'R'S 'indicate portions corresponding to connection terminals of the lead wires 21, 22, 24, and 23 with the lighting unit 2 of the drive circuit board 5, and the point between PP and P' is shown. A lead wire 22 is connected between the lead wires 21 and Q-Q ', a lead wire 24 is connected between R-R' and a lead wire 23 is connected between SS and S '.
[0026]
The constant current circuit 53 is formed of a known circuit in which a fixed resistor 62 and a variable resistor 63 as current adjusting means are connected to an output terminal Vout of a three-terminal regulator 61, and the current I flowing through the LED array 25 is always constant. It is controlled to be constant. On the other hand, the constant current circuit 54 is the same as the constant current circuit 53 and includes a three-terminal regulator 65, a fixed resistor 66, and a variable resistor 67, and the current I flowing through the LED array 26 is always constant. Control. The value of the current I is about 40 (mA) here, which is much larger in a case where the current I is normally used for a display device or the like than in a case where the current I is about 20 (mA). The magnitude of the current I is finely adjusted by the variable resistors 63 and 67 in each column. As a result, almost the same current I flows through the LED arrays 25 and 26.
[0027]
The number of connected LED bare chips in one row is determined based on the power supply voltage, the operating voltage of the constant current circuit, and the like. That is, the maximum voltage after rectification is “Vmax”, the ripple voltage when the output after rectification and smoothing includes ripple is “Vrp”, the forward voltage of one LED bare chip is “Vf”, and the operation of the constant current circuit. Assuming that the voltage is “Vreg”, the number “n” of LED bare chips can be obtained using the formula: n = {Vmax− (Vrp + Vreg)} / Vf.
[0028]
In the case of the configuration example of the present embodiment, since the commercial power supply is AC100 (V), if the input maximum voltage is AC110 (V) in consideration of voltage fluctuation (10%), the rectified maximum voltage Vmax is: It is approximately DC 155 (V). The LED bare chip has a forward voltage Vf of about 4.0 (V), and the constant current circuit has an optimum operating voltage of about 24 (V). If the ripple voltage Vrp is set to about 3 (V) in view of a margin, the number n is 32 (pieces) from the above equation. That is, when a circuit is configured using the LED bare chip, the constant current circuit, and the like having the above specifications, the maximum number of LED bare chips that can be connected in series in a row is 32. In the case of a lighting device, since a higher luminous intensity is required, it is desirable to connect as many LED bare chips as possible, and in that sense, the maximum number can be regarded as an optimum number. The same can be said for another column connected in parallel, so that a configuration in which 32 LED bare chips are connected in series for each column is optimal.
[0029]
In the case of a configuration in which each column is independently controlled at a constant current, the number of LED bare chips can be changed for each column. However, since the same voltage is applied to each column as a common power supply and the same current I flows, in a column having a small number of LED bare chips, light energy that would be obtained if a current originally flows through the small number of LED bare chips is used. The constant current circuits in the row merely convert the heat to waste, and the efficiency becomes extremely poor for use as a lighting device. Therefore, it is most efficient to set the same number in each row (the maximum number that can be connected).
[0030]
Thus, in the circuit configuration of the present embodiment, the optimal number of LED bare chips is 64 (2 rows), 96 (3 rows)... The size is determined in consideration of the size of the plate, the luminous intensity required for the lighting device, and the like. Here, this is a case where the present invention is used for a lighting device that substitutes for a general light bulb such as an incandescent light bulb, and the necessary luminous intensity is secured by using 64 LED bare chips.
[0031]
As described above, the lighting apparatus 1 of the present embodiment includes a circuit in which the constant current circuit 53 is connected in series to the LED string 25 and a circuit in which the constant current circuit 54 is connected in series to the LED string 26 in parallel with the common power supply. , It is possible to perform independent constant current control in each column. Therefore, even if the light-emitting portion composed of a large number of LED bare chips having a certain degree of variation in internal resistance becomes hot at the time of lighting, only one constant current circuit is provided as in the related art. A large current flows in one row, and a small amount of current flows in the other row, resulting in unbalanced light distribution and a large current that causes damage to the LED bare chip.
[0032]
Since the number of LED bare chips is the same (the maximum number that can be connected to one column) in each column, there is an effect that the circuit efficiency and the luminous efficiency when viewed as a lighting device can be improved.
In this embodiment, the number of LED bare chips in one row is 32 from the above equation. However, if the values of Vf, Vrp, etc. are different, the numbers are naturally different. The number and the number of columns are determined.
