JP2004207645A - Method and device for reflow soldering - Google Patents

Method and device for reflow soldering Download PDF

Info

Publication number
JP2004207645A
JP2004207645A JP2002377710A JP2002377710A JP2004207645A JP 2004207645 A JP2004207645 A JP 2004207645A JP 2002377710 A JP2002377710 A JP 2002377710A JP 2002377710 A JP2002377710 A JP 2002377710A JP 2004207645 A JP2004207645 A JP 2004207645A
Authority
JP
Japan
Prior art keywords
circuit board
heating
unit
temperature
vacuum drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377710A
Other languages
Japanese (ja)
Other versions
JP4200000B2 (en
Inventor
Masahiro Taniguchi
昌弘 谷口
Hiroaki Onishi
浩昭 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002377710A priority Critical patent/JP4200000B2/en
Publication of JP2004207645A publication Critical patent/JP2004207645A/en
Application granted granted Critical
Publication of JP4200000B2 publication Critical patent/JP4200000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for maintaining rapid and high quality soldering in a reflow soldering using a cream solder. <P>SOLUTION: The method comprises steps of: vacuum drying for defoaming and drying foam, solvent component, moisture or the like included in the cream solder; and partially heating a soldering part of a circuit board for a short period of time at not less than a solder melting point on the circuit board. The vacuum drying is conducted at a temperature not more than heat-resistant temperature of a heat-resistant component which comes under the influence of temperature limit in the circuit board before the heating step. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プリント回路基板に電子部品をはんだ付けするためのリフローはんだ付け方法およびはんだ付け装置に関するものである。
【0002】
【従来の技術】
従来、プリント回路基板に電子部品をはんだ付けするためのリフローはんだ付け方法としては、熱風や赤外線を熱源とし、プリント回路基板を予熱からリフロー本加熱にかけて全体に均一加熱する方法や、予熱の代わりに室温で真空乾燥処理した後、リフロー本加熱で回路基板全体を均一加熱する方法がある。
【0003】
図3は、室温で真空乾燥処理した後、リフロー本加熱で基板全体を均一加熱する従来の方法である(特許文献1参照)。図3において、はんだ付け装置は、プリント回路基板100、基板搬送部101、真空乾燥部102、真空ポンプ部103、リフロー加熱炉体部104、冷却部105から構成されている。
【0004】
このような構成において、真空乾燥部102内にプリント回路基板100全体を搬入した状態で密閉された容器内の空気が真空ポンプ部103で吸引され、真空状態に保持される。この間、室温状態で基板100上のクリームはんだは、均一に乾燥する。乾燥処理後、真空を破壊し、プリント回路基板100が取り出され、同プリント回路基板100は、リフロー加熱炉体部104に搬入される。前記リフロー加熱炉体部104では、プリント回路基板100全体をはんだ溶融温度以上まで均一に加熱し、図3(b)におけるAに示す温度プロファイル工程を経て、プリント回路基板100に電子部品がリフローはんだ付けされる。
【0005】
【特許文献1】
特開平3−207573号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のリフローはんだ付け方法では、以下に示す問題を有している。
【0007】
まず、第1に、真空乾燥処理時間に60秒以上、リフロー加熱時間に60秒以上かけて処理するため、生産性が悪いという問題を有している。
【0008】
第2に、リフロー加熱部では、回路基板全体を均一に加熱するため、加熱温度に制約を受ける部品、例えば、CCDイメージセンサ、カメラモジュール、水晶発振子、光実装部品等の耐熱温度がはんだ融点温度以下である弱耐熱部品を同時に一括リフロー実装出来ないという問題を有している。
【0009】
第3に、真空乾燥工程とリフロー加熱工程を短時間で処理しようとすると、乾燥が不十分な状態で終了するため、クリームはんだ中に残留した溶剤、水分、気泡がリフロー加熱時の急激な加熱昇温によって突沸してしまい、はんだボールやチップ立ち等のはんだ付け不良が発生するという問題を有している。
【0010】
そこで本発明は、上記問題点に鑑み、クリームはんだ上に電子部品を搭載したプリント回路基板を、先ず事前に加熱真空処理でクリームはんだ中に残留した溶剤、水分、気泡を十分乾燥・脱泡することで、短時間にリフロー加熱接合処理する場合の急激な昇温に対しても、クリームはんだ中の溶剤、水分、気泡の突沸が抑制できる。このように、はんだボールやチップ立ちの発生原因を抑止、高品質を維持したまま、短時間でリフローはんだ付けが可能な、高生産性を実現できるはんだ付け方法および装置を提供するものである。更に、短時間で局所リフロー加熱接合処理を行うことにより、温度の制約を受ける部品の弱耐熱箇所を保護しつつ、リフローはんだ付けが出来るはんだ付け方法および装置を提供するものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明リフローはんだ付け方法は、回路基板に対して、クリームはんだ中に含まれる気泡、溶剤成分、水分等を脱泡、乾燥する真空乾燥工程と、前記回路基板のはんだ付け部を部分的に、短時間、はんだ融点温度以上に加熱する加熱工程とを有し、前記加熱工程の前に、回路基板内の温度制限を受ける弱耐熱部品の耐熱温度以下の温度で前記真空乾燥工程を実行することを特徴とする。
【0012】
また、本発明リフローはんだ付け装置は、電子部品が搭載された回路基板を閉空間に閉じ込め、真空雰囲気で、かつ回路基板内の温度制限を受ける弱耐熱部品の耐熱温度以下の温度で、回路基板のクリームはんだ中に含まれる気泡、溶剤成分、水分等を脱泡、乾燥する真空乾燥部と、前記真空乾燥した回路基板を部分的に、クリームはんだの融点温度以上の温度で、短時間、加熱する加熱部と、前記回路基板を前記真空乾燥部に搬送する第1基板搬送部と、前記回路基板を前記真空乾燥部から前記加熱部に搬送する第2基板搬送部とを有することを特徴とする。
【0013】
本発明のリフローはんだ付け方法およびはんだ付け装置によれば、加熱状態で真空乾燥処理を行うことで、クリームはんだに含まれる溶剤、水分の飽和蒸気圧が高まり、乾燥が促進されて数十秒で必要な乾燥が完了する。また、乾燥工程では、一定の真空度を一定時間維持するので、クリームはんだが十分乾燥すると共に、ペーストに含まれる気泡も十分脱泡処理出来る。これにより、クリームはんだ中に残留した溶剤、水分、気泡がリフロー加熱時の急激な加熱昇温によって、突沸することに起因するはんだボールやチップ立ち等のはんだ付け不良の発生という問題を起すこと無く、十数秒以下という短時間で急激にリフロー加熱することができる。従って、真空乾燥工程もリフロー加熱工程も短時間で処理することが出来、高い生産性が実現できる。
【0014】
更に、リフロー加熱部では、部品はんだ付け部を急激に加熱することが出来るので、加熱温度に制約を受ける部品、例えば、CCDイメージセンサ、カメラモジュール、水晶発振子、光実装部品等の耐熱温度がはんだ融点温度以下である弱耐熱部品の弱耐熱部分を制約温度以下に抑えた状態でプリント回路基板内のはんだ付け部を同時にリフローはんだ付け可能にすることが出来る。
【0015】
【発明の実施の形態】
以下、本発明の代表的な一実施形態について説明する。
【0016】
(実施の形態1)
図1において、1は、プリント配線回路基板(以下、回路基板という。)、2は、回路基板1を搬送する第1基板搬送部、3は、回路基板1を加熱真空乾燥部4に搬送する第2基板搬送部、5は、回路基板1を局所リフロー加熱部6に搬送する第3基板搬送部、7は、局所リフロー加熱部6で加熱された回路基板1を冷却する冷却部である。前記加熱真空乾燥部4は、入口シャッター4a、出口シャッター4b、位置決めストッパー4c、真空回路部4d、真空吸引部4e、真空破壊部4f、赤外線ヒーター4gから構成されている。前記局所リフロー加熱部6は、レーザー発振部6a、ミラー部6bから構成されている。
【0017】
以上の様に構成されたリフローはんだ付け装置について、図1により説明する。電子部品を構成する一部分のパーツの耐熱温度がはんだ融点より低い部品で形成される弱耐熱部品を実装した回路基板1が、第1基板搬送部2に待機している。加熱真空乾燥部4の入口シャッター4aが基板搬入口を開けると、第1搬送部2に待機していた回路基板1が第2基板搬送部3に送られ、位置決めストッパー4cに回路基板1が到達すると、入口シャッター4aと出口シャッター4bが閉じ、加熱真空乾燥部4を密閉状態にする。密閉されたことを真空回路部4dが察知し、加熱真空乾燥部4内の空気を真空吸引部4eから吸い出す。この間赤外線ヒーター4gによって回路基板1が加熱される。所定の真空度到達と必要処理時間が経過したことを真空回路部4dで検出し、真空破壊部4fから加熱真空乾燥部4内に空気あるいは不活性ガスを注入して真空を破壊する。略大気圧にまで戻ったことを真空回路部4dで検出した後、出口シャッター4bが開き、回路基板1が、加熱真空乾燥部4から搬出され、第3基板搬送部5に受け渡される。回路基板1は、第3基板搬送部5により、局所リフロー加熱部6内の所定の位置に停止する。そして停止した回路基板1上の所定のはんだ付け位置をめがけて、レーザー発振部6aの発振器から所定時間、レーザー発振され、ミラー部6bによって所定の位置に照射される。
【0018】
例えば半導体レーザーを用いる場合、はんだ付け箇所1箇所に対し4Wのエネルギーを60ms照射し、はんだを溶融させれば、10秒間で166箇所のはんだ付け部を局所リフロー加熱できることになる。
【0019】
上記の様に、本実施の形態によれば、電子部品を構成する一部分のパーツの耐熱温度がはんだ融点より低い部品で形成される弱耐熱部品を実装した回路基板1を、先ずパーツの耐熱温度以下まで赤外線ヒーター4gで加熱しつつ、真空処理をすることで、クリームはんだに含まれる溶剤や水分の飽和蒸気圧が高くなり、より短時間に乾燥することになる。
【0020】
また、クリームはんだ中に含まれる気体も脱泡が促進される。こうして短時間の間にクリームはんだの十分な乾燥処理が終了できるので、レーザーによる局所リフロー加熱処理をした場合の急激な昇温に対しても、クリームはんだ中の溶剤、水分、気泡の突沸が防止でき、はんだボール、チップ立ちの発生を抑止し、高品質を維持したまま、数十秒という短時間で回路基板のリフローはんだ付けを終了することが可能となる。また、非常に短時間に局所加熱することで、弱耐熱部品の耐熱温度を守りつつ、リフローはんだ付けすることが可能となる。
【0021】
(実施の形態2)
上記実施の形態1では、局所リフロー加熱部にレーザーを加熱媒体とした構成を示したが、加熱媒体に光ビームを用いてもかまわない。図2にその一例を示す。なお、実施の形態1と同一の機能のものについては、同一の符号を用いて説明する。
【0022】
図2において、1は、回路基板、2は、第1基板搬送部、3は、第2基板搬送部、5は、第3基板搬送部、4は、加熱真空乾燥部、6は、局所リフロー加熱部、7は、冷却部である。前記加熱真空乾燥部4は、入口シャッター4a、出口シャッター4b、位置決めストッパー4c、真空回路部4d、真空吸引部4e、真空破壊部4f、赤外線ヒーター4gから構成されている。局所リフロー加熱部6は、光ビーム照射部6cから構成されている。
【0023】
以上の様に構成されたリフローはんだ付け装置について、図2により説明する。電子部品を構成する一部分のパーツの耐熱温度がはんだ融点より低い部品で形成される弱耐熱部品を実装した回路基板1が、第1基板搬送部2に待機している。加熱真空乾燥部4の入口シャッター4aが基板搬入口を開けると、第1搬送部2に待機していた回路基板1が第2基板搬送部3に送られ、位置決めストッパー4cに回路基板1が到達すると、入口シャッター4aと出口シャッター4bが閉じ、加熱真空乾燥部4を密閉状態にする。密閉されたことを真空回路部4dが察知し、加熱真空乾燥部4内の空気を真空吸引部4eから吸い出す。この間赤外線ヒーター4gによって回路基板1が加熱される。所定の真空度到達と必要処理時間が経過したことを真空回路部4dで検出し、真空破壊部4fから加熱真空乾燥部4内に空気あるいは不活性ガスを注入して真空を破壊する。略大気圧にまで戻ったことを真空回路部4dで検出した後、出口シャッター4bが開き、回路基板1が、加熱真空乾燥部4から搬出され、第3基板搬送部5に受け渡される。回路基板1は、第3基板搬送部5により局所リフロー加熱部6内の所定の位置に停止する。そして停止した回路基板1上の所定のはんだ付け位置をめがけて、光ビーム照射部6cから所定の時間、所定の位置に照射される。
【0024】
例えば、キセノンランプの集光による光ビームを用いる場合、直径略20mmのエリヤに存在するはんだ付け箇所をまとめて一括に局所照射し、はんだを溶融させれば、約10秒間ではんだ付け部を局所リフロー加熱できることになる。この照射エリア内に昇温させたくない部品が存在する時は、光ビームの直進性により照射エリア内であっても光を遮るマスクをかけることで部分的に温度上昇を抑えることが出来る。
【0025】
上記の様に、本実施の形態によれば、電子部品を構成する一部分のパーツの耐熱温度がはんだ融点より低い部品で形成される弱耐熱部品を実装した回路基板1を、先ずパーツの耐熱温度以下まで赤外線ヒーター4gで加熱しつつ、真空処理をすることで、クリームはんだに含まれる溶剤や水分の飽和蒸気圧が高くなり、より短時間に乾燥することになる。また、クリームはんだ中に含まれる気体も脱泡が促進される。こうして短時間の間にクリームはんだの十分な乾燥処理が終了できるので、光ビームで局所リフロー加熱処理した場合の急激な昇温に対しても、クリームはんだ中の溶剤、水分、気泡の突沸が防止でき、はんだボール、チップ立ちの発生を抑止し、高品質を維持したまま、数十秒という短時間で回路基板のリフローはんだ付けを終了することが可能となる。また、非常に短時間に局所加熱することで、弱耐熱部品の耐熱温度を守りつつ、リフローはんだ付けすることが可能となる。
【0026】
なお、上記実施の形態では、局所リフロー加熱部にレーザーや光ビームを加熱媒体として用いる構成を示したが、加熱媒体にノズルからの熱風を用いても同様の効果を発揮する。
【0027】
【発明の効果】
以上の様に、本発明のリフローはんだ付け方法およびはんだ付け装置によれば、クリームはんだ上に電子部品を搭載したプリント回路基板を、まず温度制約を受ける弱耐熱部品の耐熱温度以下で加熱真空処理し、乾燥・脱泡することで、はんだ融点温度以上で、短時間、加熱接合処理する場合の急激な昇温に対しても、クリームはんだ内の溶剤、水分の突沸を防止でき、はんだボール、チップ立ちの発生が抑止できる。更に、高品質を維持したまま、短時間でのリフローはんだ付けが可能となることで、弱耐熱部品への熱影響を極力少なくできると共に、生産性も向上する。
【図面の簡単な説明】
【図1】本発明の第一の実施形態におけるリフローはんだ付け装置の概要説明図で、(a)は、その構成の上面説明図、(b)は、その構成の側面説明図、(c)は、同装置の温度プロファイル説明図である。
【図2】本発明の第二の実施形態におけるリフローはんだ付け装置の概要説明図で、(a)は、その構成の上面説明図、(b)は、その構成の側面説明図、(c)は、同装置の温度プロファイル説明図である。
【図3】従来のリフローはんだ付け装置の概要説明図で、(a)は、その構成の説明図、(b)は、同装置の温度プロファイル説明図である。
【符号の説明】
1 回路基板
2 第1基板搬送部
3 第2基板搬送部
4 真空乾燥部(加熱真空乾燥部)
4g 赤外線ヒーター
6 加熱部(局所リフロー加熱部)
6c 光ビーム照射部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reflow soldering method and a soldering apparatus for soldering electronic components to a printed circuit board.
[0002]
[Prior art]
Conventionally, as a reflow soldering method for soldering electronic components to a printed circuit board, hot air or infrared light is used as a heat source, and the printed circuit board is heated uniformly from preheating to reflow heating. After vacuum drying at room temperature, there is a method of uniformly heating the entire circuit board by reflow main heating.
[0003]
FIG. 3 shows a conventional method of uniformly heating the entire substrate by reflow main heating after vacuum drying at room temperature (see Patent Document 1). 3, the soldering apparatus includes a printed circuit board 100, a board transport unit 101, a vacuum drying unit 102, a vacuum pump unit 103, a reflow heating furnace unit 104, and a cooling unit 105.
[0004]
In such a configuration, the air in the sealed container is sucked by the vacuum pump unit 103 while the entire printed circuit board 100 is carried into the vacuum drying unit 102, and is maintained in a vacuum state. During this time, the cream solder on the substrate 100 is dried uniformly at room temperature. After the drying process, the vacuum is broken, the printed circuit board 100 is taken out, and the printed circuit board 100 is carried into the reflow heating furnace unit 104. In the reflow heating furnace unit 104, the entire printed circuit board 100 is uniformly heated to a temperature equal to or higher than the solder melting temperature, and the electronic components are reflow soldered to the printed circuit board 100 through a temperature profile process shown in FIG. Attached.
[0005]
[Patent Document 1]
JP-A-3-207573
[Problems to be solved by the invention]
However, the above-mentioned conventional reflow soldering method has the following problems.
[0007]
First, there is a problem that productivity is poor because the processing is performed over 60 seconds or more for the vacuum drying processing time and 60 seconds or more for the reflow heating time.
[0008]
Second, in the reflow heating section, the heat-resistant temperature of components that are limited by the heating temperature, such as CCD image sensors, camera modules, crystal oscillators, and optically mounted components, is determined by the solder melting point in order to uniformly heat the entire circuit board. There is a problem that weak heat-resistant components having a temperature lower than the temperature cannot be simultaneously packaged by reflow mounting.
[0009]
Third, if the vacuum drying step and the reflow heating step are performed in a short time, the solvent, moisture, and air bubbles remaining in the cream solder are rapidly heated during the reflow heating because the drying is completed in an insufficient state. There is a problem that bumping occurs due to an increase in temperature, and soldering defects such as solder balls and chip standing occur.
[0010]
In view of the above problems, the present invention sufficiently dries and defoams the solvent, moisture, and air bubbles remaining in the cream solder in advance by heating and vacuuming the printed circuit board on which the electronic components are mounted on the cream solder. Accordingly, even when the temperature is rapidly increased in the case of performing the reflow heating bonding process in a short time, bumping of the solvent, moisture, and bubbles in the cream solder can be suppressed. As described above, an object of the present invention is to provide a soldering method and apparatus capable of suppressing the cause of the occurrence of standing of a solder ball or a chip, performing reflow soldering in a short time while maintaining high quality, and realizing high productivity. It is another object of the present invention to provide a soldering method and apparatus capable of performing reflow soldering by performing local reflow heating and joining in a short time while protecting weak heat-resistant parts of a component that is restricted by temperature.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the reflow soldering method of the present invention, a circuit board, air bubbles contained in cream solder, solvent component, defoaming, etc., a vacuum drying step of drying, drying the circuit board, A heating step of heating the soldered portion partially, for a short time, to a temperature equal to or higher than the melting point of the solder; The method is characterized in that the vacuum drying step is performed.
[0012]
Further, the reflow soldering apparatus of the present invention encloses the circuit board on which the electronic components are mounted in a closed space, in a vacuum atmosphere, and at a temperature equal to or lower than the heat-resistant temperature of the weak heat-resistant component subjected to the temperature limitation in the circuit board. A vacuum drying unit for defoaming and drying air bubbles, solvent components, moisture, etc. contained in the cream solder, and partially heating the vacuum-dried circuit board at a temperature equal to or higher than the melting point of the cream solder for a short time. A heating unit, a first substrate transport unit that transports the circuit board to the vacuum drying unit, and a second substrate transport unit that transports the circuit board from the vacuum drying unit to the heating unit. I do.
[0013]
According to the reflow soldering method and the soldering apparatus of the present invention, by performing the vacuum drying process in a heated state, the solvent contained in the cream solder, the saturated vapor pressure of moisture is increased, and drying is promoted, and in several tens of seconds. The necessary drying is completed. In the drying step, a constant degree of vacuum is maintained for a predetermined time, so that the cream solder is sufficiently dried and bubbles contained in the paste can be sufficiently defoamed. This eliminates the problem of soldering defects such as solder balls and chip standing caused by bumping of the solvent, moisture, and bubbles remaining in the cream solder due to sudden heating by reflow heating. Rapid reflow heating can be performed in a short time of not more than ten seconds. Therefore, both the vacuum drying step and the reflow heating step can be performed in a short time, and high productivity can be realized.
[0014]
Furthermore, in the reflow heating section, the component soldering section can be heated rapidly, so that the parts that are limited by the heating temperature, such as CCD image sensors, camera modules, crystal oscillators, optical mounting parts, etc. The soldered portion in the printed circuit board can be simultaneously reflow-soldered while the weakly heat-resistant part of the weakly heat-resistant component having a temperature equal to or lower than the melting point of the solder is suppressed to a temperature equal to or lower than the restriction temperature.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a representative embodiment of the present invention will be described.
[0016]
(Embodiment 1)
In FIG. 1, 1 is a printed circuit board (hereinafter, referred to as a circuit board), 2 is a first board transfer section for transferring the circuit board 1, and 3 is a transfer board for heating and drying the circuit board 1 to a vacuum drying section 4. The second substrate transport unit 5 is a third substrate transport unit that transports the circuit board 1 to the local reflow heating unit 6, and the cooling unit that cools the circuit board 1 heated by the local reflow heating unit 6. The heating vacuum drying unit 4 includes an entrance shutter 4a, an exit shutter 4b, a positioning stopper 4c, a vacuum circuit unit 4d, a vacuum suction unit 4e, a vacuum breaking unit 4f, and an infrared heater 4g. The local reflow heating section 6 includes a laser oscillation section 6a and a mirror section 6b.
[0017]
The reflow soldering apparatus configured as described above will be described with reference to FIG. A circuit board 1 mounted with a weak heat-resistant component formed of a component having a heat-resistant temperature of a part lower than the solder melting point of a part constituting an electronic component is on standby in the first substrate transport unit 2. When the entrance shutter 4a of the heating vacuum drying unit 4 opens the substrate carrying-in port, the circuit board 1 waiting in the first carrying unit 2 is sent to the second substrate carrying unit 3, and the circuit board 1 reaches the positioning stopper 4c. Then, the entrance shutter 4a and the exit shutter 4b are closed, and the heating vacuum drying unit 4 is closed. The vacuum circuit unit 4d senses that the airtightness has been closed, and sucks air in the heating vacuum drying unit 4 from the vacuum suction unit 4e. During this time, the circuit board 1 is heated by the infrared heater 4g. The vacuum circuit section 4d detects that a predetermined degree of vacuum has been reached and the required processing time has elapsed, and air or an inert gas is injected into the heating vacuum drying section 4 from the vacuum breaking section 4f to break the vacuum. After the vacuum circuit section 4d detects that the pressure has returned to substantially the atmospheric pressure, the outlet shutter 4b is opened, and the circuit board 1 is carried out of the heating vacuum drying section 4 and delivered to the third substrate transport section 5. The circuit board 1 is stopped at a predetermined position in the local reflow heating section 6 by the third board transport section 5. Then, the laser is oscillated for a predetermined time from the oscillator of the laser oscillating unit 6a toward a predetermined soldering position on the stopped circuit board 1, and is radiated to the predetermined position by the mirror unit 6b.
[0018]
For example, when a semiconductor laser is used, 4 W of energy is irradiated to one soldering location for 60 ms to melt the solder, and local reflow heating of 166 soldering locations can be performed in 10 seconds.
[0019]
As described above, according to the present embodiment, the circuit board 1 on which the weak heat-resistant component formed of a component having a lower heat-resistant temperature of a part of the electronic component than the solder melting point is mounted is first replaced with the heat-resistant temperature of the part. By performing vacuum processing while heating with the infrared heater 4g to the following level, the saturated vapor pressure of the solvent and water contained in the cream solder increases, and the cream solder dries in a shorter time.
[0020]
In addition, degassing of gas contained in the cream solder is also promoted. In this way, the cream solder can be completely dried in a short period of time, preventing the solvent, moisture, and bubbles in the cream solder from bumping even if the temperature rises sharply due to local reflow heating by laser. It is possible to suppress the occurrence of standing of solder balls and chips, and to finish reflow soldering of the circuit board in a short time of several tens of seconds while maintaining high quality. Further, by performing local heating in a very short time, reflow soldering can be performed while maintaining the heat resistant temperature of the weak heat resistant component.
[0021]
(Embodiment 2)
In the first embodiment, the configuration is described in which the laser is used as the heating medium in the local reflow heating unit, but a light beam may be used as the heating medium. FIG. 2 shows an example. The components having the same functions as those of the first embodiment will be described using the same reference numerals.
[0022]
In FIG. 2, 1 is a circuit board, 2 is a first board transfer section, 3 is a second board transfer section, 5 is a third board transfer section, 4 is a heating vacuum drying section, and 6 is local reflow. The heating unit 7 is a cooling unit. The heating vacuum drying unit 4 includes an entrance shutter 4a, an exit shutter 4b, a positioning stopper 4c, a vacuum circuit unit 4d, a vacuum suction unit 4e, a vacuum breaking unit 4f, and an infrared heater 4g. The local reflow heating unit 6 includes a light beam irradiation unit 6c.
[0023]
The reflow soldering apparatus configured as described above will be described with reference to FIG. A circuit board 1 on which a weak heat-resistant component formed of a component having a lower heat-resistant temperature than a solder melting point of a part of the electronic component is waiting in the first substrate transport unit 2. When the entrance shutter 4a of the heating vacuum drying unit 4 opens the substrate carrying-in port, the circuit board 1 waiting in the first carrying unit 2 is sent to the second substrate carrying unit 3, and the circuit board 1 reaches the positioning stopper 4c. Then, the entrance shutter 4a and the exit shutter 4b are closed, and the heating vacuum drying unit 4 is closed. The vacuum circuit unit 4d senses that the airtightness has been closed, and sucks air in the heating vacuum drying unit 4 from the vacuum suction unit 4e. During this time, the circuit board 1 is heated by the infrared heater 4g. The vacuum circuit section 4d detects that a predetermined degree of vacuum has been reached and the required processing time has elapsed, and air or an inert gas is injected into the heating vacuum drying section 4 from the vacuum breaking section 4f to break the vacuum. After the vacuum circuit section 4d detects that the pressure has returned to substantially the atmospheric pressure, the outlet shutter 4b is opened, and the circuit board 1 is carried out of the heating vacuum drying section 4 and delivered to the third substrate transport section 5. The circuit board 1 is stopped at a predetermined position in the local reflow heating section 6 by the third board transfer section 5. Then, the light beam is irradiated from the light beam irradiation unit 6c to a predetermined position for a predetermined time toward a predetermined soldering position on the stopped circuit board 1.
[0024]
For example, when using a light beam condensed by a xenon lamp, the soldering points existing in the area having a diameter of about 20 mm are collectively locally irradiated, and if the solder is melted, the soldered part is locally irradiated in about 10 seconds. Reflow heating can be performed. When there is a component that the user does not want to raise the temperature in the irradiation area, the temperature rise can be partially suppressed by applying a mask that blocks light even in the irradiation area due to the straightness of the light beam.
[0025]
As described above, according to the present embodiment, the circuit board 1 on which the weak heat-resistant component formed of a component having a lower heat-resistant temperature of a part of the electronic component than the solder melting point is mounted is first replaced with the heat-resistant temperature of the part. By performing vacuum processing while heating with the infrared heater 4g to the following level, the saturated vapor pressure of the solvent and water contained in the cream solder increases, and the cream solder dries in a shorter time. In addition, degassing of gas contained in the cream solder is also promoted. In this way, sufficient drying of the cream solder can be completed in a short period of time, preventing the solvent, moisture, and bubbles in the cream solder from bumping even if the temperature rises sharply due to local reflow heating with a light beam. It is possible to suppress the occurrence of standing of solder balls and chips, and to finish reflow soldering of the circuit board in a short time of several tens of seconds while maintaining high quality. Further, by performing local heating in a very short time, reflow soldering can be performed while maintaining the heat resistant temperature of the weak heat resistant component.
[0026]
In the above-described embodiment, a configuration is described in which a laser or a light beam is used as a heating medium in the local reflow heating unit. However, the same effect is exerted by using hot air from a nozzle as the heating medium.
[0027]
【The invention's effect】
As described above, according to the reflow soldering method and the soldering apparatus of the present invention, a printed circuit board on which electronic components are mounted on cream solder is first heated and vacuum-processed at a temperature not higher than the heat-resistant temperature of a weak heat-resistant component subject to temperature restrictions. By drying and defoaming, it is possible to prevent bumping of the solvent and moisture in the cream solder, even if the temperature rises sharply when heating and joining at a temperature equal to or higher than the melting point of the solder. The occurrence of chip standing can be suppressed. Furthermore, since reflow soldering can be performed in a short time while maintaining high quality, the thermal influence on weak heat-resistant parts can be reduced as much as possible, and productivity is improved.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a reflow soldering apparatus according to a first embodiment of the present invention, in which (a) is a top explanatory view of the configuration, (b) is a side explanatory view of the configuration, and (c). FIG. 3 is an explanatory diagram of a temperature profile of the same device.
FIGS. 2A and 2B are schematic explanatory diagrams of a reflow soldering apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a top explanatory diagram of the configuration, FIG. 2B is a lateral explanatory diagram of the configuration, and FIG. FIG. 3 is an explanatory diagram of a temperature profile of the same device.
3A and 3B are schematic explanatory views of a conventional reflow soldering apparatus, in which FIG. 3A is an explanatory view of the configuration, and FIG. 3B is an explanatory view of a temperature profile of the same apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board 2 1st board conveyance part 3 2nd board conveyance part 4 Vacuum drying part (heating vacuum drying part)
4g infrared heater 6 heating unit (local reflow heating unit)
6c Light beam irradiation unit

Claims (5)

電子部品が搭載された回路基板のリフローはんだ付け方法において、前記回路基板に対して、クリームはんだ中に含まれる気泡、溶剤成分、水分等を脱泡、乾燥する真空乾燥工程と、前記回路基板のはんだ付け部を部分的に、短時間、はんだ融点温度以上に加熱する加熱工程とを有し、前記加熱工程の前に、回路基板内の温度制限を受ける弱耐熱部品の耐熱温度以下の温度で前記真空乾燥工程を実行することを特徴とするリフローはんだ付け方法。In the method for reflow soldering a circuit board on which electronic components are mounted, for the circuit board, air bubbles contained in cream solder, a solvent component, moisture and the like are defoamed and dried, and a vacuum drying step of drying the circuit board, Partially, for a short time, having a heating step of heating to a temperature equal to or higher than the melting point of the solder, and before the heating step, at a temperature equal to or lower than the heat-resistant temperature of the weak heat-resistant component subjected to the temperature limitation in the circuit board. A reflow soldering method, wherein the vacuum drying step is performed. 電子部品が搭載された回路基板を閉空間に閉じ込め、真空雰囲気で、かつ回路基板内の温度制限を受ける弱耐熱部品の耐熱温度以下の温度で、回路基板のクリームはんだ中に含まれる気泡、溶剤成分、水分等を脱泡、乾燥する真空乾燥部と、前記真空乾燥した回路基板を部分的に、クリームはんだの融点温度以上の温度で、短時間、加熱する加熱部と、前記回路基板を前記真空乾燥部に搬送する第1基板搬送部と、前記回路基板を前記真空乾燥部から前記加熱部に搬送する第2基板搬送部とを有することを特徴とするリフローはんだ付け装置。Air bubbles and solvents contained in the cream solder on the circuit board at a temperature lower than the heat resistance temperature of the weak heat-resistant parts that are confined to the circuit board on which the electronic components are mounted in a closed space in a vacuum atmosphere and at a temperature within the circuit board A vacuum drying unit for defoaming and drying components, moisture, etc., a heating unit for partially heating the vacuum-dried circuit board at a temperature equal to or higher than the melting point of cream solder, and a heating unit for heating the circuit board, A reflow soldering apparatus, comprising: a first substrate transport unit that transports a circuit board to a vacuum drying unit; and a second substrate transport unit that transports the circuit board from the vacuum drying unit to the heating unit. 前記真空乾燥部における加熱は、回路基板の上方または下方、または上下両方に赤外線ヒーターを配置することを特徴とする請求項2に記載のリフローはんだ付け装置。3. The reflow soldering apparatus according to claim 2, wherein the heating in the vacuum drying unit includes placing an infrared heater above, below, or both above and below the circuit board. 4. 前記加熱部の熱源として、レーザーもしくはランプの光を集光させてなる光ビームを用いることを特徴とする請求項2に記載のリフローはんだ付け装置。The reflow soldering apparatus according to claim 2, wherein a light beam obtained by condensing light of a laser or a lamp is used as a heat source of the heating unit. 前記加熱部の熱源として、ノズルからの熱風による局所加熱を用いることを特徴とする請求項2に記載のリフローはんだ付け装置。The reflow soldering apparatus according to claim 2, wherein local heating by hot air from a nozzle is used as a heat source of the heating unit.
JP2002377710A 2002-12-26 2002-12-26 Reflow soldering method and soldering apparatus Expired - Fee Related JP4200000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377710A JP4200000B2 (en) 2002-12-26 2002-12-26 Reflow soldering method and soldering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377710A JP4200000B2 (en) 2002-12-26 2002-12-26 Reflow soldering method and soldering apparatus

Publications (2)

Publication Number Publication Date
JP2004207645A true JP2004207645A (en) 2004-07-22
JP4200000B2 JP4200000B2 (en) 2008-12-24

Family

ID=32814803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377710A Expired - Fee Related JP4200000B2 (en) 2002-12-26 2002-12-26 Reflow soldering method and soldering apparatus

Country Status (1)

Country Link
JP (1) JP4200000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164776A1 (en) * 2011-05-30 2012-12-06 有限会社ヨコタテクニカ Soldering device
WO2018124411A1 (en) * 2016-12-28 2018-07-05 크루셜머신즈 주식회사 Laser reflow method
CN115255538A (en) * 2021-04-30 2022-11-01 特豪科技股份有限公司 Vacuum type reflow soldering method and device
US20220369473A1 (en) * 2021-04-26 2022-11-17 Pac Tech - Packaging Technologies Gmbh Method for Soldering an Electronic Component to a Circuit Board by Jetting Liquefied Solder into a Through Hole
US12028987B2 (en) * 2022-04-30 2024-07-02 PAC Tech—Packaging Technologies GmbH Method for soldering an electronic component to a circuit board by jetting liquefied solder into a through hole

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164776A1 (en) * 2011-05-30 2012-12-06 有限会社ヨコタテクニカ Soldering device
JP2012245553A (en) * 2011-05-30 2012-12-13 Yokota Technica:Kk Soldering device
WO2018124411A1 (en) * 2016-12-28 2018-07-05 크루셜머신즈 주식회사 Laser reflow method
US20220369473A1 (en) * 2021-04-26 2022-11-17 Pac Tech - Packaging Technologies Gmbh Method for Soldering an Electronic Component to a Circuit Board by Jetting Liquefied Solder into a Through Hole
CN115255538A (en) * 2021-04-30 2022-11-01 特豪科技股份有限公司 Vacuum type reflow soldering method and device
US12028987B2 (en) * 2022-04-30 2024-07-02 PAC Tech—Packaging Technologies GmbH Method for soldering an electronic component to a circuit board by jetting liquefied solder into a through hole

Also Published As

Publication number Publication date
JP4200000B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
KR101187940B1 (en) Repair apparatus and method for electronic component and heat-transfer cap
WO2010018680A1 (en) Surface-mounting machine using optical beam
US20070170227A1 (en) Soldering method
EP1148968B1 (en) Method and apparatus for removal of mold flash
JP4200000B2 (en) Reflow soldering method and soldering apparatus
JP3735069B2 (en) Method and apparatus for removing soldered electronic components
JP3043435B2 (en) Reflow soldering apparatus and reflow soldering method
JPH10200251A (en) Manufacture of circuit module
JP2002204060A (en) Soldering method and flow soldering apparatus
JPH05245624A (en) Device and method for reflowing solder
JP3294460B2 (en) Circuit board manufacturing method
KR101144487B1 (en) Apparatus for removing solder ball
JP5254653B2 (en) Protective film coating equipment
JP2003260586A (en) Reduction-type solder joining apparatus
KR102652950B1 (en) solder soldering method using laser
JP2001320163A (en) Reflow device and its board heating method
JP4253093B2 (en) Solder ball mounting method and apparatus
JPH10190210A (en) Manufacture of circuit module
JP2004249301A (en) Soldering method and soldering device
JP2001196736A (en) Reflow system
JP2786146B2 (en) Soldering method and equipment
JPH0797701B2 (en) Reflow soldering method
JP2001223464A (en) Soldering method
JP3783471B2 (en) Electronic circuit component repair method and apparatus
KR20200125205A (en) Heating module of laser debonding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Effective date: 20080522

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080610

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111010

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees