JP2004206067A - Liquid crystal display and electronic apparatus - Google Patents

Liquid crystal display and electronic apparatus Download PDF

Info

Publication number
JP2004206067A
JP2004206067A JP2003203102A JP2003203102A JP2004206067A JP 2004206067 A JP2004206067 A JP 2004206067A JP 2003203102 A JP2003203102 A JP 2003203102A JP 2003203102 A JP2003203102 A JP 2003203102A JP 2004206067 A JP2004206067 A JP 2004206067A
Authority
JP
Japan
Prior art keywords
axis
liquid crystal
phase difference
retardation plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003203102A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Maeda
強 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003203102A priority Critical patent/JP2004206067A/en
Publication of JP2004206067A publication Critical patent/JP2004206067A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide reflection display and transmission display having a wide visual field angle and high contrast in a transflective liquid crystal display provided with a structure of both a reflection type and a transmission type. <P>SOLUTION: One dot comprises a reflection display region utilized for reflection display and a transmission display region utilized for transmission display, a liquid crystal layer consists of a nematic liquid crystal aligned nearly vertically to a substrate and having negative dielectric anisotropy, a first retardation plate having optically biaxial properties and a first polarizing plate are successively disposed on the outer side of an upper substrate and a second retardation plate having optically biaxial properties, a second polarizing plate and an illuminating means are successively disposed on the outer side of a lower substrate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置及び電子機器に関し、特に反射型と透過型の両方の構造を具備させた半透過反射型の液晶表示装置において、広視野角かつ高コントラストな反射表示と透過表示を得られるようにした技術に関する。
【0002】
【従来の技術】
反射型と透過型の表示方式を兼ね備えた半透過反射型液晶表示装置は、周囲の明るさに応じて反射モード又は透過モードのいずれかの表示方式に切り替えることにより、消費電力を低減しつつ周囲が暗い場合でも明瞭な表示を行うことができるものである。
【0003】
このような半透過反射型液晶表示装置としては、透光性の上基板と下基板との間に液晶層が挟持された構成を備えるとともに、例えばアルミニウムなどの金属膜に光透過用の開口を形成した反射膜を下基板の内面に備え、この反射膜を半透過反射膜として機能させる液晶表示装置が提案されている。この場合、反射モードでは上基板側から入射した外光が、液晶層を通過した後に下基板の内面に配された反射膜により反射され、再び液晶層を通過して上基板側から表示に供される。一方、透過モードでは下基板側から入射したバックライトからの光が、反射膜に形成された開口から液晶層を通過した後に、上基板側から外部に表示され得る。したがって、反射膜の開口が形成された領域が透過表示領域で、反射膜の開口が形成されていない領域が反射表示領域とされている(例えば、特許文献1参照)。
【0004】
また、別の従来技術として、液晶の視野角特性を改善した垂直配向型液晶表示装置が提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平11−242226号公報(第61頁、図1)
【特許文献2】
特開平5−113561号公報(第5頁、図1)
【0006】
【発明が解決しようとする課題】
従来の反射型と透過型の表示方式を兼ね備えた半透過反射型液晶表示装置は、反射表示及び透過表示ともに視野角が狭いものであった。これは、反射表示時には観察者側(半透過反射型液晶表示装置の上側)の偏光板と位相差板及び入射光が2度通過する反射表示領域の液晶層の設計を行わなければならず、透過表示時には観察者側(半透過反射型液晶表示装置の上側)の偏光板と位相差板、照明手段側(半透過反射型液晶表示装置の下側)の偏光板と位相差板、照明手段から入射光が1度通過する透過表示領域の液晶層の設計を行わなければならなかった。このため、反射表示と透過表示ともに広視野角かつ高コントラストな設計をするのは非常に困難であった。
【0007】
また、従来の半透過反射型液晶表示装置を搭載した電子機器にあっては、視野角が狭く、表示を視認できる範囲が限られるという問題を有していた。
【0008】
そこで、本発明は反射型と透過型の両方の構造を具備させた半透過反射型の液晶表示装置において、広視野角かつ高コントラストな反射表示と透過表示を提供することを目的とする。
【0009】
また、本発明は視認性の高い表示装置を搭載した電子機器を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の液晶表示装置は、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には第2位相差板、第2偏光板、照明手段が順次配置され、前記第1位相差板と前記第2位相差板の少なくとも一方が光学的に二軸性を有することを特徴とする。
【0011】
上記構成によれば、第1偏光板、第1位相差板、垂直に配向した液晶層によって高コントラストな反射型の表示が実現でき、第1偏光板、第1位相差板、垂直に配向した液晶層、第2位相差板、第2偏光板によって高コントラストな透過型の表示が実現できる。さらに、第1位相差板と第2位相差板の少なくとも一方が光学的に二軸性を有しているので、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。
【0012】
本発明の液晶表示装置は、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする。
【0013】
上記構成によれば、第1偏光板、第1位相差板、垂直に配向した液晶層によって高コントラストな反射型の表示が実現でき、第1偏光板、第1位相差板、垂直に配向した液晶層、第2位相差板、第2偏光板によって高コントラストな透過型の表示が実現できる。さらに、第1位相差板と第2位相差板が光学的に二軸性を有しているので、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の反射型表示と透過型表示を同時に実現できる。
【0014】
本発明の液晶表示装置は、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に負の一軸性を有する第3位相差板、光学的に正の一軸性を有する第4位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする。
また、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に正の一軸性を有する第4位相差板、第2偏光板、照明手段が順次配置されている構成としてもよい。
【0015】
上記構成によれば、第1偏光板、第1位相差板、垂直に配向した液晶層によって高コントラストな反射型の表示が実現でき、第1偏光板、第1位相差板、垂直に配向した液晶層、光学的に正の一軸性を有する第4位相差板、第2偏光板によって高コントラストな透過型の表示が実現できる。さらに、第1位相差板は光学的に二軸性を有しているので、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の反射型表示を実現できる。また、二軸性の第1位相差板に加え、光学的に正の一軸性を有する第4位相差板と液晶層の間に光学的に負の一軸性を有する第3位相差板を配置することで、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。なお、光学的に負の一軸性を有する第3位相差板の機能を、光学的に二軸性を有する第1位相差板に付加することも可能である。
【0016】
本発明の液晶表示装置は、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に負の一軸性を有する第5位相差板、光学的に正の一軸性を有する第6位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする。
また、第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に正の一軸性を有する第6位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されている構成としてもよい。
【0017】
上記構成によれば、第1偏光板、光学的に正の一軸性を有する第6位相差板、垂直に配向した液晶層によって高コントラストな反射型の表示が実現でき、第1偏光板、光学的に正の一軸性を有する第6位相差板、垂直に配向した液晶層、光学的に二軸性を有する第2位相差板、第2偏光板によって高コントラストな透過型の表示が実現できる。さらに、光学的に正の一軸性を有する第6位相差板と液晶層の間に光学的に負の一軸性を有する第5位相差板を配置することで、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の反射型表示を実現できる。また、光学的に負の一軸性を有する第5位相差板に加え、光学的に二軸性を有する第2位相差板を液晶層と第2偏光板の間に配置することで、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。
【0018】
本発明の液晶表示装置は、前記反射表示領域の液晶層厚が前記透過領域の液晶層厚よりも小さいことを特徴とする。
【0019】
上記構成によれば、反射表示、透過表示ともに明るく高コントラストな表示を実現することができる。半透過反射型液晶表示装置において、例えば液晶層の厚さをd、液晶の屈折率異方性を△n、これらの積算値として示される液晶のリタデーション(位相差)を△ndとすると、反射表示を行う部分の液晶のリタデーション△ndは、入射光が液晶層を2回通過してから観測者に到達するので2×△ndで示されるが、透過表示を行う部分の液晶のリタデーション△ndは、照明手段(バックライト)からの光が1回のみ液晶層を通過するので1×△ndとなる。反射表示領域の液晶層厚を透過領域の液晶層厚よりも小さいことによって、反射領域、透過領域ともに△ndを最適化することができるので、反射表示、透過表示ともに明るく高コントラストな表示を実現することができる。
【0020】
本発明の液晶表示装置は、前記第1位相差板と前記第2位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz2、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx2、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny2、Z軸方向の厚みをd1,d2としたとき、nx1>ny1>nz1,nx2>ny2>nz2であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2の和W1は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W1≦0.75×Rtであることを特徴とする。
【0021】
上記構成によれば、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2を本発明の範囲にすることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することができる。第1位相差板及び第2位相差板は複数枚の光学フィルムを用いて構成されていても構わない。この場合、複数枚のフィルムの合算値が本発明の範囲を満たせばよい。ここで、液晶層の位相差値をRtとは、液晶層の厚さをd、液晶の屈折率異方性を△nとしたとき、これらの積算値△n×dとして示される。
【0022】
本発明の液晶表示装置は、前記第1位相差板と前記第3位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz3、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx3、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny3、Z軸方向の厚みをd1,d3としたとき、nx1>ny1>nz1,nx3≒ny3>nz3であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3の和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする。
また本発明の液晶表示装置は、前記第1位相差板、前記第3位相差板および前記第4位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz3,nz4、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx3,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny3,ny4、Z軸方向の厚みをd1,d3,d4としたとき、nx1>ny1>nz1,nx3≒ny3>nz3,nx4>ny4≒nz4であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と、前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3と、前記第4位相差板のXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4との和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする。
また本発明の液晶表示装置は、前記第1位相差板と前記第4位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz4、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny4、Z軸方向の厚みをd1,d4としたとき、nx1>ny1>nz1,nx4>ny4≒nz4であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第4位相差板のXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4との和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする。
【0023】
上記構成によれば、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と第3位相差板のXY面内とZ軸方向の位相差値((nx3+ny3)/2−nz3)×d3を本発明の範囲にすることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することができる。さらに第4位相差板のXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4を本発明の範囲に加えることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することができる。なお、第1位相差板の位相差値と第4位相差板の位相差値を本発明の範囲にすることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することも可能である。第1位相差板は複数枚の光学フィルムを用いて構成されていても構わない。第3位相差板は複数枚の光学フィルムを用いて構成されていても構わない。これらの場合、複数枚のフィルムの合算値が本発明の範囲を満たせばよい。ここで、液晶層の位相差値をRtとは、液晶層の厚さをd、液晶の屈折率異方性を△nとしたとき、これらの積算値△n×dとして示される。
【0024】
本発明の液晶表示装置は、前記第2位相差板と前記第5位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz5、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx5、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny5、Z軸方向の厚みをd2,d5としたとき、nx2>ny2>nz2,nx5≒ny5>nz5であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と前記第5位相差板の位相差値((nx5+ny5)/2−nz5)×d5の和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする。
また本発明の液晶表示装置は、前記第2位相差板、前記第5位相差板および前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz5,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx5,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny5,ny6、Z軸方向の厚みをd2,d5,d6としたとき、nx2>ny2>nz2,nx5≒ny5>nz5,nx6>ny6≒nz6であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と、前記第5位相差板の位相差値((nx5+ny5)/2−nz5)×d5と、前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする。
また本発明の液晶表示装置は、前記第2位相差板と前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny6、Z軸方向の厚みをd2,d6としたとき、nx2>ny2>nz2,nx6>ny6≒nz6であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする。
【0025】
上記構成によれば、斜め方向から観察したときの垂直配向した液晶層の視角特性を補償することが可能となり、広視野角の透過型表示を実現できる。第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5を本発明の範囲にすることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することができる。さらに第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6を本発明の範囲に加えることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することができる。なお、第2位相差板の位相差値と第6位相差板の位相差値を本発明の範囲にすることによって、透過領域の垂直配向した液晶層の視角特性を光学補償することも可能である。第2位相差板は複数枚の光学フィルムを用いて構成されていても構わない。第5位相差板は複数枚の光学フィルムを用いて構成されていても構わない。この場合、複数枚のフィルムの合算値が本発明の範囲を満たせばよい。ここで、液晶層の位相差値をRtとは、液晶層の厚さをd、液晶の屈折率異方性を△nとしたとき、これらの積算値△n×dとして示される。
【0026】
本発明の液晶表示装置は、前記第1位相差板と前記第2位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx2、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny2(nx1>ny1,nx2>ny2)、Z軸方向の厚みをd1,d2としたとき、前記第1位相差板のX軸と前記第2位相差板のX軸は直交関係にあり、かつ(nx1−ny1)×d1=(nx2−ny2)×d2であることを特徴とする。
【0027】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第1位相差板と第2位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示(第1偏光板の透過軸と第2偏光板の透過軸が直交のとき)や白表示(第1偏光板の透過軸と第2偏光板の透過軸が平行のとき)を実現することができる。
【0028】
本発明の液晶表示装置は、前記第1位相差板と前記第4位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny4(nx1>ny1,nx4>ny4)、Z軸方向の厚みをd1,d4としたとき、前記第1位相差板のX軸と前記第4位相差板のX軸は直交関係にあり、かつ(nx1−ny1)×d1=(nx4−ny4)×d4であることを特徴とする。
【0029】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第1位相差板と第4位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示(第1偏光板の透過軸と第2偏光板の透過軸が直交のとき)や白表示(第1偏光板の透過軸と第2偏光板の透過軸が平行のとき)を実現することができる。
【0030】
本発明の液晶表示装置は、前記第2位相差板と前記第6位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny6(nx2>ny2,nx6>ny6)、Z軸方向の厚みをd2,d6としたとき、前記第2位相差板のX軸と前記第6位相差板のX軸は直交関係にあり、かつ(nx2−ny2)×d2=(nx6−ny6)×d6であることを特徴とする。
【0031】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第2位相差板と第6位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示(第1偏光板の透過軸と第2偏光板の透過軸が直交のとき)や白表示(第1偏光板の透過軸と第2偏光板の透過軸が平行のとき)を実現することができる。
【0032】
本発明の液晶表示装置は、前記第1位相差板と前記第2位相差板は100nm≦(nx1−ny1)×d1=(nx2−ny2)×d2≦160nmであることを特徴とする。
【0033】
上記構成によれば、第1偏光板と第1位相差板で円または楕円偏光をつくることができ、第2偏光板と第2位相差板で円または楕円偏光をつくることができる。これによって、円または楕円偏光を用いて液晶表示装置のスイッチングが可能となり、高コントラストな反射表示及び透過表示を実現することができる。
【0034】
本発明の液晶表示装置は、前記第1位相差板と前記第4位相差板は100nm≦(nx1−ny1)×d1=(nx4−ny4)×d4≦160nmであることを特徴とする。
【0035】
上記構成によれば、第1偏光板と第1位相差板で円または楕円偏光をつくることができ、第2偏光板と第4位相差板で円または楕円偏光をつくることができる。これによって、円または楕円偏光を用いて液晶表示装置のスイッチングが可能となり、高コントラストな反射表示及び透過表示を実現することができる。
【0036】
本発明の液晶表示装置は、前記第2位相差板と前記第6位相差板は100nm≦(nx2−ny2)×d2=(nx6−ny6)×d6≦160nmであることを特徴とする。
【0037】
上記構成によれば、第1偏光板と第6位相差板で円または楕円偏光をつくることができ、第2偏光板と第2位相差板で円または楕円偏光をつくることができる。これによって、円または楕円偏光を用いて液晶表示装置のスイッチングが可能となり、高コントラストな反射表示及び透過表示を実現することができる。
【0038】
本発明の液晶表示装置は、前記第1位相差板、前記第2位相差板、前記第4位相差板、前記第6位相差板のうち、少なくとも1つは450nmにおける面内位相差値R(450)と590nmにおける面内位相差値R(590)の比R(450)/R(590)が1より小さいことを特徴とする。
【0039】
上記構成によれば、前記位相差板を第1偏光板または第2偏光板と組み合わせることによって、波長分散の小さい広帯域の円偏光を実現することができるので、高コントラスト、かつ不要な着色を呈さない反射表示及び透過表示を実現することができる。
【0040】
本発明の液晶表示装置は、前記第1偏光板の透過軸と前記第2偏光板の透過軸は直交関係にあることを特徴とする。
【0041】
