JP2004206892A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2004206892A
JP2004206892A JP2002371245A JP2002371245A JP2004206892A JP 2004206892 A JP2004206892 A JP 2004206892A JP 2002371245 A JP2002371245 A JP 2002371245A JP 2002371245 A JP2002371245 A JP 2002371245A JP 2004206892 A JP2004206892 A JP 2004206892A
Authority
JP
Japan
Prior art keywords
electrode
spark plug
less
center electrode
metal shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371245A
Other languages
Japanese (ja)
Other versions
JP4318912B2 (en
Inventor
Kenichi Kumagai
健一 熊谷
Kenji Kobayashi
憲司 小林
Wataru Matsutani
渉 松谷
Yoshihiro Matsubara
佳弘 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2002371245A priority Critical patent/JP4318912B2/en
Publication of JP2004206892A publication Critical patent/JP2004206892A/en
Application granted granted Critical
Publication of JP4318912B2 publication Critical patent/JP4318912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug made of an electrode material with reduced consumption of the electrode and excellent durability. <P>SOLUTION: At least one of a center electrode and a ground electrode of the spark plug is made of an electrode material containing 0.5 to 1.5% of Si, 0.5 to 1.5% of Al, 0.05 to 0.5% of one or two components selected from the group consisting of Y, Nd and Sm, 0.8% or less of the total amount of Cr and Mn, and the rest consisting of Ni or inevitable impurities. The specific resistance of the electrode material at normal temperatures is adjusted to 25 μΩcm or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スパークプラグに関する。
【0002】
【従来の技術】
従来、自動車エンジン等の内燃機関の点火用に使用されるスパークプラグは、一般に筒状の主体金具と、該主体金具の内孔に配置される筒状の絶縁体と、該絶縁体の先端側内孔に配置される中心電極と、一端が前記主体金具の先端側に固着され、他端側が前記中心電極と火花放電ギャップを形成する接地電極を備える。
【0003】
従来、この種のスパークプラグの中心電極または接地電極の電極材料として、NiにSiを0.5〜1.5%(以下%は重量%をいう)、Mnを0.7〜2.8%、Alを0.25〜4.5%含有させたNi基合金からなる材料が知られている(特許文献1参照)。またNiにSiを1.0〜2.5%、Crを0.5〜2.5%、Mnを0.5〜2.0%、Alを0.6〜2.0%含有させたNi基合金からなるスパークプラグ用材料も知られている(特許文献2参照)。こうした成分は、スパークプラグの耐硫黄、鉛腐食、耐高温酸化の性能を満たすとともに、火花放電による電極消耗を抑制して、耐久性を向上させるために添加されている。
【0004】
【特許文献1】
特開昭64−87738号公報
【特許文献2】
特開平4−45239号公報
【0005】
【発明が解決しようとする課題】
最近では、燃料の清浄化や燃焼の改善に伴い、耐硫黄や鉛腐食に対する要求は従来に比べて減少したが、逆に、より一層、火花放電による電極消耗を抑制して、耐久性を向上させる要求は従来以上に高まっている。しかし、特許文献1、特許文献2の材料を使用したスパークプラグでは、その要求を十分に満足するものでなかった。
【0006】
本発明は、上記従来の技術の問題を解決するものであり、電極の消耗を低減し、耐久性に優れた電極材料にて構成されるスパークプラグを提供することを目的とする。
【0007】
【課題を解決するための手段およびその作用・効果】
上記課題を解決するためになされた本発明は、筒状の主体金具と、該主体金具の内孔に配置される筒状の絶縁体と、該絶縁体の先端側内孔に配置される中心電極と、一端が前記主体金具の先端側に固着され、他端側が前記中心電極と火花放電ギャップを形成する接地電極を備えるスパークプラグにおいて、前記中心電極及び前記接地電極の少なくとも一方が、Siが0.5〜1.5%(以下、%は重量%をいう)、Alが0.5〜1.5%、Y,NdまたはSmのうちから1種または2種選択された成分が0.05〜0.5%を含有し、CrとMnとの合計量が0.8%以下であって、残部がNiと不可避不純物からなり、常温での比抵抗が25μΩcm以下に調製される電極材料にて構成されることを特徴とする。
【0008】
(1) 材料の概略
上記要求に答えるべく、Ni基合金からなる電極の火花消耗を抑えるために、本願発明者等が検討した結果、常温での比抵抗を25μΩcm以下とすることで耐久性を向上させることが見いだされた。これは、電極の常温での比抵抗が25μΩcmを越えると、火花放電時に電極の温度が上昇し、電極の消耗を速めて、耐久性を損なう原因となるからである。よって、本発明にかかるスパークプラグ用電極材料は、常温(20℃〜25℃)での比抵抗を25μΩcm以下となるNi基合金とすることで、耐久性を向上させ、電極の火花消耗を抑制することができる。
【0009】