[0033]
(Modification)
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and the following modified examples can be considered.
(1) In the above-described embodiment, an example of the circuit configuration when the commercial power supply is AC100 (V) has been described. However, even if the voltage is other than that, for example, AC120 (V), AC230 (V), or the like, The value of “Vmax” is obtained according to the voltage, and the optimal number of LED bare chips can be obtained by applying the value to the above equation.
[0034]
(2) When the input power supply is a direct current (DC) power supply such as DC48 (V), DC24 (V), and DC12 (V), there is basically no need to provide a rectifier circuit, a smoothing circuit, and the like. The circuit configuration can be made smaller and simpler. In this case, if it is not necessary to consider the ripple voltage Vrp, the above equation can be expressed as n = (DC input voltage V−Vreg) / Vf.
[0035]
(3) In the above embodiment, the constant current circuits 53 and 54 are arranged on the low potential side of the LED strings 25 and 26, but may be arranged on the high potential side, for example. In addition, a configuration in which a constant current circuit is interposed between two adjacent LED bare chips, a first group includes, for example, a circuit configuration in which D 13 , a constant current circuit 53, D 15. You can also. In short, it is only necessary for each column to have a circuit configuration in which the LED bare chips in the column and the constant current circuit are connected in series.
[0036]
(4) In the above-described embodiment, an example in which the same specifications are used as the LED bare chips has been described. However, in each column, the number n of the LED bare chips is the same, and the total value of Vf is substantially the same. In this case, LED bear chips of different specifications, for example, having different emission colors can be connected in the same row. Specifically, for each column, for example, a configuration in which the same number of LED bare chips of red, green, and blue emission colors are connected in series can be considered. In this case, for example, if the LED bare chips are connected in series so that the adjacent ones emit different colors, it becomes easy to mix the colors, and it can be used as a lighting device that emits light closer to white. .
[0037]
(5) In the above embodiment, an example was described in which a single-sided electrode type bare LED chip having both an anode electrode and a cathode electrode on one surface was used. However, the LED is a resin-molded LED or the like. Needless to say, it is not limited to bare chips. Further, the present invention can be applied to a lighting device using a double-sided electrode type LED having an anode electrode on one surface and a cathode electrode on the other surface. Further, in the above, an example in which an LED is used as a light emitting element has been described. However, the present invention can be applied to a general light emitting element having the same resistance characteristics as an LED.
[0038]
(6) In the above embodiment, as an example of a lighting device, a lighting device that replaces a general incandescent light bulb is disclosed. However, the lighting device to which the driving circuit is applied is not limited thereto. The present invention can be applied to a driving circuit such as a flashlight.
(7) In the above embodiment, an example in which the present invention is applied to a lighting device has been described. However, a lighting driving circuit, that is, a circuit for driving each LED bare chip of the lighting unit 2 (the driving circuit board 5) ).
[0039]
【The invention's effect】
As described above, the lighting device according to the present invention is a lighting device configured by connecting two or more light-emitting element rows in which a plurality of light-emitting elements are connected in series to a common power supply, The number of light emitting elements in each light emitting element row is the same, and each light emitting element row is provided with a constant current circuit connected in series with the light emitting element in the light emitting element row. As a result, each light emitting element row can be independently controlled with a constant current, so that even if the light emitting section becomes hot at the time of lighting, only one constant current circuit is provided as in the related art. A large current does not flow in one row, and only a small amount of current flows in the other row, so that the light distribution is not unbalanced, and the large current does not cause a problem such as damage to the LED bare chip.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration example of a lighting device 1;
FIG. 2 is a plan view of the lighting unit 2. FIG.
FIG. 3 is a cross-sectional view of the lighting unit 2 taken along line AA in FIG.
FIG. 4 is a plan view of a substrate 36 of the printed wiring board 20.
FIG. 5 is a plan view of a substrate 34 of the printed wiring board 20.
FIG. 6 is a diagram showing a circuit configuration of the illumination device 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Illumination device 2 Illumination unit 5 Drive circuit board 25, 26 LED string 53, 54 Constant current circuit 61, 65 Three-terminal regulator 62, 66 Fixed resistor 63, 67 Variable resistor