上記構成によれば、第1偏光板と第2偏光板で実現可能である最も優れた黒表示を実現することができる。これによって、高コントラストな透過表示を実現することができる。
【0042】
本発明の液晶表示装置は、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2は概ね等しいことを特徴とする。
【0043】
上記構成によれば、光学的に二軸性を示す第1位相差板によって反射領域における液晶層を斜め方向から観察したときの視角補償を行い、光学的に二軸性を示す第1位相差板と第2位相差板によって透過領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。反射領域では液晶層を光が2度通過し、透過領域では液晶層を光が1度しか通過しないので、透過領域の液晶層厚みは反射領域の概ね2倍となる。このため、第1位相差板の位相差値と第2位相差板のXY面内とZ軸方向の位相差値を概ね等しくしておくことが必要となる。
【0044】
本発明の液晶表示装置は、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3は概ね等しいことを特徴とする。
【0045】
上記構成によれば、光学的に二軸性を示す第1位相差板によって反射領域における液晶層を斜め方向から観察したときの視角補償を行い、光学的に二軸性を示す第1位相差板と光学的に負の一軸性を示す第3位相差板によって透過領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。反射領域では液晶層を光が2度通過し、透過領域では液晶層を光が1度しか通過しないので、透過領域の液晶層厚みは反射領域の概ね2倍となる。このため、第1位相差板のXY面内とZ軸方向の位相差値と第3位相差板のXY面内とZ軸方向の位相差値を概ね等しくしておくことが必要となる。
【0046】
本発明の液晶表示装置は、前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2は概ね等しいことを特徴とする。
【0047】
上記構成によれば、光学的に負の一軸性を示す第5位相差板によって反射領域における液晶層を斜め方向から観察したときの視角補償を行い、光学的に負の一軸性を示す第5位相差板と光学的に二軸性を示す第2位相差板によって透過領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。反射領域では液晶層を光が2度通過し、透過領域では液晶層を光が1度しか通過しないので、透過領域の液晶層厚みは反射領域の概ね2倍となる。このため、第5位相差板のXY面内とZ軸方向の位相差値と第2位相差板のXY面内とZ軸方向の位相差値を概ね等しくしておくことが必要となる。
【0048】
本発明の液晶表示装置は、前記第1位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1、Z軸方向の厚みをd1としたとき、nx1>ny1>nz1であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦(nx1+ny1)/2−nz1)×d1≦0.75×Rrであることを特徴とする。
【0049】
上記構成によれば、光学的に二軸性を示す第1位相差板によって反射領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。
【0050】
本発明の液晶表示装置は、前記第5位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz5、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx5、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny5、Z軸方向の厚みをd5としたとき、nx5≒ny5>nz5であり、前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦(nx5+ny5)/2−nz5)×d5≦0.75×Rrであることを特徴とする。
また本発明の液晶表示装置は、前記第5位相差板と前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz5,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx5,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny5,ny6、Z軸方向の厚みをd5,d6としたとき、nx5≒ny5>nz5,nx6>ny6≒nz6であり、前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5と、前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W4は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦W4≦0.75×Rrであることを特徴とする。
【0051】
上記構成によれば、光学的に負の一軸性を示す第5位相差板によって反射領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。さらに光学的に正の一軸性を示す第6位相差板を加えることによって、反射領域における液晶層を斜め方向から観察したときの視角補償を行うことができる。
【0052】
本発明の液晶表示装置は、前記反射表示領域には、入射した光を反射することが可能な反射層が形成されていることを特徴とする。
【0053】
上記構成によれば、反射層によって外光を反射させることが可能となるので、反射表示を実現することができる。
【0054】
本発明の液晶表示装置は、前記反射層は、入射した光を散乱反射することが可能な凹凸形状を有していることを特徴とする。
【0055】
上記構成によれば、凹凸形状を有した反射層によって入射光は散乱反射されるので、広視野角で反射表示を観察することができる。
【0056】
本発明の液晶表示装置は、前記第1位相差板と前記第2位相差板のX軸方向は互いに直交関係にあり、かつ前記第1位相差板と前記第2位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする。
【0057】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第1位相差板と第2位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示を実現することができる。また、第1偏光板と第1位相差板、第2偏光板と第2位相差板で円偏光をつくることができる。これによって、円偏光を用いた液晶表示装置のスイッチングが可能となり、明るく高コントラストな反射表示及び透過表示を実現することができる。
【0058】
本発明の液晶表示装置は、第1位相差板と前記第4位相差板のX軸方向は互いに直交関係にあり、かつ前記第1位相差板と前記第4位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする。
【0059】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第1位相差板と第4位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示を実現することができる。また、第1偏光板と第1位相差板、第2偏光板と第4位相差板で円偏光をつくることができる。これによって、円偏光を用いた液晶表示装置のスイッチングが可能となり、明るく高コントラストな反射表示及び透過表示を実現することができる。
【0060】
本発明の液晶表示装置は、前記第2位相差板と前記第6位相差板のX軸方向は互いに直交関係にあり、かつ前記第2位相差板と前記第6位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする。
【0061】
上記構成によれば、液晶表示装置のパネル面内(XY面)における第2位相差板と第6位相差板による位相差値を互いに打ち消し合うことができ、第1偏光板と第2偏光板で実現できる限界の黒表示を実現することができる。また、第1偏光板と第6位相差板、第2偏光板と第2位相差板で円偏光をつくることができる。これによって、円偏光を用いた液晶表示装置のスイッチングが可能となり、明るく高コントラストな反射表示及び透過表示を実現することができる。
【0062】
本発明の液晶表示装置は、前記第1基板、前記第2基板の少なくとも一方の液晶層側の内面に開口部を有する液晶駆動用の電極が形成されていることを特徴とする。
【0063】
上記構成によれば、液晶駆動用の電極の開口部によって液晶層に斜め電界が生じるので、電圧印加時の液晶分子のダイレクタ方向を1ドット内で複数作り出すことができる。これによって、広視野角な半透過反射型液晶表示装置を実現することができる。
【0064】
本発明の液晶表示装置は、前記第1基板、前記第2基板の少なくとも一方の液晶層側の内面に形成された電極上に突起が形成されていることを特徴とする。
【0065】
上記構成によれば、電極上に形成された突起によって液晶分子の倒れる方向を制御できるので、電圧印加時の液晶分子のダイレクタ方向を1ドット内で複数作り出すことができる。これによって、広視野角な半透過反射型液晶表示装置を実現することができる。
【0066】
本発明の液晶表示装置は、前記電極によって液晶を駆動するとき、液晶のダイレクタは1ドット内で少なくとも2つ以上あることを特徴とする。
【0067】
上記構成によれば、広視野角な半透過反射型液晶表示装置を実現することができる。
【0068】
本発明の電子機器は、上述した半透過反射型液晶表示装置を備えたことを特徴とする。
【0069】
上記構成によれば、視認性の高い表示装置を搭載した電子機器を実現することができる。
【0070】
【発明の実施の形態】
以下、本発明の実施形態について図面に基づいて説明する。
【0071】
[第1実施形態]
図1は、本発明の構成をアクティブマトリクスタイプの液晶表示装置に適用した第1実施形態を示すもので、この第1実施形態の液晶表示装置は、図1に示す断面構造の如く上下に対向配置された透明のガラス等からなる基板105,113の間に液晶層110が挟持された基本構造を具備している。なお、図面では省略されているが、実際には基板105,113の周縁部側にシール材が介在されていて、液晶層110を基板105,113とシール材とで取り囲むことにより液晶層110が基板105,113間に封入された状態で挟持されている。また、下側基板113の更に下方側には光源及び導光板等を備えたバックライトが設けられているが、図1では省略する。
【0072】
上側の基板105の上面側(観測者側)には位相差板103と偏光板102とが配置されるとともに、下側の基板113の下面側にも位相差板114と偏光板116とが配置されている。偏光板102,116は、上面側から入射する外光、及び下面側から入射するバックライトの光に対し一方向の直線偏光のみを透過させ、位相差板103,114は、偏光板102,116を透過した直線偏光を円偏光(楕円偏光を含む)に変換する。したがって、偏光板102,116及び位相差板103,114は円偏光入射手段として機能している。なお、本実施形態においては、バックライトを備える側を下側とし、一方の外光が入射する側を上側としており、基板105を上基板、基板113を下基板と言うこともある。
【0073】
一方、上基板105の液晶層110側にはITO(Indium−Tin−Oxide)等からなる透明電極106が形成され、さらに透明電極106の液晶層110側には、この透明電極106を覆う態様で垂直配向膜(図中では省略)が形成されている。また、下基板113の液晶層110側には反射層を兼ねる反射電極108と透明電極112が形成され、反射電極部108が反射表示領域として機能し、透明電極部112が透過表示領域として機能する。なお、反射電極108はAl、Ag等の光反射性の、すなわち反射率の高い金属材料により平面視矩形枠状に構成されており、その液晶110側の面に垂直配向膜(図中では省略)が形成されている。
【0074】
また、アクリル等の樹脂109によって、反射電極108の凹凸形状と反射表示領域の液晶厚を透過表示領域の液晶厚よりも狭くしている。このような構造はフォトリソ工程を行うことで形成することができる。本実施形態では、反射表示領域の反射層と液晶駆動電極を兼ねさせたが、別々に設けても構わない。下側基板113となるガラス基板上にレジストを塗布した後にフッ酸を用いたエッチング処理を行い、エッチング処理後にレジストを剥離するフォトリソ工程を行うことで微細な凹凸を形成し、その上に反射層を形成して凹凸反射層をつくることもできる。
【0075】
上基板105内面に形成された透明電極106上にはアクリル樹脂からなる誘電体突起107が形成され、下基板113内面に形成された透明電極112の開口部111とともに基板105,113面に直交しない斜め電界を液晶層110に印加している。誘電体突起107や透明電極112の開口部111を形成することによって、電極106,108,112に電圧を印加すると1ドット内で液晶層110のダイレクタを複数つくり出すことができ、視角依存性のない液晶表示装置を実現することができる。
【0076】
図1では省略しているが、各ドットの周囲のコーナ部分には、電極108,112を駆動するためのスイッチング素子としての薄膜トランジスタが形成され、更に薄膜トランジスタに給電するためのゲート線とソース線とが配線されている。なお、スイッチング素子としては薄膜トランジスタの他に、2端子型の線形素子、あるいは、その他の構造のスイッチング素子を適用することも可能である。
【0077】
次に、図1に示した構造の半透過反射型液晶表示装置の作用効果について説明する。反射表示を行う場合には、装置の外部側から入射する光が利用され、この入射光が偏光板102、位相差板103、上基板105、電極106を介して液晶層110側に導かれる。
【0078】
ここで、反射表示領域においては、上記入射光が液晶層110を通過した後に、反射電極108で反射される。そして、反射された光は再度液晶層110を通過した後、更に電極106、上基板105、位相差板103、偏光板102を介して装置外部に戻されることにより観察者に到達し反射型の表示が行われるものとされている。このような反射型の表示においては、電極106、108によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示を行うものとされている。
【0079】
また、透過表示を行う場合には、バックライト(照明手段)から発せられた光が偏光板116、位相差板114、基板113を介して入射する。この場合、透過表示領域においては、基板113から入射した光が電極112、液晶層110、電極106、基板105、位相差板103、偏光板102の順に透過して透過表示が行われるものとされている。このような透過型の表示においても、電極106,112によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示することができる。
【0080】
これらの表示形態において、反射型の表示形態においては入射光が液晶層110を2回通過するが、透過光に関してはバックライト(照明手段)から発せられた光が液晶層110を1回しか通過しない。ここで液晶層110のリタデーション(位相差値)を考慮すると、反射型の表示形態と透過型の表示形態では同じ電圧を電極から印加して配向制御した場合に、液晶のリタデーションの違いにより液晶の透過率の状態に違いを生じる。しかしながら、本実施形態の構造では反射表示を行う領域、即ち、図1に示す反射電極108を備えた領域である反射表示領域にアクリル樹脂からなる液晶層層厚制御層109を設けたため、その反射表示領域の液晶層110の厚さよりも、透過表示を行う透過表示領域の液晶層110の厚さが大きくなり、反射表示領域と透過表示領域での液晶層110の透過表示と反射表示に係る状態、すなわち各領域における液晶層110を光が通過する距離を最適化することができる。したがって、アクリル樹脂からなる液晶層層厚制御層109の形成により、反射表示領域と透過表示領域におけるリタデーションの最適化を図ることが可能とり、反射表示及び透過表示共に明るく高コントラストの表示が得られるようになる。
【0081】
位相差板103は二軸性(nx1>ny1>nz1)を示し、XY面内の位相差値は約140nmであり、位相差板103のX軸は偏光板102の透過軸101と約45°の角度をなしている。また、位相差板114は二軸性(nx2>ny2>nz2)を示し、XY面内の位相差値は約140nmであり、位相差板114のX軸は偏光板116の透過軸117と約45°の角度をなしている。偏光板102の透過軸101と偏光板116の透過軸117は直交関係にあり、位相差板103のX軸と位相差板114のX軸も同様に直交関係にある。さらに、位相差板103の位相差値と位相差板114の位相差値を等しくしておけば、非駆動時に偏光板102,116間の位相差値を0にすることができるので、理想的な黒表示を実現することができる。
【0082】
位相差板103は二軸性(nx1>ny1>nz1)を示し、XY面内とZ軸方向に約120nmの平均位相差を有している。また、位相差板114は二軸性(nx2>ny2>nz2)を示し、XY面内とZ軸方向に約120nmの平均位相差を有している。ここで、液晶層110における透過領域の位相差値は380nm、反射領域における位相差値は200nmである。位相差板103,114を配置することで、斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。
【0083】
図12は、視角特性の補償作用の説明図である。バックライト(不図示)から斜め方向に照射された光10は、第2位相差板114、液晶層110および第1位相差板103を通って、観察者(不図示)に到達する。なお、液晶層110では液晶分子110aが垂直配向しているので、液晶層110のXY面内における位相差はほぼ0である。また第1位相差板103および第2位相差板114のXY面内における位相差の和は、上述したようにほぼ0である。したがって、光10は垂直方向において位相差を生じない。ところが、斜め方向から光が入射すると、Z軸方向に位相差が生じることになる。そこで、位相差板103,114を配置することにより、斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。
【0084】
図7に、W1/Rt値と透過表示視角範囲との関係を示す。図7(a)は透過領域の位相差値Rtが300nmの場合であり、図7(b)は透過領域の位相差値Rtが500nmの場合である。Z軸方向の位相差の和W1は、第1位相差板103におけるXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と、第2位相差板114におけるXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2とを足し合わせたものである。また透過表示視角範囲は、30以上の高コントラストが得られる視角範囲を示している。図7に示すように、透過表示視角範囲は、W1/Rt=0.58の近傍において極大値をとる。
【0085】
図11は、携帯電話等の一般的な液晶表示装置におけるバックライト輝度と極角との関係を示すグラフである。なお極角が0°の場合、すなわち液晶表示装置の表示面を垂直方向から見た場合に、バックライトの輝度は最大となる。またバックライトの高輝度(約1000cd/m以上)が得られるのは、極角が±35°の範囲である。一方図7において、透過表示視角範囲が35°以上となるのは、0.5≦W1/Rt≦0.75の範囲である。そこで、0.5≦W1/Rt≦0.75となるように各位相差板を設定することにより、透過領域においてバックライトの高輝度範囲以上で高コントラストを確保することが可能となる。
【0086】
図10(a)に、W4/Rr値と反射表示視角範囲との関係を示す。図10(a)は、反射領域の位相差値Rrが180nmの場合である。Z軸方向の位相差値の和W4は、第1位相差板103におけるXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1である。また透過表示視角範囲は、10以上の高コントラストが得られる視角範囲を示している。ところで、従来のSTNモード液晶表示装置の視角範囲は30°程度である。一方図10(a)において、透過表示視角範囲が30°以上となるのは、0.5≦W4/Rr≦0.75の範囲である。そこで、0.5≦W4/Rr≦0.75となるように各位相差板を設定することにより、反射領域において従来のSTNモード液晶表示装置の視角範囲以上で高コントラストを確保することが可能となる。
【0087】
位相差板103,114は複数枚の光学フィルムを積層したものでも構わない。また、位相差板103,114は450nmにおけるXY面内位相差値R(450)と590nmにおけるXY面内位相差値R(590)の比R(450)/R(590)が1より小さいほうが好ましい。このようにすることによって、可視光域で概ね円偏光をつくり出すことが可能となる。
【0088】
以上述べたように、第1実施形態の液晶表示装置は高コントラストかつ広視野角の表示を実現することができる。また第1位相差板および第2位相差板として、光学的に二軸性を有する位相差板を採用したので、光学的に正の一軸性を有する位相差板および負の一軸性を有する位相差板を合わせ用いた場合と比べて、液晶表示装置を低コスト化および薄型化することができる。
【0089】
[第2実施形態]
以下、本発明の第2の実施形態を図2を参照して説明する。なお、図1に示した第1の実施形態と同じ符号については、特に断り書きのない限り同様の構成を有するものとして説明を省略する。
【0090】
反射表示を行う場合には、装置の外部側から入射する光が利用され、この入射光が偏光板102、位相差板103、上基板105、電極106を介して液晶層110側に導かれる。反射表示領域においては、上記入射光が液晶層110を通過した後に、反射電極108で反射される。そして、反射された光は再度液晶層110を通過した後、更に電極106、上基板105、位相差板103、偏光板102を介して装置外部に戻されることにより観察者に到達し反射型の表示が行われるものとされている。このような反射型の表示においては、電極106、108によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示を行うものとされている。
【0091】
また、透過表示を行う場合には、バックライト(照明手段)から発せられた光が偏光板116、位相差板202,201、基板113を介して入射する。この場合、透過表示領域においては、基板113から入射した光が電極112、液晶層110、電極106、基板105、位相差板103、偏光板102の順に透過して透過表示が行われるものとされている。このような透過型の表示においても、電極106,112によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示することができる。
【0092】
これらの表示形態において、反射型の表示形態においては入射光が液晶層110を2回通過するが、透過光に関してはバックライト(照明手段)から発せられた光が液晶層110を1回しか通過しない。ここで液晶層110のリタデーション(位相差値)を考慮すると、反射型の表示形態と透過型の表示形態では同じ電圧を電極から印加して配向制御した場合に、液晶のリタデーションの違いにより液晶の透過率の状態に違いを生じる。しかしながら、本実施形態の構造では反射表示を行う領域、即ち、図2に示す反射電極108を備えた領域である反射表示領域にアクリル樹脂からなる液晶層層厚制御層109を設けたため、その反射表示領域の液晶層110の厚さよりも、透過表示を行う透過表示領域の液晶層110の厚さが大きくなり、反射表示領域と透過表示領域での液晶層110の透過表示と反射表示に係る状態、すなわち各領域における液晶層110を光が通過する距離を最適化することができる。したがって、アクリル樹脂からなる液晶層層厚制御層109の形成により、反射表示領域と透過表示領域におけるリタデーションの最適化を図ることが可能とり、反射表示及び透過表示共に明るく高コントラストの表示が得られるようになる。
【0093】
位相差板103は二軸性(nx1>ny1>nz1)を示し、XY面内の位相差値は約140nmであり、位相差板103のX軸は偏光板102の透過軸101と約45°の角度をなしている。また、位相差板202は正の一軸性(nx4>ny4≒nz4)を示し、XY面内の位相差値は約140nmであり、位相差板202のX軸は偏光板116の透過軸117と約45°の角度をなしている。偏光板102の透過軸101と偏光板116の透過軸117は直交関係にあり、位相差板103のX軸と位相差板202のX軸も同様に直交関係にある。さらに、位相差板103の位相差値と位相差板202の位相差値を等しくしておけば、非駆動時に偏光板102,116間の位相差値を0にすることができるので、理想的な黒表示を実現することができる。
【0094】
位相差板103は二軸性(nx1>ny1>nz1)を示し、XY面内とZ軸方向の間で約110nmの平均位相差を有している。位相差板201は負の一軸性(nx3≒ny3>nz3)を示し、XY面内の位相差値は概ね0であり、Z軸方向に約120nmの位相差を有している。ここで、液晶層110における透過領域の位相差値は380nmである。位相差板103を配置することで、反射表示を斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。位相差板103,201を配置することで、透過表示を斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。
【0095】
図8に、W2/Rt値と透過表示視角範囲との関係を示す。図8は、透過領域の位相差値Rtが400nmの場合である。Z軸方向の位相差の和W2は、第1位相差板103におけるXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と、第3位相差板201におけるXY面内とZ軸方向の位相差値(nx3−nz3)×d3と、第4位相差板202におけるXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4とを足し合わせたものである。また透過表示視角範囲は、30以上の高コントラストが得られる視角範囲を示している。ところで、図11に示すように、バックライトの高輝度(約1000cd/m以上)が得られるのは、極角が±35°の範囲である。一方、図8において、透過表示視角範囲が35°以上となるのは、0.5≦W2/Rt≦0.75の範囲である。そこで、0.5≦W2/Rt≦0.75となるように各位相差板を設定することにより、透過領域においてバックライトの高輝度範囲以上で高コントラストを確保することが可能となる。