さらに、Ni基合金からなる電極材料として最低限必要な耐食性、耐高温酸化性の要求を満たすために、Niに含有する添加成分を調整する。しかし、添加成分においても添加量が増大すると、常温での比抵抗を上昇させる添加成分がある。よって、常温での比抵抗を25μΩcm以下にしつつ、耐食性や耐高温酸化性の要求をも満たすような電極材料とするために、添加成分を調整する。つまり、従来よりCr、Mnの添加量を減らして、Si、Alを添加することによりそれらの保護酸化膜を形成するとともに、少ない添加量のSi、Alであっても保護酸化膜を補強するためにY、Nd、Smを添加している。以下、各成分の作用について説明する。
【0010】
(2) Cr、Mnの作用
CrおよびMnは、スパークプラグの表面に保護酸化膜を形成することで、耐食性および耐酸化性の向上に作用する。しかし、含有量が増加すると、常温での比抵抗が増加する。よって、CrおよびMnは、それらの合計量が0.8%以下であることが好ましく、特に好ましくは0.5%以下である。
【0011】
(3) Siの作用
Siは保護酸化膜をスパークプラグ用電極の表層に形成することで耐食性および耐高温酸化性を向上させる作用があり、0.5〜1.5%添加される。添加量が0.5%未満では、その効果が乏しく、一方、1.5%を越えると、常温での比抵抗が増大し、電極の消耗の抑制効果が得られないからである。Siの範囲は、好ましくは、0.5〜1.0%である。
【0012】
(4) Alの作用
AlはSiと同様に保護酸化膜を形成することで耐食性および耐高温酸化性を向上させる作用があり、0.5〜1.5%添加される。Alも、同様に、添加量が0.5%未満では、その効果が乏しく、一方1.5%を越えると、常温での比抵抗が増大し、電極の消耗の抑制効果が得られなく、好ましくは、0.5〜1.0%である。
【0013】
(5) Y、Nd、Smの作用
Y、Nd、Smは、上述したCrまたはMnの合計の添加量が0.8%以下であっても、SiおよびAlから形成される保護酸化膜を強化して耐食性および耐高温酸化性を向上させる作用がある。AlおよびSiの保護酸化膜は、主としてNi基合金のマトリックス上にAl、さらにその上のSiOから構成されるが、Yなどの化合物は、AlやSiOからマトリックス相に対して楔の効果を発揮する化合物を形成して、保護酸化膜とマトリックス相との密着性を高める。
【0014】
また、Y、Nd、Smの元素は、O、Sとの親和性が強く、電極内部に浸入してきたOやSと化合物を作るために、主成分の酸化や硫化を遅らせる効果がある。
【0015】
さらに、Cr、Mnの添加量を0.8%以下としたので、電極が高温に晒されると結晶粒が成長し易くなるが、これを、Yなどが抑制する。すなわち、電極の内部酸化は粒界に沿って進行するため、結晶粒界が減少すると電極の中心部まで粒界酸化が進みやすくなり、電極破損に至るような内部酸化を招くおそれがある。しかし、Y、Nd、Smは、Niに固溶しないので、粒界に析出してピン止め効果を果たして、結晶粒の粗大化を防止する。
【0016】
Yなどが上述した効果を得るための好適な範囲は、0.05〜0.5%である。これは、0.05%未満では、その効果が乏しく、一方、0.5%を越えると、接地電極用素線の伸線加工や中心電極用に熱伝導性良好部材を封入加工する塑性加工性が低下するからである。
【0017】
(6) Cの作用
さらに本発明では、Cが0.01〜0.07%含有されていてもよい。Cは、高温の機械的強度を高める作用がある。すなわち、上記Ni基合金では、高温強度が低下し易いが、浸入型元素であるCの添加により、使用中に熱応力による電極の変形を生じにくい。Cは、このような作用を得るために、0.01〜0.07%である。Cが0.01未満であると効果を得ることができず、また、Cが0.07%を越えると、スパークプラグ用電極材料の変形抵抗が大きくなり、中心電極に熱伝導性良好部材を封入するような塑性加工が難しくなるからである。
【0018】
(8) 平均粒径
さらにスパークプラグ用電極材料の結晶粒は、900℃で100時間保持した後の平均粒径が300μm以下であることがよい。これを上回ると、粒界酸化から電極破損を招くおそれがある。
【0019】
【発明の実施の形態】
以下、本発明によるスパークプラグ、スパークプラグ用電極材料の製造例および試験例につき説明する。図1はスパークプラグの断面図、図2はスパークプラグ用電極材料に供される試料であり、図3は各試料の評価試験の結果を説明する説明図である。
【0020】
図1に示す本発明の一例たるスパークプラグ100は、筒状の主体金具1、先端側が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、先端側が突出するように絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側が中心電極側に曲げ返されて、中心電極3の先端部と対向するように配置された接地電極4等を備えている。また、中心電極3と、対向する接地電極4との間の隙間が火花放電ギャップgとされている。
【0021】
主体金具1は、低炭素鋼などからなり、略筒形である。この主体金具は、径方向に突出するフランジ部11と、これより基端側に位置し、スパークプラグ100をエンジンのシリンダヘッド等に取り付ける際にスパナ等の工具に係合させる断面六角形状の工具係合部12と、フランジ部より先端側に位置し、フランジ部より細径である先端部13とを有する。先端側13の外周には、スパークプラグ100をエンジンのシリンダヘッド等にねじ止めするねじ14が形成されている。また工具係合部12の基端側には、絶縁体2を主体金具1に加締め固定するための加締め部15を備える。
【0022】
一方、絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その内部には自身の軸方向に沿って中心電極3を嵌め込むための軸孔2Hを有している。この軸孔2Hのうち、先端側には中心電極3が基端側には端子金具5が固定されている。この軸孔2Hにおいて、中心電極3と端子金具5の間には抵抗体6が配置されている。この抵抗体6の両端部は、導電性のガラスシール7によって、中心電極3及び端子金具5が電気的に接続している。
【0023】
絶縁体2は、径方向に突出する突出部21と、その基端側には、突出部より径小な基端部22が形成されている。一方、突出部21の先端側には、突出部21より径小な中間胴部23が形成され、さらに先端側には、脚部24が形成されている。
【0024】
中心電極3は、銅等からなる良熱伝導芯31と、前述した材料からなる被覆部32とを有し、被覆部32の先端は絶縁体2の先端から先端側に突出するように配置されている。一方、接地電極4は、一端が主体金具1の先端面に固着され、他端側が中心電極側に向けて曲げ返されて、中心電極3の先端部と対向するように配置されている。
【0025】
【実施例】
次に、本発明の効果を確認するために、以下のような実験を行った。