Claims (4)

共通電源に対し、複数の発光素子を直列に接続してなる発光素子列を2以上並列に接続して構成される照明装置であって、
各発光素子列の発光素子の個数が同数であると共に、発光素子列それぞれに、当該発光素子列の発光素子と直列に接続される定電流回路が設けられていることを特徴とする照明装置。
A lighting device configured by connecting two or more light-emitting element rows in which a plurality of light-emitting elements are connected in series to a common power supply,
A lighting device, wherein the number of light emitting elements in each light emitting element row is the same, and a constant current circuit connected in series with the light emitting element in the light emitting element row is provided for each light emitting element row.
前記定電流回路が電流調整手段を含むことを特徴とする請求項1に記載の照明装置。The lighting device according to claim 1, wherein the constant current circuit includes a current adjusting unit. 前記発光素子が発光ダイオードであることを特徴とする請求項1もしくは2に記載の照明装置。3. The lighting device according to claim 1, wherein the light emitting element is a light emitting diode. 同数の発光素子を直列に接続してなる複数の発光素子列を備える照明光源を駆動するための照明用駆動回路であって、
共通電源に対し各発光素子列を並列に接続するための回路を備え、当該回路には、接続される発光素子列それぞれに対し、当該発光素子列の発光素子と直列に接続される定電流回路が設けられていることを特徴とする照明用駆動回路。
An illumination drive circuit for driving an illumination light source including a plurality of light-emitting element rows in which the same number of light-emitting elements are connected in series,
A circuit for connecting each light-emitting element array in parallel to a common power supply, wherein the circuit includes, for each of the connected light-emitting element arrays, a constant current circuit connected in series with the light-emitting element of the light-emitting element array; An illumination drive circuit, comprising:
JP2002377881A 2002-12-26 2002-12-26 LIGHTING DEVICE AND LIGHTING DRIVE CIRCUIT Expired - Lifetime JP4439179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377881A JP4439179B2 (en) 2002-12-26 2002-12-26 LIGHTING DEVICE AND LIGHTING DRIVE CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377881A JP4439179B2 (en) 2002-12-26 2002-12-26 LIGHTING DEVICE AND LIGHTING DRIVE CIRCUIT

Publications (2)

Publication Number Publication Date
JP2004207654A true JP2004207654A (en) 2004-07-22
JP4439179B2 JP4439179B2 (en) 2010-03-24

Family

ID=32814915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377881A Expired - Lifetime JP4439179B2 (en) 2002-12-26 2002-12-26 LIGHTING DEVICE AND LIGHTING DRIVE CIRCUIT

Country Status (1)