【0096】
以上述べたように、第2実施形態の液晶表示装置は高コントラストかつ広視野角の表示を実現することができる。
【0097】
[第3実施形態]
以下、本発明の第3の実施形態を図3を参照して説明する。なお、図1に示した第1の実施形態と同じ符号については、特に断り書きのない限り同様の構成を有するものとして説明を省略する。
【0098】
反射表示を行う場合には、装置の外部側から入射する光が利用され、この入射光が偏光板102、位相差板301,302、上基板105、電極106を介して液晶層110側に導かれる。反射表示領域においては、上記入射光が液晶層110を通過した後に、反射電極108で反射される。そして、反射された光は再度液晶層110を通過した後、更に電極106、上基板105、位相差板302,301、偏光板102を介して装置外部に戻されることにより観察者に到達し反射型の表示が行われるものとされている。このような反射型の表示においては、電極106、108によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示を行うものとされている。
【0099】
また、透過表示を行う場合には、バックライト(照明手段)から発せられた光が偏光板116、位相差板114、基板113を介して入射する。この場合、透過表示領域においては、基板113から入射した光が電極112、液晶層110、電極106、基板105、位相差板302,301、偏光板102の順に透過して透過表示が行われるものとされている。このような透過型の表示においても、電極106,112によって液晶層110の液晶を配向制御することで、液晶層110を通過する光の偏光状態を変えて明暗表示することができる。
【0100】
これらの表示形態において、反射型の表示形態においては入射光が液晶層110を2回通過するが、透過光に関してはバックライト(照明手段)から発せられた光が液晶層110を1回しか通過しない。ここで液晶層110のリタデーション(位相差値)を考慮すると、反射型の表示形態と透過型の表示形態では同じ電圧を電極から印加して配向制御した場合に、液晶のリタデーションの違いにより液晶の透過率の状態に違いを生じる。しかしながら、本実施形態の構造では反射表示を行う領域、即ち、図3に示す反射電極108を備えた領域である反射表示領域にアクリル樹脂からなる液晶層層厚制御層109を設けたため、その反射表示領域の液晶層110の厚さよりも、透過表示を行う透過表示領域の液晶層110の厚さが大きくなり、反射表示領域と透過表示領域での液晶層110の透過表示と反射表示に係る状態、すなわち各領域における液晶層110を光が通過する距離を最適化することができる。したがって、アクリル樹脂からなる液晶層層厚制御層109の形成により、反射表示領域と透過表示領域におけるリタデーションの最適化を図ることが可能とり、反射表示及び透過表示共に明るく高コントラストの表示が得られるようになる。
【0101】
位相差板301は正の一軸性(nx6>ny6≒nz6)を示し、XY面内の位相差値は約140nmであり、位相差板301のX軸は偏光板102の透過軸101と約45°の角度をなしている。また、位相差板114は二軸性(nx2>ny2>nz2)を示し、XY面内の位相差値は約140nmであり、位相差板114のX軸は偏光板116の透過軸117と約45°の角度をなしている。偏光板102の透過軸101と偏光板116の透過軸117は直交関係にあり、位相差板301のX軸と位相差板114のX軸も同様に直交関係にある。さらに、位相差板301の位相差値と位相差板114のXY面内の位相差値を等しくしておけば、非駆動時に偏光板102,116間の位相差値を0にすることができるので、理想的な黒表示を実現することができる。
【0102】
位相差板302は負の一軸性(nx5≒ny5>nz5)を示し、XY面内とZ軸方向の平均位相差値は約100nmである。位相差板114は二軸性(nx2>ny2>nz2)を示し、XY面内とZ軸方向の平均位相差値は約240nmである。ここで、液晶層110における反射領域の位相差値は200nm、透過領域の位相差値は380nmである。位相差板302を配置することで、反射表示を斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。位相差板302,114を配置することで、透過表示を斜め方向から観察したときに生じる液晶層110の位相差を補償することが可能となる。
【0103】
図9に、W3/Rt値と透過表示視角範囲との関係を示す。図9は、透過領域の位相差値Rtが380nmの場合である。Z軸方向の位相差の和W3は、第2位相差板114におけるXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と、第5位相差板302におけるXY面内とZ軸方向の位相差値(nx5−nz5)×d5と、第6位相差板301におけるXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6とを足し合わせたものである。また透過表示視角範囲は、30以上の高コントラストが得られる視角範囲を示している。ところで、図11に示すように、バックライトの高輝度(約1000cd/m以上)が得られるのは、極角が±35°の範囲である。一方、図9において、透過表示視角範囲が35°以上となるのは、0.5≦W3/Rt≦0.75の範囲である。そこで、0.5≦W3/Rt≦0.75となるように各位相差板を設定することにより、透過領域においてバックライトの高輝度範囲以上で高コントラストを確保することが可能となる。
【0104】
図10(b)に、W4/Rr値と反射表示視角範囲との関係を示す。図10(b)は、反射領域の位相差値Rrが200nmの場合である。Z軸方向の位相差の和W4は、第5位相差板302におけるXY面内とZ軸方向の位相差値(nx5−nz5)×d5と、第6位相差板301におけるXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6とを足し合わせたものである。また透過表示視角範囲は、10以上の高コントラストが得られる視角範囲を示している。ところで、従来のSTNモード液晶表示装置の視角範囲は30°程度である。一方、図10(b)において、透過表示視角範囲が30°以上となるのは、0.5≦W4/Rr≦0.75の範囲である。そこで、0.5≦W4/Rr≦0.75となるように各位相差板を設定することにより、反射領域において従来のSTNモード液晶表示装置の視角範囲以上で高コントラストを確保することが可能となる。
【0105】
以上述べたように、第3実施形態の液晶表示装置は高コントラストかつ広視野角の表示を実現することができる。
【0106】
[第4実施形態]
上記実施の形態の液晶表示装置を備えた電子機器の例について説明する。
【0107】
図4は携帯電話の一例を示した斜視図である。図4において、符号1000は携帯電話本体を示し、符号1001は上記第1〜3の実施形態の液晶表示装置を用いた液晶表示部を示している。
【0108】
図5は腕時計型電子機器の一例を示した斜視図である。図5において、符号1100は時計本体を示し、符号1101は上記第1〜3の実施形態の液晶表示装置を用いた液晶表示部を示している。
【0109】
図6はワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図6において、符号1200は情報処理装置、符号1202はキーボードなどの入力部、符号1204は情報処理装置本体、符号1206は上記第1〜3の実施形態の液晶表示装置を用いた液晶表示部を示している。
【0110】
このように図4から図6に示す電子機器は、上記第1〜3の実施形態の液晶表示装置を用いた液晶表示部を備えているので、様々な環境下で広視野角で高コントラストの表示部を有する電子機器を実現することができる。
【0111】
【発明の効果】
以上、詳細に説明したように、本発明によれば、反射型と透過型の両方の構造を具備させた半透過反射型の液晶表示装置において、広視野角かつ高コントラストな反射表示と透過表示を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る液晶表示装置の部分断面構造を模式的に示す図。
【図2】本発明の第2の実施形態に係る液晶表示装置の部分断面構造を模式的に示す図。
【図3】本発明の第3の実施形態に係る液晶表示装置の部分断面構造を模式的に示す図。
【図4】本発明に係る電子機器の例を示す斜視図。
【図5】本発明に係る電子機器の例を示す斜視図。
【図6】本発明に係る電子機器の例を示す斜視図。
【図7】本発明の第1の実施形態に係る液晶表示装置のW1/Rt値と透過表示視角範囲との関係を示す図。
【図8】本発明の第2の実施形態に係る液晶表示装置のW2/Rt値と透過表示視角範囲との関係を示す図。
【図9】本発明の第3の実施形態に係る液晶表示装置のW3/Rt値と透過表示視角範囲との関係を示す図。
【図10】本発明の液晶表示装置のW4/Rr値と反射表示視角範囲との関係を示す図。
【図11】バックライト輝度と極角との関係を示す図。
【図12】視角特性の補償作用の説明図。
【符号の説明】
101、117 偏光板透過軸
102、116 偏光板
103、114 二軸性位相差板
201、302 負の一軸性位相差板
202、301 正の一軸性位相差板
105 上側基板
106、112 透明電極
107 突起
108 反射電極
109 アクリル樹脂
110 液晶
111 電極の開口部
113 下側基板
1000 携帯電話
1100 腕時計型電子機器
1200 携帯型情報処理装置
1001、1101、1206 液晶表示部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device and an electronic apparatus, and particularly to a transflective liquid crystal display device having both a reflective type and a transmissive type structure to obtain a reflective display and a transmissive display with a wide viewing angle and high contrast. Related technology.
[0002]
[Prior art]
A transflective liquid crystal display device having both a reflective and a transmissive display mode switches the display mode between a reflective mode and a transmissive mode in accordance with the brightness of the surroundings, thereby reducing power consumption and reducing surroundings. Can be displayed clearly even when the image is dark.
[0003]
Such a transflective liquid crystal display device has a configuration in which a liquid crystal layer is sandwiched between a translucent upper substrate and a lower substrate, and has a light transmission opening in a metal film such as aluminum. A liquid crystal display device has been proposed in which the formed reflective film is provided on the inner surface of a lower substrate and the reflective film functions as a transflective film. In this case, in the reflection mode, external light incident from the upper substrate side is reflected by the reflective film disposed on the inner surface of the lower substrate after passing through the liquid crystal layer, passes through the liquid crystal layer again, and is provided for display from the upper substrate side. Is done. On the other hand, in the transmission mode, light from the backlight incident from the lower substrate side can be displayed outside from the upper substrate side after passing through the liquid crystal layer from the opening formed in the reflection film. Therefore, a region where the opening of the reflective film is formed is a transmissive display region, and a region where the opening of the reflective film is not formed is a reflective display region (for example, see Patent Document 1).
[0004]
As another conventional technique, a vertical alignment type liquid crystal display device having improved viewing angle characteristics of liquid crystal has been proposed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-11-242226 (page 61, FIG. 1)
[Patent Document 2]
JP-A-5-113561 (page 5, FIG. 1)
[0006]
[Problems to be solved by the invention]
The conventional transflective liquid crystal display device having both the reflective and transmissive display methods has a narrow viewing angle for both the reflective display and the transmissive display. This means that at the time of reflective display, the polarizer and retarder on the observer side (the upper side of the transflective liquid crystal display device) and the liquid crystal layer of the reflective display area through which incident light passes twice must be designed. At the time of transmissive display, a polarizing plate and a retardation plate on the observer side (upper side of the transflective liquid crystal display device), a polarizing plate and a retardation plate on the illumination means side (lower side of the transflective liquid crystal display device), and illumination means Therefore, it is necessary to design a liquid crystal layer in a transmission display area through which incident light passes once. Therefore, it is very difficult to design a wide viewing angle and a high contrast for both the reflective display and the transmissive display.
[0007]
In addition, electronic devices equipped with a conventional transflective liquid crystal display device have a problem that the viewing angle is narrow and the range in which display can be viewed is limited.
[0008]
Therefore, an object of the present invention is to provide a transflective display having a wide viewing angle and high contrast in a transflective liquid crystal display device having both a reflective type and a transmissive type structure.
[0009]
Another object of the present invention is to provide an electronic device equipped with a display device with high visibility.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a liquid crystal display device of the present invention is a liquid crystal display device having a liquid crystal layer sandwiched between a first substrate and a second substrate, and is used for reflection display within one dot. The liquid crystal layer includes a reflective display region and a transmissive display region used for transmissive display, wherein the liquid crystal layer is made of a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and A first retardation plate and a first polarizing plate are sequentially disposed outside the second retardation plate, and a second retardation plate, a second polarizing plate and illumination means are sequentially disposed outside the second substrate, and the first retardation plate is disposed. And at least one of the second retardation plate has an optically biaxial property.
[0011]
According to the above configuration, a high-contrast reflective display can be realized by the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer, and the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer can be realized. High-contrast transmissive display can be realized by the liquid crystal layer, the second retardation plate, and the second polarizing plate. Furthermore, since at least one of the first retardation plate and the second retardation plate is optically biaxial, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when observed from an oblique direction. It is possible to realize a transmissive display with a wide viewing angle.
[0012]
The liquid crystal display device according to the present invention is a liquid crystal display device in which a liquid crystal layer is sandwiched between a first substrate and a second substrate. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and is optically biaxially disposed outside the first substrate. A first retardation plate and a first polarizing plate having a property are sequentially arranged, and a second retardation plate, a second polarizing plate and an illuminating means having an optically biaxial property are sequentially arranged outside the second substrate. It is characterized by having been done.
[0013]
According to the above configuration, a high-contrast reflective display can be realized by the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer, and the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer can be realized. High-contrast transmissive display can be realized by the liquid crystal layer, the second retardation plate, and the second polarizing plate. Furthermore, since the first retardation plate and the second retardation plate are optically biaxial, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when viewed from an oblique direction, A reflective display and a transmissive display with a wide viewing angle can be simultaneously realized.
[0014]
The liquid crystal display device according to the present invention is a liquid crystal display device in which a liquid crystal layer is sandwiched between a first substrate and a second substrate. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and is optically biaxially disposed outside the first substrate. A first retardation plate having a property and a first polarizing plate are sequentially arranged, and a third retardation plate having an optically negative uniaxial property and an optically positive uniaxial property are provided outside the second substrate. A fourth retardation plate, a second polarizing plate, and an illuminating unit are sequentially arranged.