図2の各試料を使用し、以下の工程により製造した。すなわち、通常の真空溶解炉を用い、各成分組成をもった合金の溶湯を調製し、真空鋳造にて鋳塊とした。その後、この鋳塊を熱間鍛造にて、直径60mmの丸棒とした。この丸棒に線引き加工を施して、直径4mmの線材、ならびに断面寸法1.6mm×2.8mmの線材とし、前者をスパークプラグの中心電極3、後者を接地電極4に作成した。そして、公知の手法により、中心電極3を絶縁体2の軸孔2Hに組み付け、さらに、抵抗体7及び端子金具6を組み付け、ガラスシールを行う。そして、主体金具1にこの絶縁体2を組み付け、接地電極4の一端を主体金具1に固着し、他端部を中心電極側に折り返して、中心電極の先端部と対向するようにする。
【0026】
図2において、実施例1ないし実施例5は、Siが0.5〜1.5%、Alが0.5〜1.5%、Y,NdまたはSmのうちから1種または2種選択された成分が0.05〜0.5%を有し、CrとMnとの合計量が0.8%以下であって、残部がNiと不可避不純物からなり、常温での比抵抗が25μΩcm以下に調製されている。
【0027】
実施例6ないし実施例8は、実施例1などの範囲に、Cの含有量または結晶の平均粒径を調製したものであり、請求項2または請求項3の範囲に相当する。すなわち、実施例6は、Cが0.01%(請求項2の下限)より少ない0.003%である。実施例7は、Cが0.07%(請求項2の上限)より多い0.10%である。実施例8は、結晶の平均粒径が上述の上限範囲である300μmを越えた400μmである。
【0028】
比較例1ないし比較例9は、上記実施例の上下限を調べるために作成した。すなわち、比較例1は、Si:2.0%でSiの上限値である1.5%を越えている。比較例2は、Alが上述の下限値である0.5%を満たさない、つまり含有していないものである。比較例3は、Ndが上述の下限値である0.05%より少ない0.02%である。比較例4は、Y+Ndが上述の上限値である0.5%より多い0.6%である。比較例5は、常温比抵抗が上述の上限値である25μmより大きい28μmである。比較例6は、Siが上述の下限値である0.5%より少ない0.2%である。比較例7は、Alが上述の上限値である1.5%より大きい2.0%である。比較例8は、CrとMnの合計重量が上限値0.8%より大きい1.2%である。比較例9は、従来の技術に相当する。
【0029】
本試験は、各試料について、エンジンのシミュレーションにより、耐久試験の前後のギャップの増加量を測定することにより行なった。評価に使用したエンジンの態様は、6気筒、2.8リットルである。時速160kmで約400時間の耐久試験を行ない、耐久試験の前後のキャップの増加量を測定した。
評価基準として、0.3mm未満を良好、0.30mm以上0.35mm未満を可、0.35mm以上を不可と判定した。
【0030】
本試験は、各試料について、エンジンのシミュレーション試験により、試験後の酸化膜厚を測定することにより行なった。評価に使用したエンジンの態様は、4気筒、2.0リットルである。エンジンを5000rpmで回転させる期間とアイドリングの期間とを1分間隔で100時間繰り返した。このときの最高温度は、900℃であった。試験後における接地電極表面に形成された酸化膜厚を測定した。なお、酸化膜に粒界酸化が見られる場合は、それも含めた膜厚とした。
評価基準として、180μm未満を良好、180μm以上210μm未満を可、210μm以上を不可と判定した。これは、酸化膜が厚くなりすぎると、電極自体の温度が上昇し過ぎるために、保護酸化膜は、薄い方が望ましいからである。
【0031】
本試験は、中心電極に冷熱サイクルを施すことにより、中心電極の変形量を測定することにより行なった。すなわち、中心電極の先端を、850℃に3分間加熱し、1分間空冷し、これを1サイクルとして繰り返した。そして、中心電極の長さが0.1mm短くなるまでのサイクル数で評価した。
評価基準は、2500サイクル以上を良好、2500未満を可と判定した。
【0032】
塑性加工性は、中心電極に熱伝導性良好部材を封入するような加工性の良否により判定した。
【0033】
実施例1ないし実施例5のいずれも、良好な評価を得ることができた。実施例6は、Cの含有量が0.003%と少ないために、中心電極変形試験による評価が可であった。実施例7は、Cの含有量が0.1%と多いために、塑性加工性がやや劣り、可であった。実施例8は、平均結晶粒径が400μmと大きいので、酸化膜厚試験による評価が可であった。
このように、ギャップ試験、酸化膜厚試験、中心電極変形試験および塑性加工性が全て可以上のものがスパークプラグ用の電極材料として優れた耐久性をもって使用することができることがわかる。さらに高い耐久性の必要な場合には、全ての試験が良好となる材料を選択することが好ましい。
【0034】
比較例1は、Siの含有量が2%と多いために、比抵抗が30μΩmと大きくなり、電極ギャップ増加量が0.36mmと大きなギャップとなり、不可であった。比較例2は、Alが含まれていないので、250mmの厚い酸化膜厚となり、不可であった。比較例3は、Ndが0.02%と少ないので、250mm以上の厚い酸化膜厚となり、不可であった。比較例4は、Y+Ndが0.6%と多いので、塑性加工性が不可であった。比較例5は、比抵抗が28μΩmと大きいので、0.35mmと大きくなり、不可であった。比較例6は、Siが0.2%と少ないので、220μmの厚い酸化膜厚なり、不可であった。比較例7は、Alが2.0%と多いので、電極ギャップ増加量が0.36mmと大きくなり、不可であった。比較例8は、CrとMnの合計量が1.2%と多いので、電極ギャップ増加量が0.36mmと大きなギャップとなり、不可であった。比較例9は、従来の技術に相当し、常温での比抵抗などが大きいので、電極ギャップ増加量が0.40mmと大きくなり、不可であった。
【0035】
なお、この発明は上記実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。本発明のスパークプラグでは、ねじ部5が形成されていたが、これに限られず、ねじ部が形成されていないスパークプラグでも良い。
また、実施例では接地電極4には、本発明の材料のみで構成したものにより形成されていたが、これに限られず、中心電極と同様に銅等からなる良熱伝導芯と、本発明の材料で構成された被覆層からなる接地電極としてもよい。また、実施例では、中心電極3は銅等からなる良熱伝導芯31と、前述した材料からなる被覆部32で形成されていたが、これに限らず、本発明の材料のみで構成したものより形成されていても良い。
【図面の簡単な説明】
【図1】電極材料が使用される本発明のスパークプラグを示す断面図である。
【図2】スパークプラグ用電極材料に供される試料を説明する説明図である。
【図3】各試料の評価試験の結果を説明する説明図である。
【符号の説明】
100…スパークプラグ
1…主体金具
2…絶縁体
3…中心電極