Country Link
JP (1) JP4439179B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149896A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd Light emitting device
JP2007208113A (en) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd Led drive
JP2009033098A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Led lighting device and lighting fixture including the same
JP2009302053A (en) * 2008-06-13 2009-12-24 Samsung Electronics Co Ltd Backlight assembly and display device containing the same
JP2010232052A (en) * 2009-03-27 2010-10-14 Panasonic Corp Illumination device
US8237373B2 (en) 2008-08-12 2012-08-07 Rohm Co., Ltd. Drive device for performing electric power conversion by using switching element
JP2014096576A (en) * 2012-10-10 2014-05-22 Citizen Electronics Co Ltd LED Drive circuit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146248U (en) * 1988-03-29 1989-10-09
JPH0575817U (en) * 1992-03-18 1993-10-15 ホシデン株式会社 Constant current circuit
JPH0611364U (en) * 1992-07-20 1994-02-10 多摩川精機株式会社 Light emitting element drive circuit
JPH06121076A (en) * 1992-10-05 1994-04-28 Nitsuko Corp Speech current supply circuit
JP3016636U (en) * 1995-04-05 1995-10-09 株式会社光波 White light
JPH1125720A (en) * 1997-07-07 1999-01-29 Kouha:Kk Incandescent lamp colorlight
JP2000030877A (en) * 1998-07-15 2000-01-28 Matsushita Electric Works Ltd Lighting system
JP2001184938A (en) * 1999-12-14 2001-07-06 Aerospace Lighting Corp Led luminous body assembly for reading
JP2001263770A (en) * 2000-03-15 2001-09-26 Daikin Ind Ltd Air conditioner
JP2001272938A (en) * 2000-03-28 2001-10-05 Sharp Corp Color tone adjusting circuit and back light module and light emitting diode display device provided with the same circuit
JP2002304904A (en) * 2001-04-04 2002-10-18 Matsushita Electric Works Ltd Led lighting system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146248U (en) * 1988-03-29 1989-10-09
JPH0575817U (en) * 1992-03-18 1993-10-15 ホシデン株式会社 Constant current circuit
JPH0611364U (en) * 1992-07-20 1994-02-10 多摩川精機株式会社 Light emitting element drive circuit
JPH06121076A (en) * 1992-10-05 1994-04-28 Nitsuko Corp Speech current supply circuit
JP3016636U (en) * 1995-04-05 1995-10-09 株式会社光波 White light
JPH1125720A (en) * 1997-07-07 1999-01-29 Kouha:Kk Incandescent lamp colorlight
JP2000030877A (en) * 1998-07-15 2000-01-28 Matsushita Electric Works Ltd Lighting system
JP2001184938A (en) * 1999-12-14 2001-07-06 Aerospace Lighting Corp Led luminous body assembly for reading
JP2001263770A (en) * 2000-03-15 2001-09-26 Daikin Ind Ltd Air conditioner
JP2001272938A (en) * 2000-03-28 2001-10-05 Sharp Corp Color tone adjusting circuit and back light module and light emitting diode display device provided with the same circuit
JP2002304904A (en) * 2001-04-04 2002-10-18 Matsushita Electric Works Ltd Led lighting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149896A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd Light emitting device
JP2007208113A (en) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd Led drive
JP2009033098A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Led lighting device and lighting fixture including the same
JP2009302053A (en) * 2008-06-13 2009-12-24 Samsung Electronics Co Ltd Backlight assembly and display device containing the same
US8237373B2 (en) 2008-08-12 2012-08-07 Rohm Co., Ltd. Drive device for performing electric power conversion by using switching element
JP2010232052A (en) * 2009-03-27 2010-10-14 Panasonic Corp Illumination device
JP2014096576A (en) * 2012-10-10 2014-05-22 Citizen Electronics Co Ltd LED Drive circuit

Also Published As

Publication number Publication date
JP4439179B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US11703191B2 (en) LED lamp
US9271354B2 (en) Lighting source and lighting apparatus
US9357604B2 (en) Light engine with LED switching array
EP2671016B1 (en) Lighting unit with led strip
US20140232288A1 (en) Solid state lighting apparatuses and related methods
US9826581B2 (en) Voltage configurable solid state lighting apparatuses, systems, and related methods
US20150282260A1 (en) Solid state lighting apparatuses, systems, and related methods
US20140232289A1 (en) Solid state lighting apparatuses and related methods
WO1999057945A1 (en) A lamp employing a monolithic led device
JP2010009972A (en) Light emitting module and light emitting device
US7802903B1 (en) LED festoon lighting
WO2015142537A1 (en) Solid state lighting apparatuses,systems, and related methods
JP2014143307A (en) Light-emitting module and luminaire
JP5146468B2 (en) Lighting device
US10900653B2 (en) LED mini-linear light engine
JP4439179B2 (en) LIGHTING DEVICE AND LIGHTING DRIVE CIRCUIT
JP2011192704A (en) Light emitting device and lighting device
CN109587869B (en) Light emitting diode driving circuit and lighting device thereof
KR200432142Y1 (en) Led current controlling circuit by using positive temperature coefficient device
KR100399039B1 (en) Electric light using the pile up LED modules
JP2010129508A (en) Led lamp
JP5939774B2 (en) Straight tube LED lighting device
KR101126589B1 (en) Light device and socket included in the same
US20110254422A1 (en) LED lamp circuit
TWM553055U (en) Distributed photoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

EXPY Cancellation because of completion of term