A liquid crystal display device having a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display within one dot Wherein the liquid crystal layer is composed of a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a first optically biaxial liquid crystal is provided outside the first substrate. A phase difference plate and a first polarizing plate are sequentially arranged, and a fourth phase difference plate having optically positive uniaxiality, a second polarizing plate, and illumination means are sequentially arranged outside the second substrate. Is also good.
[0015]
According to the above configuration, a high-contrast reflective display can be realized by the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer, and the first polarizing plate, the first retardation plate, and the vertically oriented liquid crystal layer can be realized. A high-contrast transmissive display can be realized by the liquid crystal layer, the fourth retardation plate having optically positive uniaxiality, and the second polarizing plate. Furthermore, since the first retardation plate has optical biaxiality, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when viewed from an oblique direction, and to provide a wide viewing angle reflective type. Display can be realized. Further, in addition to the biaxial first retardation plate, an optically negative uniaxial third retardation plate is arranged between the optically positive uniaxial fourth retardation plate and the liquid crystal layer. By doing so, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when observed from an oblique direction, and it is possible to realize a transmissive display with a wide viewing angle. In addition, the function of the third retardation plate having optically negative uniaxiality can be added to the first retardation plate having optically biaxiality.
[0016]
The liquid crystal display device according to the present invention is a liquid crystal display device in which a liquid crystal layer is sandwiched between a first substrate and a second substrate. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and an optically negative liquid crystal layer outside the first substrate. A fifth retardation plate having uniaxiality, a sixth retardation plate having optically positive uniaxiality, and a first polarizing plate are sequentially arranged, and optically biaxial outside the second substrate. A second retardation plate, a second polarizing plate, and an illuminating unit are sequentially arranged.
A liquid crystal display device having a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display within one dot Wherein the liquid crystal layer is composed of a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a sixth layer having an optically positive uniaxial property outside the first substrate. A structure in which a phase difference plate and a first polarizing plate are sequentially arranged, and a second phase difference plate, a second polarizing plate and an illuminating means having optical biaxiality are sequentially arranged outside the second substrate. Is also good.
[0017]
According to the above configuration, a high-contrast reflective display can be realized by the first polarizing plate, the sixth retardation plate having optically positive uniaxiality, and the vertically aligned liquid crystal layer. A high-contrast transmissive display can be realized by a sixth retardation plate having a positive uniaxial characteristic, a vertically aligned liquid crystal layer, a second retardation plate having an optically biaxial characteristic, and a second polarizing plate. . Further, by disposing a fifth optical retardation plate having an optically negative uniaxial property between the sixth optical retardation film having an optically positive uniaxial property and the liquid crystal layer, the vertical phase when observed from an oblique direction is obtained. The viewing angle characteristics of the aligned liquid crystal layer can be compensated, and a wide viewing angle reflective display can be realized. Further, in addition to the optically negative uniaxial fifth retardation plate, an optically biaxial second retardation plate is disposed between the liquid crystal layer and the second polarizer, so that observation can be performed from an oblique direction. This makes it possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer, thereby realizing a transmissive display with a wide viewing angle.
[0018]
The liquid crystal display of the present invention is characterized in that the liquid crystal layer thickness in the reflective display area is smaller than the liquid crystal layer thickness in the transmissive area.
[0019]
According to the above configuration, it is possible to realize a bright and high-contrast display for both the reflective display and the transmissive display. In a transflective liquid crystal display device, for example, if the thickness of the liquid crystal layer is d, the anisotropy of the refractive index of the liquid crystal is △ n, and the retardation (phase difference) of the liquid crystal expressed as an integrated value of these is △ nd, The retardation △ nd of the liquid crystal in the portion where the display is performed is indicated by 2 × △ nd because the incident light reaches the observer after passing through the liquid crystal layer twice, but the retardation 液晶 nd of the liquid crystal in the portion where the transmission display is performed △ nd Is 1 × △ nd because the light from the illumination means (backlight) passes through the liquid crystal layer only once. Since the thickness of the liquid crystal layer in the reflective display area is smaller than the thickness of the liquid crystal layer in the transmissive area, Δnd can be optimized in both the reflective area and the transmissive area. can do.
[0020]
In the liquid crystal display device according to the present invention, the first retardation plate and the second retardation plate each have a refractive index in the thickness direction as a Z-axis and nz1, nz2 in a plane perpendicular to the Z-axis. When the direction is the X axis, the refractive index in the axial direction is nx1, nx2, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny2, and the thickness in the Z axis direction is d1, d2. Then, nx1>ny1> nz1, nx2>ny2> nz2, and the phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction, and the second The sum W1 of the retardation value ((nx2 + ny2) / 2-nz2) × d2 of the retardation plate is 0.5 × Rt ≦ W1 ≦ 0.75 ×, where Rt is the retardation value of the liquid crystal layer in the transmission region. Rt.
[0021]
According to the above configuration, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when observed from an oblique direction, and it is possible to realize a transmissive display with a wide viewing angle. The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction and the phase difference value ((nx2 + ny2) in the XY plane of the second retardation plate in the Z-axis direction) By setting the ratio of (−2−nz2) × d2 within the range of the present invention, the viewing angle characteristics of the liquid crystal layer in which the transmission region is vertically aligned can be optically compensated. The first retardation plate and the second retardation plate may be configured using a plurality of optical films. In this case, the sum of a plurality of films may satisfy the range of the present invention. Here, the retardation value Rt of the liquid crystal layer is represented by an integrated value Δn × d of these, where d is the thickness of the liquid crystal layer and Δn is the refractive index anisotropy of the liquid crystal.
[0022]
In the liquid crystal display device according to the present invention, the first retardation plate and the third retardation plate each have a refractive index in the axial direction of nz1, nz3, and a thickness in a plane perpendicular to the Z axis. When the direction is the X axis, the refractive index in the axial direction is nx1, nx3, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny3, and the thickness in the Z axis direction is d1, d3. Then, nx1>ny1> nz1, nx3 ≒ ny3> nz3, and the phase difference value ((nx1 + ny1) / 2−nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction, and the third The sum W2 of the retardation value of the retardation plate ((nx3 + ny3) / 2-nz3) × d3 is 0.5 × Rt ≦ W2 ≦ 0.75 ×, where Rt is the retardation value of the liquid crystal layer in the transmission region. Rt.
Further, in the liquid crystal display device of the present invention, the first retardation plate, the third retardation plate, and the fourth retardation plate each have a refractive index in the thickness direction thereof as nz1, nz3, nz4 in the axial direction with the Z axis. The refractive index in the axial direction is nx1, nx3, nx4 in one direction in a plane perpendicular to the Z axis, and the refractive index in the axial direction is ny1, in the direction perpendicular to the Z axis and the X axis as the Y axis. ny3, ny4, when the thickness in the Z-axis direction is d1, d3, d4, nx1>ny1> nz1, nx3 ≒ ny3> nz3, nx4> ny4 ≒ nz4, and the XY plane of the first phase difference plate The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the Z-axis direction, the phase difference value ((nx3 + ny3) / 2-nz3) × d3 of the third phase difference plate, and the phase difference value of the fourth phase difference plate The phase difference value between the XY plane and the Z-axis direction ((nx4 + The sum W2 of (ny4) / 2-nz4) × d4 is 0.5 × Rt ≦ W2 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. .
Further, in the liquid crystal display device of the present invention, the first retardation plate and the fourth retardation plate each have a refractive index in the thickness direction thereof as a Z-axis and a refractive index in the axial direction of nz1, nz4, in a plane perpendicular to the Z-axis. With one direction as the X axis, the refractive index in the axial direction is nx1, nx4, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny4, and the thickness in the Z axis direction is d1, d4. Where nx1>ny1> nz1, nx4> ny4 ≒ nz4, and the phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction. The sum W2 of the phase difference value ((nx4 + ny4) / 2-nz4) × d4 in the XY plane of the 4 phase difference plate and the Z axis direction is 0.Rt when the phase difference value of the liquid crystal layer in the transmission region is Rt. 5 × Rt ≦ W2 ≦ 0.75 × Rt .
[0023]
According to the above configuration, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when observed from an oblique direction, and it is possible to realize a transmissive display with a wide viewing angle. The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction and the phase difference value ((nx3 + ny3) in the XY plane of the third retardation plate in the Z-axis direction) By setting the ratio of (−2−nz3) × d3 within the range of the present invention, the viewing angle characteristics of the liquid crystal layer in which the transmission region is vertically aligned can be optically compensated. Furthermore, the viewing angle characteristic of the liquid crystal layer in which the transmission region is vertically aligned by adding the phase difference value ((nx4 + ny4) / 2-nz4) × d4 in the XY plane and the Z-axis direction of the fourth retardation plate to the range of the present invention. Can be optically compensated. By setting the retardation value of the first retardation plate and the retardation value of the fourth retardation plate within the range of the present invention, it is also possible to optically compensate the viewing angle characteristics of the liquid crystal layer vertically aligned in the transmission region. is there. The first retardation plate may be configured using a plurality of optical films. The third retardation plate may be configured using a plurality of optical films. In these cases, the sum of a plurality of films may satisfy the range of the present invention. Here, the retardation value Rt of the liquid crystal layer is represented by an integrated value Δn × d of these, where d is the thickness of the liquid crystal layer and Δn is the refractive index anisotropy of the liquid crystal.
[0024]
In the liquid crystal display device according to the present invention, the second retardation plate and the fifth retardation plate each have a refractive index in the thickness direction thereof as a Z-axis and a refractive index in the axial direction of nz2, nz5, and an in-plane perpendicular to the Z-axis. When the direction is the X axis, the refractive index in the axial direction is nx2, nx5, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny2, ny5, and the thickness in the Z axis direction is d2, d5. Then, nx2>ny2> nz2, nx5 ≒ ny5> nz5, and the phase difference value ((nx2 + ny2) / 2-nz2) × d2 in the XY plane of the second phase difference plate and in the Z-axis direction is obtained. The sum W3 of the retardation value of the retardation plate ((nx5 + ny5) / 2-nz5) × d5 is 0.5 × Rt ≦ W3 ≦ 0.75 ×, where Rt is the retardation value of the liquid crystal layer in the transmission region. Rt.
Further, in the liquid crystal display device according to the present invention, the second retardation plate, the fifth retardation plate, and the sixth retardation plate each have a refractive index in the thickness direction of nz2, nz5, nz6 in the thickness direction as the Z axis. The refractive index in the axial direction is nx2, nx5, nx6 in one direction in a plane perpendicular to the Z axis, and the refractive index in the axial direction is ny2 in the direction perpendicular to the Z axis and the X axis as the Y axis. ny5, ny6, when the thickness in the Z-axis direction is d2, d5, d6, nx2>ny2> nz2, nx5 ≒ ny5> nz5, nx6> ny6 ≒ nz6, and the XY plane of the second retardation plate The phase difference value ((nx2 + ny2) / 2-nz2) × d2 in the Z-axis direction, the phase difference value ((nx5 + ny5) / 2-nz5) × d5 of the fifth phase difference plate, and the phase difference value of the sixth phase difference plate The phase difference value between the XY plane and the Z-axis direction ((nx6 + The sum W3 of (ny6) / 2-nz6) × d6 is 0.5 × Rt ≦ W3 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. .
Further, in the liquid crystal display device according to the present invention, the second retardation plate and the sixth retardation plate may have a refractive index in the thickness direction thereof as a Z-axis and nz2, nz6 in a plane perpendicular to the Z-axis. With one direction being the X axis, the refractive index in the axial direction is nx2, nx6, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny2, ny6, and the thickness in the Z axis direction is d2, d6. Nx2>ny2> nz2, nx6> ny6 ≒ nz6, and the phase difference value ((nx2 + ny2) / 2−nz2) × d2 in the XY plane of the second retardation plate and in the Z-axis direction. The sum W3 of the retardation value ((nx6 + ny6) / 2-nz6) × d6 in the XY plane of the 6-phase retarder and in the Z-axis direction is 0.Rt when the retardation value of the liquid crystal layer in the transmission region is Rt. 5 × Rt ≦ W3 ≦ 0.75 × Rt .
[0025]
According to the above configuration, it is possible to compensate for the viewing angle characteristics of the vertically aligned liquid crystal layer when observed from an oblique direction, and it is possible to realize a transmissive display with a wide viewing angle. The phase difference value ((nx2 + ny2) / 2-nz2) × d2 in the XY plane of the second retardation plate and in the Z-axis direction and the phase difference value ((nx5 + ny5) in the XY plane of the fifth retardation plate in the Z-axis direction) By setting the value of (−2 / nz5) × d5 within the range of the present invention, the viewing angle characteristics of the liquid crystal layer in which the transmission region is vertically aligned can be optically compensated. Furthermore, the viewing angle characteristic of the liquid crystal layer in which the transmission region is vertically aligned is obtained by adding the retardation value ((nx6 + ny6) / 2-nz6) × d6 in the XY plane and the Z-axis direction of the sixth retardation plate to the range of the present invention. Can be optically compensated. By setting the retardation value of the second retardation plate and the retardation value of the sixth retardation plate within the range of the present invention, it is also possible to optically compensate the viewing angle characteristics of the liquid crystal layer vertically aligned in the transmission region. is there. The second retardation plate may be configured using a plurality of optical films. The fifth retardation plate may be configured using a plurality of optical films. In this case, the sum of a plurality of films may satisfy the range of the present invention. Here, the retardation value Rt of the liquid crystal layer is represented by an integrated value Δn × d of these, where d is the thickness of the liquid crystal layer and Δn is the refractive index anisotropy of the liquid crystal.
[0026]
In the liquid crystal display device of the present invention, the first retardation plate and the second retardation plate each have a refractive index in the axial direction of nx1, with one direction in a plane perpendicular to the thickness direction (Z axis) as the X axis. nx2, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny2 (nx1> ny1, nx2> ny2), and the thickness in the Z axis direction is d1, d2. The X-axis of one retardation plate and the X-axis of the second retardation plate are orthogonal to each other, and (nx1-ny1) × d1 = (nx2-ny2) × d2.
[0027]
According to the above configuration, the retardation values of the first retardation plate and the second retardation plate in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first polarizing plate and the second polarizing plate can be canceled. And black display (when the transmission axis of the first polarizing plate is orthogonal to the transmission axis of the second polarizing plate) and white display (where the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are parallel to each other). Time) can be realized.
[0028]
In the liquid crystal display device of the present invention, the first retardation plate and the fourth retardation plate each have a refractive index in the axial direction of nx1, with one direction in a plane perpendicular to the thickness direction (Z axis) as the X axis. nx4, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny4 (nx1> ny1, nx4> ny4), and the thickness in the Z axis direction is d1, d4. The X axis of one phase difference plate and the X axis of the fourth phase difference plate are orthogonal to each other, and (nx1-ny1) × d1 = (nx4-ny4) × d4.
[0029]
According to the above configuration, the phase difference values of the first and fourth retardation plates in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first and second polarizing plates can be canceled. And black display (when the transmission axis of the first polarizing plate is orthogonal to the transmission axis of the second polarizing plate) and white display (where the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are parallel to each other). Time) can be realized.
[0030]
In the liquid crystal display device of the present invention, the second retardation plate and the sixth retardation plate have a refractive index in the axial direction of nx2 in one direction in a plane perpendicular to a thickness direction (Z axis) as an X axis. nx6, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny2, ny6 (nx2> ny2, nx6> ny6), and the thickness in the Z axis direction is d2, d6. The X axis of the two phase difference plates and the X axis of the sixth phase difference plate are orthogonal to each other, and (nx2-ny2) * d2 = (nx6-ny6) * d6.
[0031]
According to the above configuration, the retardation values of the second retardation plate and the sixth retardation plate in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first polarizing plate and the second polarizing plate can be canceled out. And black display (when the transmission axis of the first polarizing plate is orthogonal to the transmission axis of the second polarizing plate) and white display (where the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are parallel to each other). Time) can be realized.
[0032]
The liquid crystal display device according to the present invention is characterized in that the first retardation plate and the second retardation plate satisfy 100 nm ≦ (nx1-ny1) × d1 = (nx2-ny2) × d2 ≦ 160 nm.
[0033]
According to the above configuration, circular or elliptically polarized light can be created by the first polarizing plate and the first phase difference plate, and circular or elliptically polarized light can be created by the second polarizing plate and the second phase difference plate. Thus, switching of the liquid crystal display device can be performed using circularly or elliptically polarized light, and high-contrast reflective display and transmissive display can be realized.
[0034]
In the liquid crystal display device according to the present invention, the first retardation plate and the fourth retardation plate satisfy 100 nm ≦ (nx1-ny1) × d1 = (nx4-ny4) × d4 ≦ 160 nm.
[0035]
According to the above configuration, circular or elliptically polarized light can be created by the first polarizing plate and the first phase difference plate, and circular or elliptically polarized light can be created by the second polarizing plate and the fourth phase difference plate. Thus, switching of the liquid crystal display device can be performed using circularly or elliptically polarized light, and high-contrast reflective display and transmissive display can be realized.
[0036]
In the liquid crystal display device according to the present invention, the second retardation plate and the sixth retardation plate satisfy 100 nm ≦ (nx2-ny2) × d2 = (nx6-ny6) × d6 ≦ 160 nm.
[0037]
According to the above configuration, circular or elliptically polarized light can be produced by the first polarizing plate and the sixth retardation plate, and circular or elliptically polarized light can be produced by the second polarizing plate and the second retardation plate. Thus, switching of the liquid crystal display device can be performed using circularly or elliptically polarized light, and high-contrast reflective display and transmissive display can be realized.
[0038]
In the liquid crystal display device of the present invention, at least one of the first retardation plate, the second retardation plate, the fourth retardation plate, and the sixth retardation plate has an in-plane retardation value R at 450 nm. The ratio R (450) / R (590) of (450) and the in-plane retardation value R (590) at 590 nm is smaller than 1.
[0039]
According to the above configuration, by combining the retardation plate with the first polarizing plate or the second polarizing plate, it is possible to realize broadband circularly polarized light with small chromatic dispersion, so that high contrast and unnecessary coloring are exhibited. Reflection display and transmission display can be realized.
[0040]
In the liquid crystal display device according to the present invention, the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are in an orthogonal relationship.
[0041]
According to the above configuration, the most excellent black display which can be realized by the first polarizing plate and the second polarizing plate can be realized. Thereby, high-contrast transmissive display can be realized.
[0042]
In the liquid crystal display device according to the present invention, the phase difference value of the first phase difference plate in the XY plane and the Z-axis direction ((nx1 + ny1) / 2-nz1) × d1 and the phase difference value of the second phase difference plate (( nx2 + ny2) / 2-nz2) × d2 are substantially equal.
[0043]
According to the above configuration, the viewing angle is compensated when the liquid crystal layer in the reflection region is observed from an oblique direction by the first retardation plate having optical biaxiality, and the first retardation having optical biaxiality is provided. The viewing angle can be compensated when the liquid crystal layer in the transmission region is observed from an oblique direction by the plate and the second retardation plate. Since light passes through the liquid crystal layer twice in the reflective region and passes through the liquid crystal layer only once in the transmissive region, the thickness of the liquid crystal layer in the transmissive region is approximately twice the thickness of the reflective region. For this reason, it is necessary to make the phase difference value of the first phase difference plate and the phase difference value of the second phase difference plate in the XY plane and the Z-axis direction substantially equal.
[0044]
In the liquid crystal display device of the present invention, the phase difference value of the first phase difference plate in the XY plane and the Z-axis direction ((nx1 + ny1) / 2-nz1) × d1 and the phase difference value of the third phase difference plate (( nx3 + ny3) / 2-nz3) × d3 are substantially equal.
[0045]
According to the above configuration, the viewing angle is compensated when the liquid crystal layer in the reflection region is observed from an oblique direction by the first retardation plate having optical biaxiality, and the first retardation having optical biaxiality is provided. The viewing angle can be compensated when the liquid crystal layer in the transmission region is observed from an oblique direction by the third retardation plate having optically negative uniaxiality with the plate. Since light passes through the liquid crystal layer twice in the reflective region and passes through the liquid crystal layer only once in the transmissive region, the thickness of the liquid crystal layer in the transmissive region is approximately twice the thickness of the reflective region. For this reason, it is necessary to make the phase difference values in the XY plane and the Z-axis direction of the first retardation plate and the phase difference values in the XY plane and the Z-axis direction of the third retardation plate approximately equal.
[0046]
In the liquid crystal display device of the present invention, the phase difference value ((nx5 + ny5) / 2-nz5) × d5 in the XY plane and the Z-axis direction of the fifth phase difference plate and the phase difference value of the second phase difference plate (( nx2 + ny2) / 2-nz2) × d2 are substantially equal.
[0047]
According to the above configuration, the viewing angle compensation when observing the liquid crystal layer in the reflection region from an oblique direction is performed by the fifth retardation plate having an optically negative uniaxial property, and the fifth retardation plate having an optically negative uniaxial property is obtained. The viewing angle compensation when observing the liquid crystal layer in the transmission region from an oblique direction can be performed by the second retardation plate having optical biaxiality with the retardation plate. Since light passes through the liquid crystal layer twice in the reflective region and passes through the liquid crystal layer only once in the transmissive region, the thickness of the liquid crystal layer in the transmissive region is approximately twice the thickness of the reflective region. For this reason, it is necessary to make the phase difference values in the XY plane and the Z-axis direction of the fifth retardation plate and the phase difference values in the XY plane and the Z-axis direction of the second retardation plate approximately equal.
[0048]
In the liquid crystal display device according to the present invention, the first retardation plate may have a thickness direction as a Z axis, a refractive index in the axial direction of the first retardation plate as nz1, and one direction in a plane perpendicular to the Z axis as an X axis. When the refractive index is nx1, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, and the thickness in the Z axis direction is d1, nx1>ny1> nz1. The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the phase difference plate and in the Z-axis direction is 0.5 × Rr ≦ (nx1 + ny1) where Rr is the phase difference value of the liquid crystal layer in the reflection region. ) / 2−nz1) × d1 ≦ 0.75 × Rr.
[0049]
According to the above configuration, it is possible to perform viewing angle compensation when the liquid crystal layer in the reflection region is observed from an oblique direction by the first retardation plate having optical biaxiality.
[0050]
In the liquid crystal display device according to the present invention, the fifth retardation plate may have a refractive index in the thickness direction as the Z axis, a refractive index in the axial direction of nz5, and a direction in a plane perpendicular to the Z axis as the X axis. Assuming that the refractive index is nx5, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny5, and the thickness in the Z axis direction is d5, nx5 ≒ ny5> nz5. The phase difference value ((nx5 + ny5) / 2-nz5) × d5 in the XY plane of the phase difference plate and in the Z-axis direction is 0.5 × Rr ≦ (nx5 + ny5), where Rr is the phase difference value of the liquid crystal layer in the reflection region. ) / 2-nz5) × d5 ≦ 0.75 × Rr.
Further, in the liquid crystal display device according to the present invention, the fifth retardation plate and the sixth retardation plate have a refractive index in the thickness direction thereof as a Z-axis and nz5, nz6, in a plane perpendicular to the Z-axis. With one direction as the X axis, the refractive index in the axial direction is nx5, nx6, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny5, ny6, and the thickness in the Z axis direction is d5, d6. When nx5 ≒ ny5> nz5, nx6> ny6 ≒ nz6, the phase difference value in the XY plane of the fifth retardation plate and the Z-axis direction ((nx5 + ny5) / 2−nz5) × d5, The sum W4 of the retardation value ((nx6 + ny6) / 2-nz6) × d6 in the XY plane of the sixth retardation plate and in the Z-axis direction is 0 when the retardation value of the liquid crystal layer in the reflection region is Rr. 0.5 × Rr ≦ W4 ≦ 0.75 × Rr That.
[0051]
According to the above configuration, it is possible to perform viewing angle compensation when the liquid crystal layer in the reflection region is observed from an oblique direction by the fifth retardation plate having optically negative uniaxiality. Further, by adding a sixth retardation plate having optically positive uniaxiality, it is possible to perform viewing angle compensation when the liquid crystal layer in the reflection region is observed from an oblique direction.
[0052]
The liquid crystal display device according to the present invention is characterized in that a reflective layer capable of reflecting incident light is formed in the reflective display area.
[0053]
According to the above configuration, since external light can be reflected by the reflective layer, a reflective display can be realized.
[0054]
The liquid crystal display device according to the present invention is characterized in that the reflection layer has an uneven shape capable of scattering and reflecting incident light.
[0055]
According to the above configuration, the incident light is scattered and reflected by the reflection layer having the uneven shape, so that the reflective display can be observed at a wide viewing angle.
[0056]
In the liquid crystal display device of the present invention, the X-axis directions of the first retardation plate and the second retardation plate are orthogonal to each other, and the X-axis direction of the first retardation plate and the second retardation plate are mutually orthogonal. Is characterized by making an angle of about 45 ° with the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate.
[0057]
According to the above configuration, the retardation values of the first retardation plate and the second retardation plate in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first polarizing plate and the second polarizing plate can be canceled. , It is possible to realize the limit black display that can be realized. Further, circularly polarized light can be produced by the first polarizing plate and the first retardation plate, and the second polarizing plate and the second retardation plate. As a result, switching of the liquid crystal display device using circularly polarized light becomes possible, and bright and high-contrast reflective display and transmissive display can be realized.
[0058]
In the liquid crystal display device of the present invention, the X-axis directions of the first and fourth phase difference plates are orthogonal to each other, and the X-axis direction of the first and fourth phase difference plates is The transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are at an angle of about 45 °.
[0059]
According to the above configuration, the phase difference values of the first and fourth retardation plates in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first and second polarizing plates can be canceled. , It is possible to realize the limit black display that can be realized. In addition, circularly polarized light can be produced by the first polarizing plate and the first retardation plate, and the second polarizing plate and the fourth retardation plate. As a result, switching of the liquid crystal display device using circularly polarized light becomes possible, and bright and high-contrast reflective display and transmissive display can be realized.
[0060]
In the liquid crystal display device of the present invention, the X-axis directions of the second retardation plate and the sixth retardation plate are orthogonal to each other, and the X-axis direction of the second retardation plate and the sixth retardation plate are mutually orthogonal. Is characterized by making an angle of about 45 ° with the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate.
[0061]
According to the above configuration, the retardation values of the second retardation plate and the sixth retardation plate in the panel plane (XY plane) of the liquid crystal display device can be canceled each other, and the first polarizing plate and the second polarizing plate can be canceled out. , It is possible to realize the limit black display that can be realized. Further, circularly polarized light can be produced by the first and sixth retardation plates and the second and second retardation plates. As a result, switching of the liquid crystal display device using circularly polarized light becomes possible, and bright and high-contrast reflective display and transmissive display can be realized.
[0062]
The liquid crystal display device of the present invention is characterized in that a liquid crystal driving electrode having an opening is formed on an inner surface of at least one of the first substrate and the second substrate on a liquid crystal layer side.
[0063]
According to the above configuration, since an oblique electric field is generated in the liquid crystal layer by the opening of the electrode for driving the liquid crystal, a plurality of director directions of the liquid crystal molecules can be created within one dot when a voltage is applied. Thereby, a transflective liquid crystal display device having a wide viewing angle can be realized.
[0064]
The liquid crystal display device according to the present invention is characterized in that a projection is formed on an electrode formed on an inner surface of at least one of the first substrate and the second substrate on a liquid crystal layer side.
[0065]
According to the above configuration, the direction in which the liquid crystal molecules fall can be controlled by the protrusions formed on the electrodes, so that a plurality of director directions of the liquid crystal molecules when a voltage is applied can be created within one dot. Thereby, a transflective liquid crystal display device having a wide viewing angle can be realized.
[0066]
The liquid crystal display device according to the present invention is characterized in that when driving the liquid crystal by the electrode, there are at least two or more liquid crystal directors in one dot.
[0067]
According to the above configuration, a transflective liquid crystal display device having a wide viewing angle can be realized.
[0068]
According to another aspect of the invention, an electronic apparatus includes the above-described transflective liquid crystal display device.
[0069]
According to the above configuration, it is possible to realize an electronic device equipped with a display device with high visibility.
[0070]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0071]
[First Embodiment]
FIG. 1 shows a first embodiment in which the structure of the present invention is applied to an active matrix type liquid crystal display device. The liquid crystal display device of the first embodiment is opposed to the liquid crystal display device of the first embodiment in the vertical direction as shown in the sectional structure of FIG. It has a basic structure in which a liquid crystal layer 110 is sandwiched between substrates 105 and 113 made of transparent glass or the like. Although not shown in the drawings, a sealing material is actually interposed between the substrates 105 and 113, and the liquid crystal layer 110 is surrounded by the substrates 105 and 113 and the sealing material. It is sandwiched between the substrates 105 and 113 in a sealed state. Further, a backlight provided with a light source, a light guide plate, and the like is provided further below the lower substrate 113, but is omitted in FIG.
[0072]
A retardation plate 103 and a polarizing plate 102 are arranged on the upper surface side (observer side) of the upper substrate 105, and a retardation plate 114 and a polarizing plate 116 are also arranged on the lower surface side of the lower substrate 113. Have been. The polarizing plates 102 and 116 allow only one-way linearly polarized light to pass through the external light incident from the upper surface side and the backlight light incident from the lower surface side. Is converted into circularly polarized light (including elliptically polarized light). Therefore, the polarizing plates 102 and 116 and the phase difference plates 103 and 114 function as circularly polarized light incidence means. In the present embodiment, the side including the backlight is defined as the lower side, and the side on which one of the external light is incident is defined as the upper side, and the substrate 105 may be referred to as an upper substrate and the substrate 113 may be referred to as a lower substrate.
[0073]
On the other hand, on the liquid crystal layer 110 side of the upper substrate 105, a transparent electrode 106 made of ITO (Indium-Tin-Oxide) or the like is formed, and on the liquid crystal layer 110 side of the transparent electrode 106, the transparent electrode 106 is covered. A vertical alignment film (omitted in the figure) is formed. On the liquid crystal layer 110 side of the lower substrate 113, a reflective electrode 108 also serving as a reflective layer and a transparent electrode 112 are formed, and the reflective electrode section 108 functions as a reflective display area, and the transparent electrode section 112 functions as a transmissive display area. . The reflective electrode 108 is formed of a metal material having high light reflectivity, such as Al or Ag, having a high reflectivity, in a rectangular frame shape in plan view, and has a vertical alignment film (not shown in the drawing) on its liquid crystal 110 side. ) Is formed.
[0074]
Further, the resin 109 such as acrylic makes the unevenness of the reflective electrode 108 and the liquid crystal thickness of the reflective display area smaller than the liquid crystal thickness of the transmissive display area. Such a structure can be formed by performing a photolithography process. In the present embodiment, the reflective layer in the reflective display area also serves as the liquid crystal drive electrode, but may be provided separately. After applying a resist on a glass substrate serving as the lower substrate 113, an etching process using hydrofluoric acid is performed, and after the etching process, a photolithography process of removing the resist is performed to form fine unevenness, and a reflective layer is formed thereon. Can be formed to form an uneven reflection layer.
[0075]
A dielectric protrusion 107 made of acrylic resin is formed on the transparent electrode 106 formed on the inner surface of the upper substrate 105, and is not orthogonal to the surfaces of the substrates 105 and 113 together with the opening 111 of the transparent electrode 112 formed on the inner surface of the lower substrate 113. An oblique electric field is applied to the liquid crystal layer 110. By forming the dielectric protrusion 107 and the opening 111 of the transparent electrode 112, when a voltage is applied to the electrodes 106, 108, and 112, a plurality of directors of the liquid crystal layer 110 can be created within one dot, and there is no viewing angle dependency. A liquid crystal display device can be realized.
[0076]
Although omitted in FIG. 1, a thin film transistor as a switching element for driving the electrodes 108 and 112 is formed in a corner portion around each dot, and a gate line and a source line for supplying power to the thin film transistor are further formed. Are wired. Note that a two-terminal linear element or a switching element having another structure can be used as a switching element in addition to the thin film transistor.
[0077]
Next, the operation and effect of the transflective liquid crystal display device having the structure shown in FIG. 1 will be described. When performing reflective display, light incident from the outside of the device is used, and the incident light is guided to the liquid crystal layer 110 side via the polarizing plate 102, the phase difference plate 103, the upper substrate 105, and the electrode 106.
[0078]
Here, in the reflective display area, the incident light is reflected by the reflective electrode 108 after passing through the liquid crystal layer 110. Then, the reflected light passes through the liquid crystal layer 110 again, and then returns to the outside of the device via the electrode 106, the upper substrate 105, the retardation plate 103, and the polarizing plate 102, and reaches the observer to be reflected. The display is to be performed. In such a reflective display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 108, the polarization state of light passing through the liquid crystal layer 110 is changed to perform bright and dark display.
[0079]
In the case of performing transmissive display, light emitted from a backlight (illuminating means) enters through a polarizing plate 116, a phase difference plate 114, and a substrate 113. In this case, in the transmissive display area, light incident from the substrate 113 is transmitted through the electrode 112, the liquid crystal layer 110, the electrode 106, the substrate 105, the retardation plate 103, and the polarizing plate 102 in this order to perform transmissive display. ing. Also in such a transmissive display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 112, it is possible to change the polarization state of light passing through the liquid crystal layer 110 to perform bright and dark display.
[0080]
In these display modes, in a reflective display mode, incident light passes through the liquid crystal layer 110 twice, but with respect to transmitted light, light emitted from a backlight (illuminating means) passes through the liquid crystal layer 110 only once. do not do. Here, considering the retardation (phase difference value) of the liquid crystal layer 110, when the same voltage is applied from an electrode to control the alignment in the reflective display mode and the transmissive display mode, the difference in the retardation of the liquid crystal due to the difference in the retardation of the liquid crystal. A difference occurs in the state of transmittance. However, in the structure of the present embodiment, since the liquid crystal layer thickness control layer 109 made of acrylic resin is provided in a region for performing reflective display, that is, a reflective display region provided with the reflective electrode 108 shown in FIG. The thickness of the liquid crystal layer 110 in the transmissive display area for performing transmissive display is larger than the thickness of the liquid crystal layer 110 in the display area, and the state relating to the transmissive display and the reflective display of the liquid crystal layer 110 in the reflective display area and the transmissive display area. That is, it is possible to optimize the distance that light passes through the liquid crystal layer 110 in each region. Therefore, by forming the liquid crystal layer thickness control layer 109 made of an acrylic resin, it is possible to optimize the retardation in the reflective display region and the transmissive display region, and to obtain a bright and high-contrast display in both the reflective display and the transmissive display. Become like
[0081]
The phase difference plate 103 exhibits biaxiality (nx1>ny1> nz1), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 103 is about 45 ° with the transmission axis 101 of the polarizing plate 102. At an angle. Further, the phase difference plate 114 shows biaxiality (nx2>ny2> nz2), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 114 is approximately equal to the transmission axis 117 of the polarizing plate 116. At an angle of 45 °. The transmission axis 101 of the polarizing plate 102 and the transmission axis 117 of the polarizing plate 116 have an orthogonal relationship, and the X axis of the phase difference plate 103 and the X axis of the phase difference plate 114 also have an orthogonal relationship. Furthermore, if the phase difference value of the phase difference plate 103 and the phase difference value of the phase difference plate 114 are made equal, the phase difference value between the polarizing plates 102 and 116 can be set to 0 during non-driving. Black display can be realized.
[0082]
The retardation plate 103 exhibits biaxiality (nx1>ny1> nz1), and has an average phase difference of about 120 nm in the XY plane and the Z-axis direction. Further, the retardation plate 114 exhibits biaxiality (nx2>ny2> nz2), and has an average phase difference of about 120 nm in the XY plane and the Z-axis direction. Here, the phase difference value in the transmission region of the liquid crystal layer 110 is 380 nm, and the phase difference value in the reflection region is 200 nm. By arranging the phase difference plates 103 and 114, it is possible to compensate for the phase difference of the liquid crystal layer 110 that occurs when observing from an oblique direction.
[0083]
FIG. 12 is an explanatory diagram of the compensating action of the viewing angle characteristic. The light 10 emitted from the backlight (not shown) in an oblique direction reaches the observer (not shown) through the second retardation plate 114, the liquid crystal layer 110, and the first retardation plate 103. Since the liquid crystal molecules 110 a are vertically aligned in the liquid crystal layer 110, the phase difference of the liquid crystal layer 110 in the XY plane is almost zero. The sum of the phase differences of the first and second retardation plates 103 and 114 in the XY plane is substantially zero as described above. Therefore, the light 10 does not cause a phase difference in the vertical direction. However, when light enters from an oblique direction, a phase difference occurs in the Z-axis direction. Therefore, by arranging the phase difference plates 103 and 114, it is possible to compensate for the phase difference of the liquid crystal layer 110 generated when observing from an oblique direction.
[0084]
FIG. 7 shows the relationship between the W1 / Rt value and the transmission display viewing angle range. 7A shows a case where the phase difference value Rt of the transmission region is 300 nm, and FIG. 7B shows a case where the phase difference value Rt of the transmission region is 500 nm. The sum W1 of the phase difference in the Z-axis direction is the phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first phase difference plate 103 and in the Z-axis direction, and XY in the second phase difference plate 114. The sum of the in-plane phase difference value in the Z-axis direction and ((nx2 + ny2) / 2-nz2) × d2. The transmission display viewing angle range indicates a viewing angle range in which a high contrast of 30 or more can be obtained. As shown in FIG. 7, the transmission display viewing angle range has a maximum value near W1 / Rt = 0.58.
[0085]
FIG. 11 is a graph showing the relationship between backlight luminance and polar angle in a general liquid crystal display device such as a mobile phone. When the polar angle is 0 °, that is, when the display surface of the liquid crystal display device is viewed from the vertical direction, the brightness of the backlight becomes maximum. In addition, the high brightness of the backlight (about 1000 cd / m 2 The above is obtained when the polar angle is in the range of ± 35 °. On the other hand, in FIG. 7, the range of the transmissive display viewing angle range of 35 ° or more is the range of 0.5 ≦ W1 / Rt ≦ 0.75. Therefore, by setting each retardation plate such that 0.5 ≦ W1 / Rt ≦ 0.75, it is possible to secure high contrast in the transmissive region over the high luminance range of the backlight.
[0086]
FIG. 10A shows the relationship between the W4 / Rr value and the reflective display viewing angle range. FIG. 10A shows a case where the phase difference value Rr of the reflection region is 180 nm. The sum W4 of the phase difference values in the Z-axis direction is the phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first phase difference plate 103 and in the Z-axis direction. The transmission display viewing angle range indicates a viewing angle range in which a high contrast of 10 or more can be obtained. Incidentally, the viewing angle range of the conventional STN mode liquid crystal display device is about 30 °. On the other hand, in FIG. 10A, the range of the transmissive display viewing angle is 30 ° or more is the range of 0.5 ≦ W4 / Rr ≦ 0.75. Therefore, by setting each retardation plate such that 0.5 ≦ W4 / Rr ≦ 0.75, it is possible to ensure high contrast in the reflection region over the viewing angle range of the conventional STN mode liquid crystal display device. Become.
[0087]
The retardation plates 103 and 114 may be a laminate of a plurality of optical films. Also, the retardation plates 103 and 114 should have a ratio R (450) / R (590) of the XY plane retardation value R (450) at 450 nm and the XY plane retardation value R (590) at 590 nm smaller than 1. preferable. By doing so, it becomes possible to create substantially circularly polarized light in the visible light range.
[0088]
As described above, the liquid crystal display device of the first embodiment can realize display with high contrast and a wide viewing angle. Further, since the optically biaxial retardation plate is employed as the first and second retardation plates, the optically positive uniaxial retardation plate and the negative uniaxial retardation plate are employed. The liquid crystal display device can be reduced in cost and thickness as compared with the case where the retardation plates are used together.
[0089]
[Second embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. Note that the same reference numerals as those in the first embodiment shown in FIG. 1 have the same configuration unless otherwise specified, and description thereof will be omitted.
[0090]
When performing reflective display, light incident from the outside of the device is used, and the incident light is guided to the liquid crystal layer 110 side via the polarizing plate 102, the phase difference plate 103, the upper substrate 105, and the electrode 106. In the reflective display area, the incident light is reflected by the reflective electrode 108 after passing through the liquid crystal layer 110. Then, the reflected light passes through the liquid crystal layer 110 again, and then returns to the outside of the device via the electrode 106, the upper substrate 105, the retardation plate 103, and the polarizing plate 102, and reaches the observer to be reflected. The display is to be performed. In such a reflective display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 108, the polarization state of light passing through the liquid crystal layer 110 is changed to perform bright and dark display.
[0091]
In the case of performing transmissive display, light emitted from a backlight (illuminating means) enters through a polarizing plate 116, retardation plates 202 and 201, and a substrate 113. In this case, in the transmissive display area, light incident from the substrate 113 is transmitted through the electrode 112, the liquid crystal layer 110, the electrode 106, the substrate 105, the retardation plate 103, and the polarizing plate 102 in this order to perform transmissive display. ing. Also in such a transmissive display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 112, it is possible to change the polarization state of light passing through the liquid crystal layer 110 to perform bright and dark display.
[0092]
In these display modes, in a reflective display mode, incident light passes through the liquid crystal layer 110 twice, but with respect to transmitted light, light emitted from a backlight (illuminating means) passes through the liquid crystal layer 110 only once. do not do. Here, considering the retardation (phase difference value) of the liquid crystal layer 110, when the same voltage is applied from an electrode to control the alignment in the reflective display mode and the transmissive display mode, the difference in the retardation of the liquid crystal due to the difference in the retardation of the liquid crystal. A difference occurs in the state of transmittance. However, in the structure of the present embodiment, since the liquid crystal layer thickness control layer 109 made of acrylic resin is provided in a region where the reflective display is performed, that is, the reflective display region provided with the reflective electrode 108 shown in FIG. The thickness of the liquid crystal layer 110 in the transmissive display area for performing transmissive display is larger than the thickness of the liquid crystal layer 110 in the display area, and the state relating to the transmissive display and the reflective display of the liquid crystal layer 110 in the reflective display area and the transmissive display area. That is, it is possible to optimize the distance that light passes through the liquid crystal layer 110 in each region. Therefore, by forming the liquid crystal layer thickness control layer 109 made of an acrylic resin, it is possible to optimize the retardation in the reflective display region and the transmissive display region, and to obtain a bright and high-contrast display in both the reflective display and the transmissive display. Become like
[0093]
The phase difference plate 103 exhibits biaxiality (nx1>ny1> nz1), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 103 is about 45 ° with the transmission axis 101 of the polarizing plate 102. At an angle. Further, the phase difference plate 202 shows positive uniaxiality (nx4> ny4 ≒ nz4), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 202 is the same as the transmission axis 117 of the polarizing plate 116. The angle is about 45 °. The transmission axis 101 of the polarizing plate 102 and the transmission axis 117 of the polarizing plate 116 have an orthogonal relationship, and the X axis of the phase difference plate 103 and the X axis of the phase difference plate 202 also have an orthogonal relationship. Furthermore, if the phase difference value of the phase difference plate 103 and the phase difference value of the phase difference plate 202 are made equal, the phase difference value between the polarizing plates 102 and 116 can be set to 0 during non-driving. Black display can be realized.
[0094]
The phase difference plate 103 exhibits biaxiality (nx1>ny1> nz1), and has an average phase difference of about 110 nm between the XY plane and the Z-axis direction. The retardation plate 201 exhibits negative uniaxiality (nx3 ≒ ny3> nz3), the retardation value in the XY plane is approximately 0, and has a retardation of about 120 nm in the Z-axis direction. Here, the phase difference value of the transmission region in the liquid crystal layer 110 is 380 nm. By disposing the retardation plate 103, it is possible to compensate for the phase difference of the liquid crystal layer 110 that occurs when the reflective display is observed from an oblique direction. By arranging the phase difference plates 103 and 201, it is possible to compensate for a phase difference of the liquid crystal layer 110 generated when observing transmissive display from an oblique direction.
[0095]
FIG. 8 shows the relationship between the W2 / Rt value and the transmission display viewing angle range. FIG. 8 shows a case where the phase difference value Rt of the transmission region is 400 nm. The sum W2 of the phase difference in the Z-axis direction is the phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane of the first phase difference plate 103 and in the Z-axis direction, and XY in the third phase difference plate 201. The phase difference value (nx3-nz3) × d3 in the plane and the Z-axis direction, and the phase difference value ((nx4 + ny4) / 2-nz4) × d4 in the XY plane and the Z-axis direction of the fourth retardation plate 202. It is a sum. The transmission display viewing angle range indicates a viewing angle range in which a high contrast of 30 or more can be obtained. By the way, as shown in FIG. 11, the high luminance of the backlight (about 1000 cd / m 2 The above is obtained when the polar angle is in the range of ± 35 °. On the other hand, in FIG. 8, the range of the transmissive display viewing angle range of 35 ° or more is the range of 0.5 ≦ W2 / Rt ≦ 0.75. Therefore, by setting each retardation plate so that 0.5 ≦ W2 / Rt ≦ 0.75, it is possible to secure high contrast in the transmissive region over the high luminance range of the backlight.
[0096]
As described above, the liquid crystal display device of the second embodiment can realize display with high contrast and a wide viewing angle.
[0097]
[Third embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. Note that the same reference numerals as those in the first embodiment shown in FIG. 1 have the same configuration unless otherwise specified, and description thereof will be omitted.
[0098]
When performing reflective display, light incident from the outside of the device is used, and this incident light is guided to the liquid crystal layer 110 side via the polarizing plate 102, the phase difference plates 301 and 302, the upper substrate 105, and the electrode 106. I will In the reflective display area, the incident light is reflected by the reflective electrode 108 after passing through the liquid crystal layer 110. Then, the reflected light passes through the liquid crystal layer 110 again, and then returns to the outside of the device via the electrode 106, the upper substrate 105, the retardation plates 302 and 301, and the polarizing plate 102, and reaches the observer and is reflected. It is assumed that the type is displayed. In such a reflective display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 108, the polarization state of light passing through the liquid crystal layer 110 is changed to perform bright and dark display.
[0099]
In the case of performing transmissive display, light emitted from a backlight (illuminating means) enters through a polarizing plate 116, a phase difference plate 114, and a substrate 113. In this case, in the transmissive display area, light incident from the substrate 113 is transmitted through the electrode 112, the liquid crystal layer 110, the electrode 106, the substrate 105, the retardation plates 302 and 301, and the polarizing plate 102 in this order to perform transmissive display. It has been. Also in such a transmissive display, by controlling the alignment of the liquid crystal of the liquid crystal layer 110 by the electrodes 106 and 112, it is possible to change the polarization state of light passing through the liquid crystal layer 110 to perform bright and dark display.
[0100]
In these display modes, in a reflective display mode, incident light passes through the liquid crystal layer 110 twice, but with respect to transmitted light, light emitted from a backlight (illuminating means) passes through the liquid crystal layer 110 only once. do not do. Here, considering the retardation (phase difference value) of the liquid crystal layer 110, when the same voltage is applied from an electrode to control the alignment in the reflective display mode and the transmissive display mode, the difference in the retardation of the liquid crystal due to the difference in the retardation of the liquid crystal. A difference occurs in the state of transmittance. However, in the structure of the present embodiment, since the liquid crystal layer thickness control layer 109 made of acrylic resin is provided in the area for performing the reflective display, that is, the reflective display area provided with the reflective electrode 108 shown in FIG. The thickness of the liquid crystal layer 110 in the transmissive display area for performing transmissive display is larger than the thickness of the liquid crystal layer 110 in the display area, and the state relating to the transmissive display and the reflective display of the liquid crystal layer 110 in the reflective display area and the transmissive display area. That is, it is possible to optimize the distance that light passes through the liquid crystal layer 110 in each region. Therefore, by forming the liquid crystal layer thickness control layer 109 made of an acrylic resin, it is possible to optimize the retardation in the reflective display region and the transmissive display region, and to obtain a bright and high-contrast display in both the reflective display and the transmissive display. Become like
[0101]
The phase difference plate 301 exhibits positive uniaxiality (nx6> ny6 ≒ nz6), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 301 is about 45 degrees with the transmission axis 101 of the polarizing plate 102. At an angle of °. Further, the phase difference plate 114 shows biaxiality (nx2>ny2> nz2), the phase difference value in the XY plane is about 140 nm, and the X axis of the phase difference plate 114 is approximately equal to the transmission axis 117 of the polarizing plate 116. At an angle of 45 °. The transmission axis 101 of the polarizing plate 102 and the transmission axis 117 of the polarizing plate 116 have an orthogonal relationship, and the X axis of the phase difference plate 301 and the X axis of the phase difference plate 114 also have an orthogonal relationship. Further, if the phase difference value of the phase difference plate 301 and the phase difference value in the XY plane of the phase difference plate 114 are made equal, the phase difference value between the polarizing plates 102 and 116 can be set to 0 when not driven. Therefore, an ideal black display can be realized.
[0102]
The retardation plate 302 exhibits negative uniaxiality (nx5 ≒ ny5> nz5), and the average retardation value in the XY plane and the Z-axis direction is about 100 nm. The retardation plate 114 exhibits biaxiality (nx2>ny2> nz2), and the average retardation value in the XY plane and the Z-axis direction is about 240 nm. Here, the phase difference value of the reflection region in the liquid crystal layer 110 is 200 nm, and the phase difference value of the transmission region is 380 nm. By disposing the retardation plate 302, it is possible to compensate for the retardation of the liquid crystal layer 110 that occurs when the reflective display is observed from an oblique direction. By disposing the retardation plates 302 and 114, it is possible to compensate for the retardation of the liquid crystal layer 110 that occurs when observing transmissive display from an oblique direction.
[0103]
FIG. 9 shows the relationship between the W3 / Rt value and the transmission display viewing angle range. FIG. 9 shows a case where the phase difference value Rt of the transmission region is 380 nm. The sum W3 of the phase difference in the Z-axis direction is the phase difference value ((nx2 + ny2) / 2-nz2) × d2 in the XY plane of the second phase difference plate 114 and in the Z-axis direction, and XY in the fifth phase difference plate 302. The phase difference value (nx5-nz5) × d5 in the plane and the Z-axis direction and the phase difference value ((nx6 + ny6) / 2-nz6) × d6 in the XY plane and the Z-axis direction of the sixth retardation plate 301 are obtained. It is a sum. The transmission display viewing angle range indicates a viewing angle range in which a high contrast of 30 or more can be obtained. By the way, as shown in FIG. 11, the high luminance of the backlight (about 1000 cd / m 2 The above is obtained when the polar angle is in the range of ± 35 °. On the other hand, in FIG. 9, the transmissive display viewing angle range is 35 ° or more in the range of 0.5 ≦ W3 / Rt ≦ 0.75. Therefore, by setting each retardation plate so that 0.5 ≦ W3 / Rt ≦ 0.75, it is possible to secure high contrast in the transmissive region over the high luminance range of the backlight.
[0104]
FIG. 10B shows the relationship between the W4 / Rr value and the reflective display viewing angle range. FIG. 10B shows a case where the phase difference value Rr of the reflection region is 200 nm. The sum W4 of the phase difference in the Z-axis direction is the phase difference value (nx5-nz5) × d5 in the XY plane and the Z-axis direction in the fifth phase difference plate 302 and the phase difference value in the XY plane in the sixth phase difference plate 301 and Z This is the sum of the phase difference value in the axial direction ((nx6 + ny6) / 2-nz6) × d6. The transmission display viewing angle range indicates a viewing angle range in which a high contrast of 10 or more can be obtained. Incidentally, the viewing angle range of the conventional STN mode liquid crystal display device is about 30 °. On the other hand, in FIG. 10B, the range of the transmissive display viewing angle is 30 ° or more when 0.5 ≦ W4 / Rr ≦ 0.75. Therefore, by setting each retardation plate such that 0.5 ≦ W4 / Rr ≦ 0.75, it is possible to ensure high contrast in the reflection region over the viewing angle range of the conventional STN mode liquid crystal display device. Become.
[0105]
As described above, the liquid crystal display device of the third embodiment can realize display with high contrast and a wide viewing angle.
[0106]
[Fourth embodiment]
An example of an electronic device including the liquid crystal display device of the above embodiment will be described.
[0107]
FIG. 4 is a perspective view showing an example of a mobile phone. In FIG. 4, reference numeral 1000 denotes a mobile phone main body, and reference numeral 1001 denotes a liquid crystal display unit using the liquid crystal display devices of the first to third embodiments.
[0108]
FIG. 5 is a perspective view showing an example of a wristwatch-type electronic device. In FIG. 5, reference numeral 1100 denotes a watch main body, and reference numeral 1101 denotes a liquid crystal display unit using the liquid crystal display devices of the first to third embodiments.
[0109]
FIG. 6 is a perspective view showing an example of a portable information processing device such as a word processor or a personal computer. 6, reference numeral 1200 denotes an information processing device, reference numeral 1202 denotes an input unit such as a keyboard, reference numeral 1204 denotes an information processing device main body, and reference numeral 1206 denotes a liquid crystal display unit using the liquid crystal display device according to the first to third embodiments. Is shown.
[0110]
As described above, the electronic devices shown in FIGS. 4 to 6 include the liquid crystal display units using the liquid crystal display devices of the above-described first to third embodiments, and thus have a wide viewing angle and a high contrast under various environments. An electronic device having a display portion can be realized.
[0111]
【The invention's effect】
As described above in detail, according to the present invention, in a transflective liquid crystal display device having both a reflective type and a transmissive type structure, a reflective display and a transmissive display with a wide viewing angle and high contrast are provided. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a partial cross-sectional structure of a liquid crystal display device according to a first embodiment of the present invention.
FIG. 2 is a diagram schematically showing a partial cross-sectional structure of a liquid crystal display device according to a second embodiment of the present invention.
FIG. 3 is a diagram schematically showing a partial cross-sectional structure of a liquid crystal display device according to a third embodiment of the present invention.
FIG. 4 is an exemplary perspective view showing an example of an electronic apparatus according to the invention.
FIG. 5 is a perspective view illustrating an example of an electronic apparatus according to the invention.
FIG. 6 is a perspective view illustrating an example of an electronic apparatus according to the invention.
FIG. 7 is a view showing a relationship between a W1 / Rt value and a transmissive display viewing angle range of the liquid crystal display device according to the first embodiment of the present invention.
FIG. 8 is a diagram showing a relationship between a W2 / Rt value and a transmissive display viewing angle range of a liquid crystal display device according to a second embodiment of the present invention.
FIG. 9 is a diagram showing a relationship between a W3 / Rt value and a transmissive display viewing angle range of a liquid crystal display device according to a third embodiment of the present invention.
FIG. 10 is a diagram showing a relationship between a W4 / Rr value and a reflective display viewing angle range of the liquid crystal display device of the present invention.
FIG. 11 is a diagram showing a relationship between backlight luminance and polar angles.
FIG. 12 is an explanatory diagram of a compensating action of a viewing angle characteristic.
[Explanation of symbols]
101, 117 Transmission axis of polarizing plate
102, 116 Polarizing plate
103, 114 Biaxial retardation plate
201, 302 Negative uniaxial retardation plate
202,301 Positive uniaxial retardation plate
105 Upper substrate
106, 112 Transparent electrode
107 protrusion
108 reflective electrode
109 acrylic resin
110 liquid crystal
111 electrode opening
113 Lower board
1000 mobile phone
1100 Wristwatch type electronic device
1200 Portable information processing device
1001, 1101 and 1206 Liquid crystal display unit

Claims (37)

第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には第2位相差板、第2偏光板、照明手段が順次配置され、前記第1位相差板と前記第2位相差板の少なくとも一方が光学的に二軸性を有することを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. The liquid crystal layer includes a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to a substrate, and a first retardation plate and a first polarizing plate are sequentially disposed outside the first substrate. A second retardation plate, a second polarizing plate, and an illuminating unit are sequentially disposed outside the second substrate, and at least one of the first retardation plate and the second retardation plate is optically biaxial. A liquid crystal display device having properties. 第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a first retardation plate having an optically biaxial property outside the first substrate. , A first polarizing plate is sequentially arranged, and a second retardation plate having optically biaxiality, a second polarizing plate, and illumination means are sequentially arranged outside the second substrate. Liquid crystal display. 第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に負の一軸性を有する第3位相差板、光学的に正の一軸性を有する第4位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a first retardation plate having an optically biaxial property outside the first substrate. , A first polarizing plate is sequentially arranged, a third retardation plate having an optically negative uniaxial property, a fourth retardation plate having an optically positive uniaxial property, and a second A liquid crystal display device comprising a polarizing plate and an illuminating means arranged in this order. 第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に二軸性を有する第1位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に正の一軸性を有する第4位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a first retardation plate having an optically biaxial property outside the first substrate. , A first polarizing plate is sequentially arranged, and a fourth retardation plate having optically positive uniaxiality, a second polarizing plate, and illumination means are sequentially arranged outside the second substrate. Liquid crystal display device. 第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に負の一軸性を有する第5位相差板、光学的に正の一軸性を有する第6位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. Wherein the liquid crystal layer comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to a substrate, and a fifth retardation having an optically negative uniaxial property outside the first substrate. Plate, a sixth retardation plate having optically positive uniaxiality, and a first polarizing plate are sequentially arranged, and a second retardation plate having optically biaxiality is provided outside the second substrate. A liquid crystal display device comprising a polarizing plate and an illuminating means arranged in this order. 第1基板と第2基板の間に液晶層が挟持されてなる液晶表示装置であって、1ドット内に反射表示に利用される反射表示領域と、透過表示に利用される透過表示領域とを含み、前記液晶層は基板に対して概ね垂直に配向した負の誘電率異方性を有するネマティック液晶からなり、前記第1基板の外側には光学的に正の一軸性を有する第6位相差板、第1偏光板が順次配置され、前記第2基板の外側には光学的に二軸性を有する第2位相差板、第2偏光板、照明手段が順次配置されていることを特徴とする液晶表示装置。A liquid crystal display device comprising a liquid crystal layer sandwiched between a first substrate and a second substrate, wherein a reflective display area used for reflective display and a transmissive display area used for transmissive display are formed within one dot. A liquid crystal layer comprising a nematic liquid crystal having a negative dielectric anisotropy oriented substantially perpendicular to the substrate, and a sixth retardation having an optically positive uniaxial property outside the first substrate. A plate and a first polarizing plate are sequentially arranged, and a second retardation plate, a second polarizing plate and an illuminating means having optical biaxiality are sequentially arranged outside the second substrate. Liquid crystal display device. 前記反射表示領域の液晶層厚が前記透過領域の液晶層厚よりも小さいことを特徴とする請求項1から6のいずれか記載の液晶表示装置。7. The liquid crystal display device according to claim 1, wherein the thickness of the liquid crystal layer in the reflective display area is smaller than the thickness of the liquid crystal layer in the transmissive area. 前記第1位相差板と前記第2位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz2、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx2、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny2、Z軸方向の厚みをd1,d2としたとき、nx1>ny1>nz1,nx2>ny2>nz2であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2の和W1は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W1≦0.75×Rtであることを特徴とする請求項1、2、7のいずれか記載の液晶表示装置。The first retardation plate and the second retardation plate have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz1, nz2, and a direction perpendicular to the Z-axis as an X-axis. Nx1, nx2, the refractive index in the axial direction is ny1, ny2, and the thickness in the Z-axis direction is d1, d2 when the direction perpendicular to the Z axis and the X axis is the Y axis, and nx1> ny1> nz1 , Nx2> ny2> nz2, and the phase difference value ((nx1 + ny1) / 2−nz1) × d1 in the XY plane and the Z-axis direction of the first phase difference plate and the phase difference value of the second phase difference plate ( The sum W1 of (nx2 + ny2) / 2-nz2) × d2 is 0.5 × Rt ≦ W1 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal display device according to claim 1. 前記第1位相差板と前記第3位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz3、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx3、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny3、Z軸方向の厚みをd1,d3としたとき、nx1>ny1>nz1,nx3≒ny3>nz3であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3の和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする請求項3または7記載の液晶表示装置。The first retardation plate and the third retardation plate have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz1, nz3, and a direction perpendicular to the Z-axis as an X-axis. Nx1, nx3, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny3, and the thickness in the Z axis direction is d1, d3, nx1> ny1> nz1 , Nx3 ≒ ny3> nz3, and the phase difference value ((nx1 + ny1) / 2−nz1) × d1 in the XY plane and the Z-axis direction of the first phase difference plate and the phase difference value of the third phase difference plate ( The sum W2 of (nx3 + ny3) / 2-nz3) × d3 is 0.5 × Rt ≦ W2 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal display device according to claim 3. 前記第1位相差板、前記第3位相差板および前記第4位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz3,nz4、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx3,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny3,ny4、Z軸方向の厚みをd1,d3,d4としたとき、nx1>ny1>nz1,nx3≒ny3>nz3,nx4>ny4≒nz4であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と、前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3と、前記第4位相差板のXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4との和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする請求項3、4、7のいずれか記載の液晶表示装置。The first retardation plate, the third retardation plate, and the fourth retardation plate have refractive indices nz1, nz3, nz4, and in a plane perpendicular to the Z axis, in which the thickness direction is the Z axis and the axial direction is the Z axis. When one direction is the X axis, the refractive index in the axial direction is nx1, nx3, nx4, and in the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny1, ny3, ny4, and the thickness in the Z axis direction. Are d1, d3, and d4, nx1> ny1> nz1, nx3 ≒ ny3> nz3, nx4> ny4 ≒ nz4, and the phase difference value in the XY plane and the Z-axis direction ((( nx1 + ny1) / 2-nz1) × d1, the phase difference value of the third retardation plate ((nx3 + ny3) / 2-nz3) × d3, and the position of the fourth retardation plate in the XY plane and the Z-axis direction. Phase difference value ((nx4 + ny4) / 2-nz4) × d4 The sum W2 of the following formulas is 0.5 × Rt ≦ W2 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal display device according to the above. 前記第1位相差板と前記第4位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1,nz4、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny4、Z軸方向の厚みをd1,d4としたとき、nx1>ny1>nz1,nx4>ny4≒nz4であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第4位相差板のXY面内とZ軸方向の位相差値((nx4+ny4)/2−nz4)×d4との和W2は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W2≦0.75×Rtであることを特徴とする請求項4または7記載の液晶表示装置。The first retardation plate and the fourth retardation plate have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz1, nz4, and one direction in a plane perpendicular to the Z-axis as an X-axis. Where nx1, nx4, the refractive index in the axial direction is ny1, ny4, and the thickness in the Z-axis direction is d1, d4, where nx1> ny1> nz1 , Nx4> ny4 ≒ nz4, and the phase difference value ((nx1 + ny1) / 2−nz1) × d1 in the XY plane of the first retardation plate and in the Z-axis direction and the XY plane of the fourth retardation plate The sum W2 of the phase difference value in the Z-axis direction ((nx4 + ny4) / 2-nz4) × d4 is 0.5 × Rt ≦ W2 ≦ 0.75, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal according to claim 4 or 7, wherein xRt. Display devices. 前記第2位相差板と前記第5位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz5、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx5、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny5、Z軸方向の厚みをd2,d5としたとき、nx2>ny2>nz2,nx5≒ny5>nz5であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と前記第5位相差板の位相差値((nx5+ny5)/2−nz5)×d5の和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする請求項5または7記載の液晶表示装置。The second retardation plate and the fifth retardation plate have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz2, nz5, and an X-axis as one direction in a plane perpendicular to the Z-axis. Is nx2, nx5, the refractive index in the axial direction is ny2, ny5, and the thickness in the Z-axis direction is d2, d5, with the direction perpendicular to the Z axis and the X axis being NX2> ny2> nz2. , Nx5 ≒ ny5> nz5, and the phase difference value ((nx2 + ny2) / 2-nz2) × d2 in the XY plane and the Z-axis direction of the second phase difference plate and the phase difference value of the fifth phase difference plate ( The sum W3 of (nx5 + ny5) / 2-nz5) × d5 is 0.5 × Rt ≦ W3 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal display device according to claim 5. 前記第2位相差板、前記第5位相差板および前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz5,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx5,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny5,ny6、Z軸方向の厚みをd2,d5,d6としたとき、nx2>ny2>nz2,nx5≒ny5>nz5,nx6>ny6≒nz6であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と、前記第5位相差板の位相差値((nx5+ny5)/2−nz5)×d5と、前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする請求項5、6、7のいずれか記載の液晶表示装置。The second retardation plate, the fifth retardation plate, and the sixth retardation plate have a thickness direction as a Z axis, and a refractive index in the axial direction of nz2, nz5, nz6, in a plane perpendicular to the Z axis. When one direction is the X axis, the refractive index in the axial direction is nx2, nx5, nx6, and in the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny2, ny5, ny6, and the thickness in the Z axis direction. Are d2, d5, and d6, nx2> ny2> nz2, nx5 ≒ ny5> nz5, nx6> ny6 ≒ nz6, and the phase difference value in the XY plane of the second phase difference plate and in the Z-axis direction (( nx2 + ny2) / 2-nz2) × d2, the phase difference value of the fifth retardation plate ((nx5 + ny5) / 2-nz5) × d5, and the position of the sixth retardation plate in the XY plane and the Z-axis direction. Phase difference value ((nx6 + ny6) / 2-nz6) × d6 The sum W3 of the above is 0.5 × Rt ≦ W3 ≦ 0.75 × Rt, where Rt is the phase difference value of the liquid crystal layer in the transmission region. The liquid crystal display device according to the above. 前記第2位相差板と前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz2,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny6、Z軸方向の厚みをd2,d6としたとき、nx2>ny2>nz2,nx6>ny6≒nz6であり、前記第2位相差板のXY面内とZ軸方向の位相差値((nx2+ny2)/2−nz2)×d2と前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W3は、前記透過領域における液晶層の位相差値をRtとすると、0.5×Rt≦W3≦0.75×Rtであることを特徴とする請求項6または7記載の液晶表示装置。The second retardation plate and the sixth retardation plate each have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz2, nz6, and a direction perpendicular to the Z-axis as an X-axis. Where nx2> ny2> nz2, the refractive index in the direction perpendicular to the Z-axis and the X-axis is ny2, ny6, and the thickness in the Z-axis direction is d2, d6. , Nx6> ny6 ≒ nz6, and the phase difference value ((nx2 + ny2) / 2−nz2) × d2 in the XY plane of the second retardation plate and in the Z-axis direction and the XY plane of the sixth retardation plate The sum W3 of the phase difference value in the Z-axis direction ((nx6 + ny6) / 2-nz6) × d6 is 0.5 × Rt ≦ W3 ≦ 0.75, where Rt is the phase difference value of the liquid crystal layer in the transmission region. 8. The liquid crystal according to claim 6, wherein x is Rt. Display devices. 前記第1位相差板と前記第2位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx2、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny2(nx1>ny1,nx2>ny2)、Z軸方向の厚みをd1,d2としたとき、前記第1位相差板のX軸と前記第2位相差板のX軸は直交関係にあり、かつ(nx1−ny1)×d1=(nx2−ny2)×d2であることを特徴とする請求項2、7、8のいずれか記載の液晶表示装置。The first retardation plate and the second retardation plate have one direction in a plane perpendicular to the thickness direction (Z axis) as an X axis, and the refractive index in the axial direction is nx1, nx2, and the Z axis and the X axis. Assuming that the vertical direction is the Y axis, the refractive index in the axial direction is ny1, ny2 (nx1> ny1, nx2> ny2), and the thickness in the Z axis direction is d1, d2, the X axis of the first retardation plate is 9. The X-axis of the second retardation plate is in an orthogonal relationship, and (nx1-ny1) * d1 = (nx2-ny2) * d2. Liquid crystal display. 前記第1位相差板と前記第4位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1,nx4、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1,ny4(nx1>ny1,nx4>ny4)、Z軸方向の厚みをd1,d4としたとき、前記第1位相差板のX軸と前記第4位相差板のX軸は直交関係にあり、かつ(nx1−ny1)×d1=(nx4−ny4)×d4であることを特徴とする請求項3、4、7、9から11のいずれか記載の液晶表示装置。The first retardation plate and the fourth retardation plate have one direction in a plane perpendicular to the thickness direction (Z axis) as the X axis, and the refractive indexes in the axial direction are nx1, nx4, and the Z axis and the X axis. Assuming that the vertical direction is the Y axis, the refractive index in the axial direction is ny1, ny4 (nx1> ny1, nx4> ny4), and the thickness in the Z axis direction is d1, d4, the X axis of the first retardation plate is 12. The X-axis of the fourth retardation plate is in an orthogonal relationship, and (nx1-ny1) .times.d1 = (nx4-ny4) .times.d4. The liquid crystal display device according to any one of the above. 前記第2位相差板と前記第6位相差板は厚さ方向(Z軸)に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx2,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny2,ny6(nx2>ny2,nx6>ny6)、Z軸方向の厚みをd2,d6としたとき、前記第2位相差板のX軸と前記第6位相差板のX軸は直交関係にあり、かつ(nx2−ny2)×d2=(nx6−ny6)×d6であることを特徴とする請求項5から7、12から14のいずれか記載の液晶表示装置。The second retardation plate and the sixth retardation plate have a refractive index in the axial direction of nx2, nx6, and a Z-axis and an X-axis, with one direction in a plane perpendicular to the thickness direction (Z-axis) as the X-axis. Assuming that the vertical direction is the Y axis, the refractive index in the axial direction is ny2, ny6 (nx2> ny2, nx6> ny6), and the thickness in the Z axis direction is d2, d6, the X axis of the second retardation plate is 15. The X-axis of the sixth retardation plate is in an orthogonal relationship, and (nx2-ny2) * d2 = (nx6-ny6) * d6. The liquid crystal display device according to the above. 前記第1位相差板と前記第2位相差板は100nm≦(nx1−ny1)×d1=(nx2−ny2)×d2≦160nmであることを特徴とする請求項15記載の液晶表示装置。16. The liquid crystal display device according to claim 15, wherein the first retardation plate and the second retardation plate satisfy 100 nm ≦ (nx1-ny1) × d1 = (nx2-ny2) × d2 ≦ 160 nm. 前記第1位相差板と前記第4位相差板は100nm≦(nx1−ny1)×d1=(nx4−ny4)×d4≦160nmであることを特徴とする請求項16記載の液晶表示装置。17. The liquid crystal display device according to claim 16, wherein the first retardation plate and the fourth retardation plate satisfy 100 nm ≦ (nx1-ny1) × d1 = (nx4-ny4) × d4 ≦ 160 nm. 前記第2位相差板と前記第6位相差板は100nm≦(nx2−ny2)×d2=(nx6−ny6)×d6≦160nmであることを特徴とする請求項17記載の液晶表示装置。18. The liquid crystal display device according to claim 17, wherein the second retardation plate and the sixth retardation plate satisfy 100 nm ≦ (nx2-ny2) × d2 = (nx6-ny6) × d6 ≦ 160 nm. 前記第1位相差板、前記第2位相差板、前記第4位相差板、前記第6位相差板のうち、少なくとも1つは450nmにおける面内位相差値R(450)と590nmにおける面内位相差値R(590)の比R(450)/R(590)が1より小さいことを特徴とする請求項1から20のいずれか記載の液晶表示装置。At least one of the first retardation plate, the second retardation plate, the fourth retardation plate, and the sixth retardation plate has an in-plane retardation value R (450) at 450 nm and an in-plane retardation value at 590 nm. 21. The liquid crystal display device according to claim 1, wherein a ratio R (450) / R (590) of the phase difference value R (590) is smaller than 1. 前記第1偏光板の透過軸と前記第2偏光板の透過軸は直交関係にあることを特徴とする請求項1から21のいずれか記載の液晶表示装置。22. The liquid crystal display device according to claim 1, wherein a transmission axis of the first polarizing plate and a transmission axis of the second polarizing plate are orthogonal to each other. 前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2は概ね等しいことを特徴とする請求項1、2、7、8、15、18、21、22のいずれか記載の液晶表示装置。The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane and the Z-axis direction of the first phase difference plate and the phase difference value ((nx2 + ny2) / 2-nz2) × of the second phase difference plate. The liquid crystal display device according to any one of claims 1, 2, 7, 8, 15, 18, 21, and 22, wherein d2 is substantially equal. 前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1と前記第3位相差板の位相差値((nx3+ny3)/2−nz3)×d3は概ね等しいことを特徴とする請求項3、7、9、10、16、19、21、22のいずれか記載の液晶表示装置。The phase difference value ((nx1 + ny1) / 2-nz1) × d1 in the XY plane and the Z-axis direction of the first phase difference plate and the phase difference value ((nx3 + ny3) / 2-nz3) × of the third phase difference plate. The liquid crystal display device according to any one of claims 3, 7, 9, 10, 16, 19, 21, and 22, wherein d3 is substantially equal. 前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5と前記第2位相差板の位相差値((nx2+ny2)/2−nz2)×d2は概ね等しいことを特徴とする請求項5、7、12、13、17、20、21、22のいずれか記載の液晶表示装置。The phase difference value ((nx5 + ny5) / 2-nz5) × d5 in the XY plane and the Z-axis direction of the fifth phase difference plate and the phase difference value ((nx2 + ny2) / 2-nz2) × of the second phase difference plate. The liquid crystal display device according to any one of claims 5, 7, 12, 13, 13, 17, 20, 21, and 22, wherein d2 is substantially equal. 前記第1位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz1、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx1、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny1、Z軸方向の厚みをd1としたとき、nx1>ny1>nz1であり、前記第1位相差板のXY面内とZ軸方向の位相差値((nx1+ny1)/2−nz1)×d1は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦(nx1+ny1)/2−nz1)×d1≦0.75×Rrであることを特徴とする請求項1から4、7から11、15、16、18、19、21から24のいずれか記載の液晶表示装置。The first retardation plate has a thickness direction as the Z axis, a refractive index in the axial direction thereof as nz1, a direction in a plane perpendicular to the Z axis as the X axis, a refractive index in the axial direction as nx1, and the Z axis. Assuming that the direction perpendicular to the X axis is the Y axis, the refractive index in the axial direction is ny1, and the thickness in the Z axis direction is d1, nx1> ny1> nz1, and XY1> ny1> nz1 is satisfied. The phase difference value in the axial direction ((nx1 + ny1) / 2-nz1) × d1 is 0.5 × Rr ≦ (nx1 + ny1) / 2-nz1) × d1 where the phase difference value of the liquid crystal layer in the reflection region is Rr. The liquid crystal display device according to any one of claims 1 to 4, 7 to 11, 15, 16, 18, 19, and 21 to 24, wherein ≤ 0.75 x Rr. 前記第5位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz5、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx5、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny5、Z軸方向の厚みをd5としたとき、nx5≒ny5>nz5であり、前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦(nx5+ny5)/2−nz5)×d5≦0.75×Rrであることを特徴とする請求項5、7、12、13、17、20から22、25のいずれか記載の液晶表示装置。The fifth retardation plate has a thickness direction as a Z axis, a refractive index in the axial direction thereof as nz5, and a direction in a plane perpendicular to the Z axis as an X axis, a refractive index in the axial direction as nx5, and a Z axis. When the direction perpendicular to the X axis is the Y axis, the refractive index in the axial direction is ny5, and the thickness in the Z axis direction is d5, nx5nny5> nz5. The axial phase difference value ((nx5 + ny5) / 2-nz5) × d5 is 0.5 × Rr ≦ (nx5 + ny5) / 2-nz5) × d5, where Rr is the phase difference value of the liquid crystal layer in the reflection region. The liquid crystal display device according to any one of claims 5, 7, 12, 13, 17, 20 to 22, and 25, wherein ≤ 0.75 x Rr. 前記第5位相差板と前記第6位相差板は、厚さ方向をZ軸としてその軸方向における屈折率をnz5,nz6、Z軸に垂直な面内の一方向をX軸としてその軸方向における屈折率をnx5,nx6、Z軸とX軸に垂直な方向をY軸としてその軸方向における屈折率をny5,ny6、Z軸方向の厚みをd5,d6としたとき、nx5≒ny5>nz5,nx6>ny6≒nz6であり、前記第5位相差板のXY面内とZ軸方向の位相差値((nx5+ny5)/2−nz5)×d5と、前記第6位相差板のXY面内とZ軸方向の位相差値((nx6+ny6)/2−nz6)×d6との和W4は、前記反射領域における液晶層の位相差値をRrとすると、0.5×Rr≦W4≦0.75×Rrであることを特徴とする請求項5、7、12、13、17、20から22、25のいずれか記載の液晶表示装置。The fifth retardation plate and the sixth retardation plate have a thickness direction as a Z-axis, a refractive index in the axial direction thereof as nz5, nz6, and a direction perpendicular to the Z-axis as an X-axis. Is nx5, nx6, the direction perpendicular to the Z axis and the X axis is the Y axis, the refractive index in the axial direction is ny5, ny6, and the thickness in the Z axis direction is d5, d6. , Nx6> ny6 ≒ nz6, and the phase difference value ((nx5 + ny5) / 2−nz5) × d5 in the XY plane and the Z-axis direction of the fifth retardation plate and the XY plane of the sixth retardation plate The sum of W4 and the phase difference value in the Z-axis direction ((nx6 + ny6) / 2-nz6) × d6 is 0.5 × Rr ≦ W4 ≦ 0, where Rr is the phase difference value of the liquid crystal layer in the reflection region. 14. The method according to claim 5, wherein the ratio is 75 × Rr. The liquid crystal display device according to any of 17, 20 22, 25. 前記反射表示領域には、入射した光を反射することが可能な反射層が形成されていることを特徴とする請求項1から28のいずれか記載の液晶表示装置。29. The liquid crystal display device according to claim 1, wherein a reflective layer capable of reflecting incident light is formed in the reflective display area. 前記反射層は、入射した光を散乱反射することが可能な凹凸形状を有していることを特徴とする請求項1から29のいずれか記載の液晶表示装置。30. The liquid crystal display device according to claim 1, wherein the reflection layer has an uneven shape capable of scattering and reflecting incident light. 前記第1位相差板と前記第2位相差板のX軸方向は互いに直交関係にあり、かつ前記第1位相差板と前記第2位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする請求項1、2、7、8、15、18、21、22、23、26、29、30のいずれか記載の液晶表示装置。The X-axis directions of the first and second retardation plates are orthogonal to each other, and the X-axis direction of the first and second retardation plates is the transmission axis of the first polarizing plate. And a transmission axis of the second polarizing plate and an angle of about 45 ° with respect to the transmission axis of the second polarizing plate. Liquid crystal display device. 前記第1位相差板と前記第4位相差板のX軸方向は互いに直交関係にあり、かつ前記第1位相差板と前記第4位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする請求項3、4、7、9から11、16、19、21、22、24、26、29、30のいずれか記載の液晶表示装置。The X-axis directions of the first and fourth phase difference plates are orthogonal to each other, and the X-axis direction of the first and fourth phase difference plates is the transmission axis of the first polarizing plate. And an angle of about 45 ° with the transmission axis of the second polarizing plate. 29. A method according to claim 19, wherein: The liquid crystal display device according to the above. 前記第2位相差板と前記第6位相差板のX軸方向は互いに直交関係にあり、かつ前記第2位相差板と前記第6位相差板のX軸方向は第1偏光板の透過軸及び第2偏光板の透過軸と概ね45°の角度をなすことを特徴とする請求項5から7、12から14、17、20、21、22、25、27から30のいずれか記載の液晶表示装置。The X-axis directions of the second retardation plate and the sixth retardation plate are orthogonal to each other, and the X-axis direction of the second retardation plate and the sixth retardation plate is the transmission axis of the first polarizing plate. The liquid crystal according to any one of claims 5 to 7, 12 to 14, 17, 20, 21, 22, 25, and 27 to 30, wherein the liquid crystal forms an angle of approximately 45 with the transmission axis of the second polarizing plate. Display device. 前記第1基板、前記第2基板の少なくとも一方の液晶層側の内面に開口部を有する液晶駆動用の電極が形成されていることを特徴とする請求項1から33のいずれか記載の液晶表示装置。34. The liquid crystal display according to claim 1, wherein an electrode for driving a liquid crystal having an opening is formed on an inner surface of at least one of the first substrate and the second substrate on a liquid crystal layer side. apparatus. 前記第1基板、前記第2基板の少なくとも一方の液晶層側の内面に形成された電極上に突起が形成されていることを特徴とする請求項1から34のいずれか記載の液晶表示装置。35. The liquid crystal display device according to claim 1, wherein a projection is formed on an electrode formed on an inner surface of at least one of the first substrate and the second substrate on a liquid crystal layer side. 前記電極によって液晶を駆動するとき、液晶のダイレクタは1ドット内で少なくとも2つ以上あることを特徴とする請求項1から35のいずれか記載の液晶表示装置。36. The liquid crystal display device according to claim 1, wherein when driving the liquid crystal by the electrode, there are at least two or more liquid crystal directors in one dot. 請求項1から36のいずれか記載の液晶表示装置を備えたことを特徴とする電子機器。An electronic apparatus comprising the liquid crystal display device according to any one of claims 1 to 36.
JP2003203102A 2002-11-08 2003-07-29 Liquid crystal display and electronic apparatus Withdrawn JP2004206067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203102A JP2004206067A (en) 2002-11-08 2003-07-29 Liquid crystal display and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002325241 2002-11-08
JP2003203102A JP2004206067A (en) 2002-11-08 2003-07-29 Liquid crystal display and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2004206067A true JP2004206067A (en) 2004-07-22

Family

ID=32828380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203102A Withdrawn JP2004206067A (en) 2002-11-08 2003-07-29 Liquid crystal display and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2004206067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138838A1 (en) * 2006-05-29 2007-12-06 Nitto Denko Corporation Liquid crystal panel, and liquid crystal display device
CN102402064A (en) * 2011-11-22 2012-04-04 深圳市华星光电技术有限公司 Display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138838A1 (en) * 2006-05-29 2007-12-06 Nitto Denko Corporation Liquid crystal panel, and liquid crystal display device
US7812901B2 (en) 2006-05-29 2010-10-12 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
KR101335056B1 (en) * 2006-05-29 2013-12-03 닛토덴코 가부시키가이샤 Liquid crystal panel, and liquid crystal display device
CN102402064A (en) * 2011-11-22 2012-04-04 深圳市华星光电技术有限公司 Display panel

Similar Documents

Publication Publication Date Title
JP3778185B2 (en) Liquid crystal display device and electronic device
JP3873939B2 (en) Liquid crystal display device and electronic device
JP3236304B2 (en) Reflective liquid crystal display
JP5131510B2 (en) Liquid crystal display device and terminal device
US7379133B2 (en) Reflective LCD, semitransmitting reflective LCD and electronic device
JP4308553B2 (en) Liquid crystal display
JP5252335B2 (en) Liquid crystal display device and terminal device
JP3901074B2 (en) Liquid crystal display device and electronic device
JP2007108654A (en) Transflective type liquid crystal display device having high transmittance and wide viewing angle characteristics
WO2004031845A1 (en) Liquid crystal display device
JP2004206065A (en) Liquid crystal display and electronic apparatus
JP4788247B2 (en) Liquid crystal device and electronic device
JPH11231303A (en) Liquid crystal display device
JP2004206067A (en) Liquid crystal display and electronic apparatus
JP4126907B2 (en) Liquid crystal display device and electronic device
JP4367419B2 (en) Liquid crystal display device and electronic device
JP4539563B2 (en) Liquid crystal display device and electronic device
JP2004219553A (en) Liquid crystal display device and electronic appliance
JP2004219552A (en) Liquid crystal display device and electronic appliance
JP2004157453A (en) Liquid crystal display and electronic device
KR20020042928A (en) Semi-transmission type liquid crystal display using fringe filed switching mode
JP2001356347A5 (en)
JP2002006305A (en) Reflection type liquid crystal display device
JP2002131738A (en) Display device
JP2001255531A (en) Liquid crystal display element having input function and electronic instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003