4…接地電極
5…端子金具
6…抵抗体
7…ガラスシール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spark plug.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a spark plug used for ignition of an internal combustion engine such as an automobile engine generally includes a cylindrical metal shell, a cylindrical insulator disposed in an inner hole of the metal shell, and a tip side of the insulator. A center electrode disposed in the inner hole; and a ground electrode having one end fixed to the tip end of the metal shell and the other end forming a spark discharge gap with the center electrode.
[0003]
Conventionally, as an electrode material of a center electrode or a ground electrode of this type of spark plug, Ni is 0.5 to 1.5% (hereinafter,% means weight%) and Mn is 0.7 to 2.8%. A material made of a Ni-based alloy containing 0.25 to 4.5% of Al is known (see Patent Document 1). Ni containing 1.0 to 2.5% of Si, 0.5 to 2.5% of Cr, 0.5 to 2.0% of Mn, and 0.6 to 2.0% of Al A material for a spark plug made of a base alloy is also known (see Patent Document 2). These components are added in order to satisfy the performances of the spark plug, such as resistance to sulfur, lead corrosion, and high-temperature oxidation, and to suppress electrode consumption due to spark discharge and improve durability.
[0004]
[Patent Document 1]
JP-A-64-87738 [Patent Document 2]
JP-A-4-45239 [0005]
[Problems to be solved by the invention]
Recently, the demand for sulfur resistance and lead corrosion has been reduced compared to the past due to the improvement of fuel purification and combustion, but conversely, electrode wear due to spark discharge has been further suppressed and durability has been improved. The demands to do so are higher than ever. However, the spark plugs using the materials of Patent Documents 1 and 2 have not sufficiently satisfied the demand.
[0006]
An object of the present invention is to solve the above-mentioned problems of the related art, and to provide a spark plug made of an electrode material having reduced durability and reduced electrode wear.
[0007]
[Means for Solving the Problems and Their Functions and Effects]
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems. The present invention provides a cylindrical metal shell, a cylindrical insulator arranged in an inner hole of the metal shell, and a center arranged in a tip side inner hole of the insulator. An electrode and a spark plug having one end fixed to the tip end side of the metal shell and the other end side forming a spark discharge gap with the center electrode, wherein at least one of the center electrode and the ground electrode has Si. 0.5 to 1.5% (% means weight%), Al is 0.5 to 1.5%, and one or two components selected from Y, Nd and Sm are 0.1%. Electrode material containing 0.5-0.5%, the total amount of Cr and Mn being 0.8% or less, the balance being Ni and unavoidable impurities, and the specific resistance at room temperature being adjusted to 25 μΩcm or less. It is characterized by comprising.
[0008]
(1) Outline of Material In order to respond to the above requirements, the inventors of the present invention have studied to suppress spark consumption of an electrode made of a Ni-based alloy. As a result, the specific resistance at room temperature is set to 25 μΩcm or less, thereby improving durability. It was found to improve. This is because, if the specific resistance of the electrode at room temperature exceeds 25 μΩcm, the temperature of the electrode rises during spark discharge, which accelerates the consumption of the electrode and impairs the durability. Therefore, the electrode material for a spark plug according to the present invention is a Ni-based alloy having a specific resistance of 25 μΩcm or less at normal temperature (20 ° C. to 25 ° C.), thereby improving durability and suppressing spark consumption of the electrode. can do.
[0009]
Further, in order to satisfy the minimum requirements of corrosion resistance and high-temperature oxidation resistance required for an electrode material composed of a Ni-based alloy, the additive components contained in Ni are adjusted. However, there is an additive component that increases the specific resistance at room temperature when the amount of the additive component increases. Therefore, the additive components are adjusted in order to make the electrode material satisfying the requirements of corrosion resistance and high-temperature oxidation resistance while keeping the specific resistance at room temperature to 25 μΩcm or less. In other words, the protective oxide film is formed by reducing the amount of Cr and Mn added, and adding Si and Al, and reinforcing the protective oxide film even with a small amount of Si and Al. , Nd, and Sm are added to the sample. Hereinafter, the operation of each component will be described.
[0010]
(2) Action of Cr and Mn Cr and Mn act to improve corrosion resistance and oxidation resistance by forming a protective oxide film on the surface of the spark plug. However, when the content increases, the specific resistance at room temperature increases. Therefore, the total amount of Cr and Mn is preferably 0.8% or less, particularly preferably 0.5% or less.
[0011]
(3) Function of Si Si has a function of improving corrosion resistance and high-temperature oxidation resistance by forming a protective oxide film on the surface layer of the spark plug electrode, and is added in an amount of 0.5 to 1.5%. If the addition amount is less than 0.5%, the effect is poor, while if it exceeds 1.5%, the specific resistance at normal temperature increases, and the effect of suppressing the consumption of the electrode cannot be obtained. The range of Si is preferably 0.5 to 1.0%.
[0012]
(4) Action of Al Al has a function of improving corrosion resistance and high-temperature oxidation resistance by forming a protective oxide film like Si, and is added in an amount of 0.5 to 1.5%. Similarly, when the addition amount of Al is less than 0.5%, the effect is poor. On the other hand, when the addition amount exceeds 1.5%, the specific resistance at room temperature increases, and the effect of suppressing the consumption of the electrode cannot be obtained. Preferably, it is 0.5 to 1.0%.
[0013]
(5) Action of Y, Nd, Sm Y, Nd, Sm strengthens the protective oxide film formed from Si and Al even if the total added amount of Cr or Mn is 0.8% or less. To improve corrosion resistance and high-temperature oxidation resistance. The protective oxide film of Al and Si is mainly composed of Al 2 O 3 on a matrix of a Ni-based alloy and SiO 2 thereon, while a compound such as Y is composed of a matrix phase of Al 2 O 3 or SiO 2. To form a compound which exerts a wedge effect on the protective oxide film to enhance the adhesion between the protective oxide film and the matrix phase.
[0014]
In addition, the elements Y, Nd, and Sm have a strong affinity for O and S, and produce a compound with O and S that have penetrated into the inside of the electrode, and thus have an effect of delaying oxidation and sulfidation of the main component.
[0015]
Furthermore, since the addition amounts of Cr and Mn are set to 0.8% or less, crystal grains are likely to grow when the electrode is exposed to a high temperature, but this is suppressed by Y or the like. That is, since the internal oxidation of the electrode proceeds along the grain boundary, if the crystal grain boundary is reduced, the oxidation of the grain boundary easily proceeds to the center of the electrode, and there is a possibility that the internal oxidation leading to electrode damage may be caused. However, since Y, Nd, and Sm do not form a solid solution in Ni, they precipitate at the grain boundaries and perform a pinning effect, thereby preventing the crystal grains from becoming coarse.
[0016]
A preferable range for Y to obtain the above-mentioned effect is 0.05 to 0.5%. When the content is less than 0.05%, the effect is poor. On the other hand, when the content is more than 0.5%, plastic working for drawing a wire for a ground electrode and encapsulating a member having good thermal conductivity for a center electrode. This is because the property is reduced.
[0017]
(6) Action of C Further, in the present invention, 0.01 to 0.07% of C may be contained. C has the effect of increasing the mechanical strength at high temperatures. That is, in the above-mentioned Ni-based alloy, although the high-temperature strength is easily reduced, the deformation of the electrode due to thermal stress during use is hardly caused by the addition of C, which is an intrusive element. C is 0.01 to 0.07% in order to obtain such an effect. If C is less than 0.01, no effect can be obtained, and if C exceeds 0.07%, the deformation resistance of the spark plug electrode material becomes large, and a member having good thermal conductivity is used as the center electrode. This is because plastic working such as sealing becomes difficult.
[0018]
(8) Average Particle Size The crystal particles of the spark plug electrode material preferably have an average particle size of 300 μm or less after being kept at 900 ° C. for 100 hours. If it exceeds this, the electrode may be damaged due to grain boundary oxidation.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, production examples and test examples of the spark plug and the spark plug electrode material according to the present invention will be described. FIG. 1 is a cross-sectional view of a spark plug, FIG. 2 is a sample provided for an electrode material for a spark plug, and FIG. 3 is an explanatory diagram illustrating the results of an evaluation test of each sample.
[0020]
A spark plug 100 as an example of the present invention shown in FIG. 1 has a cylindrical metal shell 1, an insulator 2 fitted inside the metal shell 1 so that the tip side protrudes, and an insulator 2 so that the tip side protrudes. One end is connected to the center electrode 3 provided inside the metal member 1 and the metal shell 1 by welding or the like, and the other end is bent back to the center electrode side, and is disposed so as to face the front end of the center electrode 3. A ground electrode 4 and the like are provided. The gap between the center electrode 3 and the opposing ground electrode 4 is a spark discharge gap g.
[0021]
The metal shell 1 is made of low carbon steel or the like, and has a substantially cylindrical shape. The metal shell has a flange portion 11 protruding in the radial direction and a tool having a hexagonal cross section which is located on the proximal side thereof and which is engaged with a tool such as a spanner when the spark plug 100 is attached to a cylinder head or the like of an engine. It has an engagement portion 12 and a tip portion 13 located on the tip side from the flange portion and having a smaller diameter than the flange portion. A screw 14 for screwing the spark plug 100 to a cylinder head or the like of the engine is formed on the outer periphery of the distal end 13. A crimping portion 15 for crimping and fixing the insulator 2 to the metal shell 1 is provided on the base end side of the tool engaging portion 12.
[0022]
On the other hand, the insulator 2 is made of, for example, a ceramic sintered body such as alumina or aluminum nitride, and has an axial hole 2H for fitting the center electrode 3 along its own axial direction. Of the shaft hole 2H, the center electrode 3 is fixed to the distal end, and the terminal fitting 5 is fixed to the proximal end. In this shaft hole 2H, a resistor 6 is arranged between the center electrode 3 and the terminal fitting 5. Both ends of the resistor 6 are electrically connected to the center electrode 3 and the terminal fitting 5 by a conductive glass seal 7.
[0023]
The insulator 2 has a protruding portion 21 that protrudes in the radial direction, and a base end portion 22 smaller in diameter than the protruding portion formed on the base end side. On the other hand, an intermediate body 23 having a diameter smaller than that of the protruding portion 21 is formed on the distal end side of the protruding portion 21, and a leg portion 24 is further formed on the distal end side.
[0024]
The center electrode 3 has a good heat conductive core 31 made of copper or the like, and a coating 32 made of the above-described material, and the tip of the coating 32 is arranged so as to protrude from the tip of the insulator 2 toward the tip. ing. On the other hand, one end of the ground electrode 4 is fixed to the distal end surface of the metal shell 1, and the other end is bent back toward the center electrode side, and is arranged so as to face the distal end of the center electrode 3.
[0025]
【Example】
Next, in order to confirm the effect of the present invention, the following experiment was performed.
Each sample of FIG. 2 was used and manufactured by the following steps. That is, a molten metal of an alloy having each component composition was prepared using a normal vacuum melting furnace, and was made into an ingot by vacuum casting. Thereafter, the ingot was formed into a round bar having a diameter of 60 mm by hot forging. This round bar was subjected to wire drawing to obtain a wire having a diameter of 4 mm and a wire having a cross-sectional dimension of 1.6 mm × 2.8 mm. The former was formed as the center electrode 3 of the spark plug, and the latter was formed as the ground electrode 4. Then, the center electrode 3 is assembled to the shaft hole 2H of the insulator 2, the resistor 7 and the terminal fitting 6 are assembled by a known method, and glass sealing is performed. Then, the insulator 2 is assembled to the metal shell 1, one end of the ground electrode 4 is fixed to the metal shell 1, and the other end is folded back toward the center electrode so as to face the tip of the center electrode.
[0026]
In FIG. 2, in Examples 1 to 5, Si is 0.5 to 1.5%, Al is 0.5 to 1.5%, and one or two types are selected from Y, Nd and Sm. Component has a content of 0.05 to 0.5%, the total amount of Cr and Mn is 0.8% or less, and the balance consists of Ni and unavoidable impurities, and the specific resistance at room temperature is 25 μΩcm or less. Has been prepared.
[0027]
In Examples 6 to 8, the content of C or the average particle size of the crystals was adjusted to the range of Example 1 and the like, and corresponds to the scope of claim 2 or claim 3. That is, in Example 6, C is 0.003%, which is smaller than 0.01% (the lower limit of claim 2). In Example 7, C is 0.10%, which is more than 0.07% (the upper limit of claim 2). In Example 8, the average grain size of the crystals was 400 μm, which exceeded the upper limit of 300 μm described above.
[0028]
Comparative Examples 1 to 9 were created to examine the upper and lower limits of the above example. That is, in Comparative Example 1, the content of Si is 2.0% and exceeds the upper limit of 1.5% of Si. In Comparative Example 2, Al does not satisfy the lower limit of 0.5%, that is, does not contain Al. In Comparative Example 3, Nd is 0.02%, which is smaller than the lower limit of 0.05% described above. In Comparative Example 4, Y + Nd is 0.6%, which is larger than the above-mentioned upper limit value of 0.5%. In Comparative Example 5, the room temperature resistivity is 28 μm, which is larger than the above-mentioned upper limit of 25 μm. In Comparative Example 6, the content of Si is 0.2%, which is smaller than the above-described lower limit of 0.5%. In Comparative Example 7, Al is 2.0% which is larger than the above-mentioned upper limit of 1.5%. In Comparative Example 8, the total weight of Cr and Mn is 1.2%, which is larger than the upper limit of 0.8%. Comparative Example 9 corresponds to the conventional technique.
[0029]
This test was performed on each sample by measuring the increase in the gap before and after the durability test by engine simulation. The engine used in the evaluation was a 6-cylinder, 2.8-liter engine. A durability test was performed at 160 km / h for about 400 hours, and the amount of increase in the cap before and after the durability test was measured.
As evaluation criteria, less than 0.3 mm was judged as good, 0.30 mm or more and less than 0.35 mm was judged as acceptable, and 0.35 mm or more was judged as unacceptable.
[0030]
This test was performed for each sample by measuring the oxide film thickness after the test by an engine simulation test. The engine used in the evaluation was a 4-cylinder, 2.0-liter engine. The period of rotating the engine at 5000 rpm and the period of idling were repeated at one minute intervals for 100 hours. The maximum temperature at this time was 900 ° C. The oxide film thickness formed on the ground electrode surface after the test was measured. In the case where grain boundary oxidation is observed in the oxide film, the film thickness is set to include the grain boundary oxidation.
As evaluation criteria, less than 180 μm was judged as good, 180 μm or more and less than 210 μm was judged as acceptable, and 210 μm or more was judged as unacceptable. This is because if the oxide film becomes too thick, the temperature of the electrode itself rises too much, so that the protective oxide film is desirably thin.
[0031]
This test was performed by measuring the amount of deformation of the center electrode by subjecting the center electrode to a thermal cycle. That is, the tip of the center electrode was heated to 850 ° C. for 3 minutes and air-cooled for 1 minute, and this was repeated as one cycle. And it evaluated by the number of cycles until the length of the center electrode was shortened by 0.1 mm.
The evaluation criteria were determined to be good for 2500 cycles or more and acceptable for less than 2500 cycles.
[0032]
The plastic workability was determined based on the workability of enclosing a member having good thermal conductivity in the center electrode.
[0033]
In all of Examples 1 to 5, good evaluations could be obtained. In Example 6, since the content of C was as small as 0.003%, evaluation by the center electrode deformation test was possible. In Example 7, since the content of C was as large as 0.1%, plastic workability was slightly inferior and acceptable. In Example 8, since the average crystal grain size was as large as 400 μm, evaluation by an oxide film thickness test was possible.
Thus, it can be seen that those having a gap test, an oxide film thickness test, a center electrode deformation test, and a plastic workability that are all acceptable can be used with excellent durability as an electrode material for a spark plug. If higher durability is required, it is preferable to select a material that will be good for all tests.
[0034]
In Comparative Example 1, since the Si content was as large as 2%, the specific resistance was as large as 30 μΩm, and the increase in the electrode gap was as large as 0.36 mm, which was not possible. In Comparative Example 2, since Al was not included, the thickness of the oxide film was as thick as 250 mm, which was unacceptable. In Comparative Example 3, since Nd was as small as 0.02%, the oxide film thickness was 250 mm or more, which was not possible. In Comparative Example 4, since Y + Nd was as large as 0.6%, plastic workability was not possible. In Comparative Example 5, since the specific resistance was as large as 28 μΩm, it was as large as 0.35 mm, which was not possible. In Comparative Example 6, since the content of Si was as small as 0.2%, a thick oxide film having a thickness of 220 μm was impossible. In Comparative Example 7, since the Al content was as high as 2.0%, the increase in the electrode gap was as large as 0.36 mm, which was not possible. In Comparative Example 8, since the total amount of Cr and Mn was as large as 1.2%, the increase in the electrode gap was as large as 0.36 mm, which was impossible. Comparative Example 9 corresponds to the conventional technique, and has a large specific resistance at room temperature. Therefore, the increase in the electrode gap is as large as 0.40 mm, which is not possible.
[0035]
The present invention is not limited to the above embodiment, but can be implemented in various modes without departing from the scope of the invention. In the spark plug of the present invention, the screw portion 5 is formed. However, the present invention is not limited to this, and a spark plug having no screw portion may be used.
Further, in the embodiment, the ground electrode 4 is formed of the material composed only of the material of the present invention. However, the present invention is not limited to this. It may be a ground electrode made of a coating layer made of a material. Further, in the embodiment, the center electrode 3 is formed of the good heat conductive core 31 made of copper or the like and the covering portion 32 made of the above-described material. However, the present invention is not limited to this. It may be formed more.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a spark plug of the present invention in which an electrode material is used.
FIG. 2 is an explanatory diagram illustrating a sample provided for an electrode material for a spark plug.
FIG. 3 is an explanatory diagram illustrating results of an evaluation test of each sample.
[Explanation of symbols]
100 spark plug 1 metal shell 2 insulator 3 center electrode 4 ground electrode 5 terminal metal 6 resistor 7 glass seal

Claims (3)

筒状の主体金具と、該主体金具の内孔に配置される筒状の絶縁体と、該絶縁体の先端側内孔に配置される中心電極と、一端が前記主体金具の先端側に固着され、他端側が前記中心電極と火花放電ギャップを形成する接地電極を備えるスパークプラグにおいて、
前記中心電極及び前記接地電極の少なくとも一方が、Siが0.5〜1.5%(以下、%は重量%をいう)、Alが0.5〜1.5%、Y,NdまたはSmのうちから1種または2種選択された成分が0.05〜0.5%を含有し、
CrとMnとの合計量が0.8%以下であって、残部がNiと不可避不純物からなり、常温での比抵抗が25μΩcm以下に調製される電極材料にて構成されることを特徴とするスパークプラグ。
A cylindrical metal shell, a cylindrical insulator disposed in an inner hole of the metal shell, a center electrode disposed in a distal inner hole of the insulator, and one end fixed to the distal end of the metal shell. In the spark plug, the other end side has a ground electrode forming a spark discharge gap with the center electrode,
At least one of the center electrode and the ground electrode contains 0.5 to 1.5% of Si (hereinafter,% means weight%), 0.5 to 1.5% of Al, Y, Nd or Sm. One or two components selected from them contain 0.05 to 0.5%,
It is characterized in that the total amount of Cr and Mn is 0.8% or less, the balance is made of Ni and unavoidable impurities, and the electrode material is adjusted to have a specific resistance at room temperature of 25 μΩcm or less. Spark plug.
請求項1のスパークプラグにおいて、
前記電極材料が、Cが0.01〜0.07%を含有することを特徴とするスパークプラグ。
The spark plug according to claim 1,
A spark plug, wherein the electrode material contains 0.01 to 0.07% of C.
請求項1または請求項2のスパークプラグにおいて、
前記電極材料が、900℃で100時間保持した後における結晶の平均粒径を300μm以下に調製してなるスパークプラグ。
In the spark plug according to claim 1 or 2,
A spark plug in which the electrode material has an average crystal grain size of 300 μm or less after holding at 900 ° C. for 100 hours.
JP2002371245A 2002-12-24 2002-12-24 Spark plug Expired - Fee Related JP4318912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371245A JP4318912B2 (en) 2002-12-24 2002-12-24 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371245A JP4318912B2 (en) 2002-12-24 2002-12-24 Spark plug

Publications (2)

Publication Number Publication Date
JP2004206892A true JP2004206892A (en) 2004-07-22
JP4318912B2 JP4318912B2 (en) 2009-08-26

Family

ID=32810174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371245A Expired - Fee Related JP4318912B2 (en) 2002-12-24 2002-12-24 Spark plug

Country Status (1)

Country Link
JP (1) JP4318912B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686665A1 (en) * 2005-01-31 2006-08-02 Ngk Spark Plug Co., Ltd Spark plug for internal combustion engine
JP2006316343A (en) * 2004-11-04 2006-11-24 Hitachi Metals Ltd Electrode material for spark plug
JP2006316344A (en) * 2004-11-04 2006-11-24 Hitachi Metals Ltd Electrode material for spark plug
JP2010108939A (en) * 2009-11-26 2010-05-13 Ngk Spark Plug Co Ltd Electrode material for spark plug
US8283846B2 (en) 2009-12-24 2012-10-09 Ngk Spark Plug Co., Ltd. Spark plug containing specific ratio content

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316343A (en) * 2004-11-04 2006-11-24 Hitachi Metals Ltd Electrode material for spark plug
JP2006316344A (en) * 2004-11-04 2006-11-24 Hitachi Metals Ltd Electrode material for spark plug
JP4699867B2 (en) * 2004-11-04 2011-06-15 日立金属株式会社 Spark plug electrode material
JP4706441B2 (en) * 2004-11-04 2011-06-22 日立金属株式会社 Spark plug electrode material
EP1686665A1 (en) * 2005-01-31 2006-08-02 Ngk Spark Plug Co., Ltd Spark plug for internal combustion engine
US7825571B2 (en) 2005-01-31 2010-11-02 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
US8288928B2 (en) 2005-01-31 2012-10-16 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP2010108939A (en) * 2009-11-26 2010-05-13 Ngk Spark Plug Co Ltd Electrode material for spark plug
US8283846B2 (en) 2009-12-24 2012-10-09 Ngk Spark Plug Co., Ltd. Spark plug containing specific ratio content

Also Published As

Publication number Publication date
JP4318912B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4769070B2 (en) Spark plug for internal combustion engine
US6794803B2 (en) Spark plug for an internal combustion engine
JP5341752B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
EP2581999B1 (en) Spark plug
EP1309053B1 (en) Spark plug
EP2325960B1 (en) Spark plug
JP2853111B2 (en) Spark plug
JP2000243535A (en) Spark plug
EP2518170B1 (en) Spark plug
JP2007173116A (en) Spark plug
JP4295501B2 (en) Electrode material for spark plug
JP4318912B2 (en) Spark plug
JP5172425B2 (en) Spark plug
JPH0617170A (en) Electrode material of ignition plug made of ni-based alloy for internal-combustion engine
JP2992891B2 (en) Spark plug for internal combustion engine
JP2003105467A (en) Spark plug
JPS61135080A (en) Spark plug
JPS63118039A (en) Electrode material for spark plug
JPS63118040A (en) Electrode material for spark plug
EP3270475B1 (en) Spark plug
JP2004265857A (en) Spark plug
JP3196288B2 (en) Spark plug for internal combustion engine
JP2004247112A (en) Electrode material for spark plug
JPH04370686A (en) Electrode material for spark plug
JPH0548596B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees