JP2004205670A - Power unit, liquid crystal display device, and power supply method - Google Patents

Power unit, liquid crystal display device, and power supply method Download PDF

Info

Publication number
JP2004205670A
JP2004205670A JP2002372748A JP2002372748A JP2004205670A JP 2004205670 A JP2004205670 A JP 2004205670A JP 2002372748 A JP2002372748 A JP 2002372748A JP 2002372748 A JP2002372748 A JP 2002372748A JP 2004205670 A JP2004205670 A JP 2004205670A
Authority
JP
Japan
Prior art keywords
compensation
power supply
input
electrode lines
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002372748A
Other languages
Japanese (ja)
Inventor
Hideki Mine
秀樹 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2002372748A priority Critical patent/JP2004205670A/en
Publication of JP2004205670A publication Critical patent/JP2004205670A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in which when an input power source is used as a charging/discharging power source for a compensation capacity by a circuit boosting its voltage, the power consumption of a liquid crystal display device is increased since unnecessary electric power is consumed. <P>SOLUTION: A power unit which supplies a compensating voltage to a liquid crystal display panel for independent CC (Charge-Coupling) driving is equipped with a compensating power circuit 102 which boosts and steps down the input from the input power source 104 to generate two kinds of high and lower compensating voltages, a bypass line 104a for outputting the input from the input power source 104 as it is, and a compensating power source switching circuit 100 which inputs the output from the compensating power circuit 102 and the output from the bypass line 104a and selects and outputs one of the high or low compensating voltage and the input from the input power source 104 to a compensating power line 118. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、テレビジョンなどの映像機器やコンピュータなどの情報機器や携帯電話のディスプレイとして有用な液晶表示装置およびそれに用いる電源装置に関するものである。
【0002】
【従来の技術】
図5は、近年、よく使用されている独立CC(Charge−Coupling)駆動型の液晶表示装置のブロック図であり、図4、その詳細図であり、図3は、その駆動波形である(例えば、特許文献1を参照)。
【0003】
図5において、101は補償電源、102は補償電源作成回路、503は従来の電源回路、104は液晶表示装置に入力される入力電源、107は電源回路制御信号、108は制御信号発生回路、109は走査電極信号電極制御信号、110は走査電極駆動回路群、111は信号電極駆動回路群、112は補償容量、113は液晶層、114は液晶パネルの画素トランジスタ、115は液晶パネルの画素、116は信号電極線、117は走査電極線、118は補償電極線、119対向電極である。
【0004】
以上のように構成された従来の液晶表示装置の動作を下記に説明する。
【0005】
図5に示す従来の液晶表示装置は、液晶パネル上に走査電極線117と信号電極116が設けられ、それぞれの交点には画素トランジスタ114が設けられており、画素トランジスタ114のゲート側には走査電極線117が、ソース側には信号電極線116が、ドレイン側には画素電極がつながり、画素電極と対抗電極の間には液晶層113が設置されている。
【0006】
また、走査電極駆動回路群110は、補償電極線118を駆動する回路も搭載しており、補償電極線118につながっている補償電極と画素トランジスタ114のドレイン側に液晶層113と並列につながっている蓄積電極との間に補償容量112を構成し、補償電極線118でこの補償容量112を駆動する構成となっている。
【0007】
この信号電極線116を駆動するのは、信号電極駆動回路群111であり、走査電極線117と報償電極線118を駆動するのが走査電極駆動回路群110である。
【0008】
制御信号発生回路108では、入力信号に基づき、液晶表示装置に表示する画像を信号電極駆動回路群111に与える映像信号に加工したり、信号電極駆動回路群111を制御する制御信号を発生させたりし、走査電極信号電極制御信号109として、信号電極駆動回路群111や走査電極駆動回路群110に送り、また、入力信号102に基づき、従来の電源回路503を動作させる電源回路制御信号107を発生させ、従来の電源回路503へ送る。
【0009】
従来の電源回路503では、電源回路制御信号107により、入力電圧104を使用して信号電極駆動回路群111と走査電極駆動回路群110で必要な電源を作成し、それぞれの電極駆動回路群に送るばかりでなく、補償電源作成回路102で補償電極線を駆動する補償電源101も作成する。
【0010】
信号電極駆動回路群111では、従来の電源回路503よりの信号電極駆動用電源と制御信号発生回路108よりの映像信号と制御信号である信号電極駆動用信号により、信号電極信号を発生させ、信号電極線116を駆動する。
【0011】
また、走査電極駆動回路群110では、従来の電源回路503よりの走査電極駆動用電源と制御信号発生回路108よりの制御信号である走査電極駆動用信号により、走査電極信号を発生させ、走査電極線117を駆動し、かつ、補償電源を使用して、補償電極信号を作成し、補償電極線118も駆動する。
【0012】
このようにして、発生した信号電極信号と走査電極信号と補償電極信号とで液晶表示装置のそれぞれの画素に表示映像を表示させている。
【0013】
ここで、図4を用いて従来の電源回路503の補償電源作成回路102についてもう少し詳しく下記に説明する。
【0014】
図4において、401は昇圧回路、402は出力電源回路、403は補償電源回路である。
【0015】
以上のように構成された従来の電源回路503の補償電源作成回路102の動作について、上記では触れなかった部分についての信号の流れを下記に説明する。
【0016】
液晶表示装置の従来の電源回路503内の補償電源作成回路102は、昇圧回路401と、出力電源回路402と、補償電源回路403とで構成され、入力電源104を昇圧回路401で2〜3倍の電圧に一端昇圧し、出力電源回路402にて必要な電圧を作成し、たとえば、信号電極駆動回路群111で使用するアナログ電源AVDDのような信号を作成する。これを電源として使用し、補償電源回路403で補償電源101を作成し、走査電極駆動回路群110に送り、補償電極線118を駆動する電源に使用する。
【0017】
つぎに、図3の信号波形を使用して、上記で説明した液晶表示装置の駆動についてもう少し、詳しく説明する。
【0018】
図3において、301は走査電極線117の1ライン目の信号波形G(1)、302は走査電極線117の2ライン目の信号波形G(2)、303は走査電極線117のnライン目の信号波形G(n)、311は補償電極線118の1ライン目の信号波形GE(1)、312は補償電極線118の2ライン目の信号波形GE(2)、313は補償電極線118のnライン目の信号波形GE(n)、である。
【0019】
以上のように構成された波形で従来の液晶表示装置における信号について説明する。
【0020】
画素115に内にある画素トランジスタ114は、走査電極信号であるG(1)301、G(2)302、・・・・、G(n)303といった信号波形で、1ライン目、2ライン目、・・・・・nライン目と順次、オン/オフさせ、信号電極信号を導通させたり遮断したりする。
【0021】
走査電極信号により、画素トランジスタ114がオンしている期間、信号電極信号が画素トランジスタ114を導通し画素電極に加えられ、規定された時間で信号電極信号側から液晶層113に一端、電荷を蓄積し、次に、走査電極信号により、画素トランジスタ114をオフにさせ、画像情報をホールドする。
【0022】
次に、画素トランジスタ114をオフにさせたあとに、補償電極線118により、補償電極信号であるGE(1)311、GE(2)312、・・・・、GE(n)313といった信号波形で、走査電極線の信号にある一定期間遅れて1ライン目、2ライン目、・・・・・nライン目と順次前ラインとは逆極性で変化し、かつ、1V期間後は、同一ラインでも逆極性となるように駆動する。
【0023】
これにより、画素トランジスタ114が、一端オフした後、信号電極と対向電極119との信号電位差と、補償容量112に蓄積された電位により、液晶層113に加わる電位差を変化させ、その加えられたトータルの電位によって液晶層113のねじれ角を制御し、このような動作を全ての画素で走査線単位に行うことにより、液晶表示装置に映像を表示する。
【0024】
【特許文献1】
特開平02−000913号公報
【0025】
【発明が解決しようとする課題】
従来のCC駆動による液晶表示装置の動作は、以上のようなものであるが、しかしながら、図3の補償電極線118に加えられる補償電極信号波形で表示を行っているとき、信号レベル負側から信号レベル正側へ到達するときや、または、信号レベル正側から信号レベル負側へ到達するときは、補償容量112に充電あるいは放電させる電荷つまり電流は、入力電源104を昇圧動作をさせた電圧からすべて供給されるため従来の電源回路503の昇圧回路401の昇圧値が大きければ大きいほど入力電源104に流れる電流は大きくなる。
【0026】
たとえば、補償電極線118の駆動電源である補償回路駆動電圧105の電圧値VGEが、入力電源104の電圧値VCCの2倍であった場合、昇圧回路401は、入力電源104を2倍以上に持ち上げる必要があるため、逆に、昇圧回路401に流れる電流の値IVCCは、入力電源104の電流値IVGEに換算するとき、2倍になる。つまり、VGE=2VCC、IVCC=2IVGEの関係があることになる。
【0027】
補償電極線の電位、つまり、補償電源回路403で作られる補償電極線駆動電圧105が電位的に飽和到達するまで、補償電源回路403は電流を流し続ける。
【0028】
これにより、仮に、従来の電源回路103の損失がなかった場合、これを入力電源104に換算すると、入力電源電流は、補償電源回路403に流れる電流の2倍の値をとることとなるが、実際は、必ず、従来の電源回路103で損失があるため、さらにこの電流が増えることになる。
【0029】
つまり、補償電極駆動電圧105を入力電源104より昇圧して作ることにより、不必要な電力を消費続け、液晶表示装置の消費電力を増やしていることとなっている。
【0030】
本発明は、かかる点に鑑み、上記の課題となる、消費電力として、補償電極に供給される電圧を抑制する構成となり、低消費電力を実現する液晶表示装置を提供することを目的とするものである。
【0031】
【課題を解決するための手段】
上記の目的を達成するために、第1の本発明は、マトリックス状に配置された走査電極線(117)および画像電極線(116)と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線(118)と、前記走査電極線および前記画像電極線からの信号が入力される表示素子(113,115,119)と、前記補償電極線からの信号が入力される補償キャパシタ(112)とを有するCC(Charge−Coupling)駆動用の液晶表示パネルに、前記補償電圧を供給する電源装置であって、
外部電源からの入力を昇圧および降圧して、前記高低2種類の補償電圧を生成する補償電圧生成手段(102)と、
前記外部電源からの入力をそのまま出力するバイパス手段(104a)と、
前記補償電圧生成手段からの出力および前記バイパス手段からの出力を入力し、高または低の前記補償電圧もしくは前記外部電源からの入力のいずれかを選択して前記補償電力線に出力する選択出力手段(100)とを備え、
前記補償電圧が高から低に変動するとき、前記選択出力手段は、高の前記補償電圧、前記外部電源からの入力、低の前記補償電圧がこの順で出力されるよう選択を行い、
前記補償電圧が低から高に変動するとき、前記選択出力手段は、低の前記補償電圧、前記外部電源からの入力、高の前記補償電圧がこの順で出力されるよう選択を行う電源装置である。
【0032】
また、第2の本発明は、前記補償電圧生成手段は、
前記外部電圧からの入力を昇圧または降圧する昇降圧手段(401)と、
前記昇降圧手段からの出力を前記補償電力線に出力する前記高低2種類の補償電圧の信号に変換する変換手段(403)とを備えた第1の本発明の電源装置である。
【0033】
また、第3の本発明は、マトリックス状に配置された走査電極線(117)および画像電極線(116)と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線(118)と、前記走査電極線および前記画像電極線からの信号が入力される表示素子(113,115,119)と、前記補償電極線からの信号が入力される補償キャパシタ(112)とを有するCC(Charge−Coupling)駆動用の液晶表示パネルと、
前記走査電極線、前記画像電極線および前記補償電極線にそれぞれ対応する信号を供給する信号供給手段(110、111)とを備え、
前記信号供給手段は、第1または第2の本発明の電源装置を有し、前記補償信号線に、前記高低2種類の補償電圧の信号もしくは前記外部電源からの入力を供給する液晶表示装置である。
【0034】
また、第4の本発明は、マトリックス状に配置された走査電極線(117)および画像電極線(116)と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線と、前記走査電極線および前記画像電極線からの信号が入力される表示素子と、前記補償電極線からの信号が入力される補償キャパシタとを有するCC(Charge−Coupling)駆動用の液晶表示パネルに、前記補償電圧を供給する電源供給方法であって、
外部電源からの入力を昇圧および降圧して、前記高低2種類の補償電圧を生成する補償電圧生成工程と、
前記外部電源からの入力をそのまま出力するバイパス工程と、
前記補償電圧生成工程からの出力および前記バイパス工程からの出力を入力し、高または低の前記補償電圧もしくは前記外部電源からの入力のいずれかを選択して前記補償電力線に出力する選択出力工程とを備え、
前記補償電圧が高から低に変動するとき、前記選択出力工程は、高の前記補償電圧、前記外部電源からの入力、低の前記補償電圧がこの順で出力されるよう選択を行い、
前記補償電圧が低から高に変動するとき、前記選択出力工程は、低の前記補償電圧、前記外部電源からの入力、高の前記補償電圧がこの順で出力されるよう選択を行う電源供給方法である。
【0035】
【発明の実施の形態】
以下に本発明を、その実施の形態を示す図面に基づいて説明する。
【0036】
(実施の形態1)
図1に、本発明の実施の形態による液晶表示装置の構成図を示し、図2に、その信号波形を示す。
【0037】
図1において、100は補償電源切替回路、101は補償電源、102は補償電源作成回路、103は電源回路、104は液晶表示装置に入力される入力電源、105は補償電極線駆動電圧、106は補償電極駆動電源制御信号、107は電源回路制御信号、108は制御信号発生回路、109は走査電極信号電極制御信号、110は走査電極駆動回路群、111は信号電極駆動回路群、112は補償容量、113は液晶層、114は、本発明の液晶パネルの画素トランジスタ、115は液晶パネルの画素、116は信号電極線、117は走査電極線、118は補償電極線、119は対向電極である。また、104aは、補償電源切替回路100と入力電源104とを接続するバイパス線である。
【0038】
以上のように構成された、本発明の実施の形態による液晶表示装置について説明するとともに、これにより、本発明の電源供給方法の一実施の形態について説明を行う。
【0039】
本実施の形態の液晶表示装置の電源回路103は、従来の電源回路503とは異なり、補償電源作成回路102で作成した補償電源101と、バイパス線104aを介して直接入力される入力電源104とを、補償電極駆動電源制御信号106により、1水平期間中の任意の規定された時間で切り替える補償電源切替回路100を内蔵しており、補償電源101と入力電源104とを切替え、そのうちのいずれかを走査電極駆動回路群109に入力し、補償電極線118を駆動する信号を作成し、補償容量112に電荷を充放電する構成となっている。
【0040】
つぎに、図2の信号波形を使用して、上記で説明した構成で、補償電極線118に接続された補償容量112を駆動する補償電源101と、入力電源104との切替えについて、もう少し詳しく説明する。
【0041】
図2において、201は従来の補償電源からの電圧VGEnの正極変化波形、211は従来の補償電源からの電圧VGEnの負極変化波形、202は本実施の形態の補償電源101からの電圧VGEnの正極変化波形、212は本実施の形態の補償電源101からの電圧VGEnの負極変化波形である。
【0042】
ここでは、説明を簡単にするため、入力電圧104が2倍であるものとして説明する。
【0043】
まず、電源回路103において、入力電圧104は昇圧回路401により昇圧される。電圧レベルを入力電源104から補償電源回路403で使用できる電源を出力電源回路402で作成し、電圧値が持ち上げられる。この2倍に昇圧された電源を使用して、補償電源回路403で補償電極線駆動電圧105を作成し、最終的には、走査電極駆動回路群110で補償電極線118の駆動電圧を作成する。
【0044】
通常、補償電極線118の信号レベルが従来の電圧VGEnの正極変化波形201のように負側から正側へ到達するときや、従来の電圧VGEnの負極変化波形211のように信号レベルが正側から負側へ到達するときは、補償容量に充電あるいは放電させる電荷つまり電流は、入力電圧104を昇圧動作をさせた電圧を使用した補償電源回路403からすべて供給されるため、補償電極回路403に流れる電流は、入力電源104の値に換算すると、その2倍になる。
【0045】
つまり、補償電極線駆動電圧105である電圧VGE_Hiは、入力電源104の電圧をVCCとして計算式で表すと、
【0046】
【数1】
VCC<VGE_Hi≦2VCC
となり、補償電極線駆動電圧105に流れる電流IVGEと入力電源104に流れる電流IVCCの関係を計算式で表すと、
【0047】
【数2】
IVCC=2IVGE
となる。
【0048】
ここで、本実施の形態では、補償電極線118の信号レベルが負側から正側へ到達するとき、つまり補償容量112を充電するとき、1水平期間の所定の時間で、補償容量112を負側の電位VGE_Loから入力電源104の電位VCCになるまで入力電源104から直接充電を行い、1水平期間の残りの期間で、入力電源104の電位VCCから補償電極線118の正側の電位VGE_Hiまで、補償電源回路403の出力信号で充電を行うことにより、図2の正極変化波形202に示すように、補償容量112は2段階で充電されたことになる。
【0049】
このとき補償電極線118に流れる電流値を入力電源104の電流値に換算すると、補償容量112が負側の電位から入力電源104の電位VCCまで充電される第1の期間は、入力電源104の1倍の電流となる一方、入力電源104の電位VCCから補償容量112の正側の電位VGE_Hiまで充電される第2の期間は入力電源104の値の2倍になる。これは、補償電源回路403に流れる電流が2倍昇圧より作成されているためである。
【0050】
これらを合計すると、入力電源104から補償容量線118へ供給される電流値IVGEは、各段階に応じてそれぞれ下記のような値になる。つまり、上記第1の期間はIVGE=IVCC、上記第2の期間はIVGE=(1/2)IVCCとなる。
【0051】
ここで、上記第1の期間における電流値をI1とし、上記第2の期間における電流値をI2とすると、入力電源104に流れる電流値の総計は、従来では、(I1+I2)×2となり、本実施の形態では、(I1+I2)×2、となる。よって、両者の差は、(従来の電流値)−(本実施の形態の電流値)=I1となり、本実施の形態は、従来例に比してI1分の電流を抑制でき、低電力化が可能となる。
【0052】
実際は、必ず電源回路103の昇圧回路401で損失があるため、さらにこの電流が増えることになるが、入力電源104を直接入力した場合、損失は発生しないことにより、この損失を考慮すると、従来では、(I1+I2)×2×(1+損失率)となり、本実施の形態では、(I1+I2)×2×(1+損失率)となる。
【0053】
したがって、昇圧回路401による損失を考慮した場合でも、(従来の電流値)−(本実施の形態の電流値)=I1(1+2×損失率分)となり、I1(1+2×損失率分)の電流を抑制でき、低電力化が可能となる。
【0054】
補償電源作成回路102にはたいてい損失があるため、損失が大きければ大きいほど、さらなる消費電力を低減できる効果が大きくなることになる。
【0055】
一方、補償電極線118の信号レベルが正側の電位から負側の電位へ到達するとき、つまり補償容量112を放電するとき、1水平期間の所定の時間で、補償容量112を正側の電位VGE_Hiから入力電源104の電位VCCになるまで入力電源104から直接的に放電を行い、1水平期間の残りの期間で、入力電源104の電位VCCから補償電極線118の負側の電位VGE_Loまで、補償電源回路403の出力信号で放電を行うことにより、図2の正極変化波形212に示すように、補償容量112は2段階で放電されたことになる。
【0056】
このときにも、補償容量12を充電した場合と同様の計算式が成り立ち、I1(1+2×損失率分)の電流を抑制でき、低電力化が可能となる。
【0057】
以上述べたように、本実施の形態によれば、補償容量112の充電期間および放電期間のそれぞれにおいて、全工程において補償電源作成回路102からの出力を用いるのではなく、所定の期間で入力電源104で直接充電、放電する工程を挟むことにより、不必要な電力の消費を抑制し、液晶表示装置の消費電力を低減できることとなる。
【0058】
なお、上記の実施の形態において、入力電源104は本発明の外部電源に相当し、補償電源作成回路102は本発明の補償電圧作成手段に相当し、バイパス線104aは本発明のバイパス手段に相当し、補償電源切替回路100は、本発明の選択出力手段に相当する。また、昇圧回路401は本発明の昇降圧手段に相当し、補償電源回路403は本発明の変換手段に相当する。
【0059】
また、正側の電位VGE_Hiは本発明の高の補償電圧に相当し、負側の電位VGE_Loは本発明の低の補償電圧に相当し、入力電源104の電圧VCCは、本発明の外部電源からの入力の電圧に相当する。
【0060】
また、走査電極駆動回路群110、信号電極駆動回路群111は本発明の信号供給手段を構成し、液晶層113、画素トランジスタ114、画素115、信号電極線116、走査電極線117、補償電極線118、対向電極119、補償容量112は本発明の液晶表示パネルを構成し、液晶層113,画素トランジスタ114,画素115,対向電極119は本発明の表示素子を構成し、補償容量112は本発明の補償キャパシタに相当する。
【0061】
ただし本発明は上記の実施の形態に限定されるものではない。また、上記の実施の形態においては、液晶表示装置を例に説明を行ったが、独立CC駆動する液晶パネルに補償電圧を供給するための電源装置として実現してもよい。この場合、補償電源作成回路102において、補償電源回路403は出力電源回路402からの信号に基づき補償電源を生成していたが、昇圧回路401から直接生成する構成としてもよい。
【0062】
また、昇圧率(もしくは降圧率)を2倍として説明したが、昇圧率(もしくは降圧率)は、1以上の数値であればどんな数値であってもよい。
【0063】
また、本発明の所定の周期の一例として、補償電圧の正側と負側の間の電位の変動が行われる周期は1垂直同期期間(1V期間)であるとしたが、他の周期であってもよい。また、補償電圧の正側と負側との電位の変動そのものの期間は1水平同期期間(1H期間)であるとしたが、その間に外部電源の電圧で直接充電、放電する工程が挟まれる限り他の周期であってもよい。
【0064】
【発明の効果】
以上説明したように、本発明は、昇圧回路での電流ロスを抑制することができ、その結果、消費電力を抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における液晶表示装置の構成を示す図
【図2】本発明の実施の形態における液晶表示装置の信号波形を示す図
【図3】従来の液晶表示装置の信号波形を示す図
【図4】従来の液晶表示装置の電源回路の詳細構成図
【図5】従来の液晶表示装置の全体構成図
【符号の説明】
100 補償電源切替回路
101 補償電源
102 補償電源作成回路
103 電源回路
104 液晶表示装置に入力される入力電源
105 補償電極線駆動電圧
106 補償電極駆動電源制御信号
107 電源回路制御信号
108 制御信号発生回路
109 走査電極信号電極制御信号
110 走査電極駆動回路群
111 信号電極駆動回路群
112 補償容量
113 液晶層
114 液晶パネルの画素トランジスタ
115 液晶パネルの画素
116 信号電極線
117 走査電極線
118 補償電極線
119 対向電極
201 従来の電位VGEnの正極変化波形
202 従来の電位VGEnの負極変化波形
211 本実施の形態の電位VGEnの正極変化波形
212 本実施の形態の電位VGEnの負極変化波形
301 走査電極線117の1ライン目の信号波形G1
302 走査電極線117の2ライン目の信号波形G2
303 走査電極線117のnライン目の信号波形Gn
311 補償電極線118の1ライン目の信号波形GE1
312 補償電極線118の2ライン目の信号波形GE2
313 補償電極線118のnライン目の信号波形GEn
401 昇圧回路
402 出力電源回路
403 補償電源回路
503 従来の電源回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device useful as a display of a video device such as a television, an information device such as a computer, and a mobile phone, and a power supply device used therefor.
[0002]
[Prior art]
FIG. 5 is a block diagram of an independent CC (Charge-Coupling) driving type liquid crystal display device that is often used in recent years, and FIG. 4 is a detailed diagram thereof, and FIG. 3 is a driving waveform thereof (for example, FIG. , Patent Document 1).
[0003]
5, reference numeral 101 denotes a compensation power supply, 102 denotes a compensation power generation circuit, 503 denotes a conventional power supply circuit, 104 denotes an input power supply input to the liquid crystal display device, 107 denotes a power supply circuit control signal, 108 denotes a control signal generation circuit, 109 Is a scanning electrode signal electrode control signal, 110 is a scanning electrode driving circuit group, 111 is a signal electrode driving circuit group, 112 is a compensation capacitor, 113 is a liquid crystal layer, 114 is a pixel transistor of a liquid crystal panel, 115 is a pixel of a liquid crystal panel, 116 Is a signal electrode line, 117 is a scanning electrode line, 118 is a compensation electrode line, and 119 is a counter electrode.
[0004]
The operation of the conventional liquid crystal display device configured as described above will be described below.
[0005]
In the conventional liquid crystal display device shown in FIG. 5, a scanning electrode line 117 and a signal electrode 116 are provided on a liquid crystal panel, and a pixel transistor 114 is provided at each intersection. The electrode line 117 is connected to the signal electrode line 116 on the source side, the pixel electrode is connected to the drain side, and the liquid crystal layer 113 is provided between the pixel electrode and the counter electrode.
[0006]
The scan electrode drive circuit group 110 also includes a circuit for driving the compensation electrode line 118, and is connected to the compensation electrode connected to the compensation electrode line 118 and the drain side of the pixel transistor 114 in parallel with the liquid crystal layer 113. A compensation capacitor 112 is formed between the storage capacitor and the storage electrode, and the compensation capacitor 112 is driven by a compensation electrode line 118.
[0007]
The signal electrode line 116 is driven by the signal electrode drive circuit group 111, and the scan electrode line 117 and the reward electrode line 118 are driven by the scan electrode drive circuit group 110.
[0008]
The control signal generation circuit 108 processes an image to be displayed on the liquid crystal display device into a video signal to be given to the signal electrode drive circuit group 111 based on the input signal, or generates a control signal for controlling the signal electrode drive circuit group 111. Then, the signal is sent to the signal electrode drive circuit group 111 and the scan electrode drive circuit group 110 as the scan electrode signal electrode control signal 109, and the power supply circuit control signal 107 for operating the conventional power supply circuit 503 is generated based on the input signal 102. And sends it to the conventional power supply circuit 503.
[0009]
In the conventional power supply circuit 503, a power supply required for the signal electrode drive circuit group 111 and the scan electrode drive circuit group 110 is created by using the input voltage 104 by the power supply circuit control signal 107 and sent to each of the electrode drive circuit groups. In addition, the compensation power supply 101 for driving the compensation electrode line is also created by the compensation power supply creation circuit 102.
[0010]
In the signal electrode drive circuit group 111, a signal electrode signal is generated by a signal electrode drive power supply from the conventional power supply circuit 503, a video signal from the control signal generation circuit 108, and a signal electrode drive signal as a control signal. The electrode lines 116 are driven.
[0011]
The scan electrode drive circuit group 110 generates a scan electrode signal based on a scan electrode drive power supply from the conventional power supply circuit 503 and a scan electrode drive signal which is a control signal from the control signal generation circuit 108, Driving line 117 and using the compensating power supply to create a compensating electrode signal and also driving compensating electrode line 118.
[0012]
Thus, a display image is displayed on each pixel of the liquid crystal display device by the generated signal electrode signal, scan electrode signal, and compensation electrode signal.
[0013]
Here, the compensation power generation circuit 102 of the conventional power supply circuit 503 will be described in more detail below with reference to FIG.
[0014]
4, reference numeral 401 denotes a booster circuit, 402 denotes an output power supply circuit, and 403 denotes a compensation power supply circuit.
[0015]
Regarding the operation of the compensated power supply generation circuit 102 of the conventional power supply circuit 503 configured as described above, the flow of signals in the portions not mentioned above will be described below.
[0016]
The compensating power supply generating circuit 102 in the conventional power supply circuit 503 of the liquid crystal display device includes a booster circuit 401, an output power supply circuit 402, and a compensation power supply circuit 403. , And the output power supply circuit 402 creates a necessary voltage, for example, creates a signal such as an analog power supply AVDD used in the signal electrode drive circuit group 111. This is used as a power supply, a compensation power supply circuit 403 creates a compensation power supply 101, sends it to the scan electrode drive circuit group 110, and uses it as a power supply for driving the compensation electrode line 118.
[0017]
Next, the driving of the above-described liquid crystal display device will be described in more detail with reference to the signal waveform of FIG.
[0018]
3, reference numeral 301 denotes a signal waveform G (1) of the first line of the scanning electrode line 117, 302 denotes a signal waveform G (2) of the second line of the scanning electrode line 117, and 303 denotes an nth line of the scanning electrode line 117. 311 are the signal waveforms GE (1) of the first line of the compensation electrode line 118, 312 are the signal waveforms GE (2) of the second line of the compensation electrode line 118, and 313 are the compensation electrode lines 118. , The signal waveform GE (n) of the n-th line.
[0019]
A signal in the conventional liquid crystal display device will be described with the waveform configured as described above.
[0020]
The pixel transistor 114 in the pixel 115 has a signal waveform of G (1) 301, G (2) 302,... ,... Are turned on / off sequentially from the n-th line, and the signal electrode signal is turned on or off.
[0021]
During the period when the pixel electrode 114 is turned on by the scanning electrode signal, the signal electrode signal is conducted to the pixel transistor 114 to be applied to the pixel electrode, and a charge is accumulated at the liquid crystal layer 113 from the signal electrode signal side for a specified time. Then, the pixel transistor 114 is turned off by the scanning electrode signal, and the image information is held.
[0022]
Next, after the pixel transistor 114 is turned off, signal waveforms such as GE (1) 311, GE (2) 312,... The first line, the second line,..., The nth line and the preceding line sequentially change in reverse polarity with a certain period behind the signal of the scanning electrode line, and the same line after the 1V period. However, it is driven to have the opposite polarity.
[0023]
Thus, after the pixel transistor 114 is turned off once, the potential difference applied to the liquid crystal layer 113 is changed by the signal potential difference between the signal electrode and the counter electrode 119 and the potential accumulated in the compensation capacitor 112, and the added total The torsion angle of the liquid crystal layer 113 is controlled by the electric potential of the liquid crystal layer 113, and such an operation is performed for every pixel in each scanning line, whereby an image is displayed on the liquid crystal display device.
[0024]
[Patent Document 1]
JP-A-02-000913
[Problems to be solved by the invention]
The operation of the liquid crystal display device by the conventional CC drive is as described above. However, when the display is performed by the compensation electrode signal waveform applied to the compensation electrode line 118 in FIG. When the signal level reaches the positive side or when the signal level reaches the negative side from the positive side, the charge or current that charges or discharges the compensation capacitor 112 is a voltage at which the input power supply 104 is boosted. , The larger the boosted value of the booster circuit 401 of the conventional power supply circuit 503, the larger the current flowing to the input power supply 104.
[0026]
For example, when the voltage value VGE of the compensation circuit driving voltage 105, which is the driving power source of the compensation electrode line 118, is twice the voltage value VCC of the input power source 104, the booster circuit 401 increases the input power source 104 to twice or more. Conversely, the value IVCC of the current flowing through the booster circuit 401 is doubled when converted into the current value IVGE of the input power supply 104 because it is necessary to raise the current. That is, there is a relationship of VGE = 2VCC and IVCC = 2IVGE.
[0027]
The compensation power supply circuit 403 continues to flow current until the potential of the compensation electrode line, that is, the compensation electrode line drive voltage 105 generated by the compensation power supply circuit 403 reaches the potential saturation.
[0028]
As a result, if there is no loss in the conventional power supply circuit 103, when this is converted into the input power supply 104, the input power supply current has a value twice as large as the current flowing through the compensation power supply circuit 403. Actually, since the conventional power supply circuit 103 always has a loss, the current further increases.
[0029]
That is, by increasing the compensation electrode drive voltage 105 from the input power supply 104, unnecessary power is continuously consumed, and the power consumption of the liquid crystal display device is increased.
[0030]
In view of the above, an object of the present invention is to provide a liquid crystal display device that has a configuration that suppresses the voltage supplied to the compensation electrode as power consumption, which is the above problem, and that achieves low power consumption. It is.
[0031]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is to provide a scanning electrode line (117) and an image electrode line (116) arranged in a matrix and a predetermined arrangement arranged corresponding to the scanning electrode line. A compensating electrode line (118) for supplying two kinds of high and low compensating voltages that fluctuate in a cycle of (1), and display elements (113, 115, 119) to which signals from the scanning electrode line and the image electrode line are inputted. A power supply device for supplying the compensation voltage to a liquid crystal display panel for driving a CC (Charge-Coupling) having a compensation capacitor (112) to which a signal from the compensation electrode line is inputted.
Compensation voltage generating means (102) for boosting and stepping down an input from an external power supply to generate the high and low compensation voltages;
A bypass unit (104a) for directly outputting the input from the external power supply;
Selection output means for inputting the output from the compensation voltage generation means and the output from the bypass means, selecting either the high or low compensation voltage or the input from the external power supply and outputting to the compensation power line 100) and
When the compensation voltage fluctuates from high to low, the selection output means performs selection so that the high compensation voltage, the input from the external power supply, and the low compensation voltage are output in this order,
When the compensation voltage fluctuates from low to high, the selection output means is a power supply device that selects so that the low compensation voltage, the input from the external power supply, and the high compensation voltage are output in this order. is there.
[0032]
Further, according to a second aspect of the present invention, the compensation voltage generating means includes:
Step-up / step-down means (401) for stepping up or stepping down an input from the external voltage;
The power supply device according to the first aspect of the present invention, further comprising: a conversion unit (403) configured to convert an output from the step-up / step-down unit to a signal of the two kinds of high and low compensation voltages that is output to the compensation power line.
[0033]
Further, the third aspect of the present invention relates to a scanning electrode line (117) and an image electrode line (116) which are arranged in a matrix, and a height which varies in a predetermined cycle and which is arranged corresponding to the scanning electrode line. A compensation electrode line (118) for supplying a compensation voltage of a different voltage; a display element (113, 115, 119) to which signals from the scanning electrode line and the image electrode line are input; A liquid crystal display panel for driving a CC (Charge-Coupling) having a compensation capacitor (112) to which a signal is input;
Signal supply means (110, 111) for supplying signals corresponding to the scanning electrode lines, the image electrode lines, and the compensation electrode lines, respectively.
The signal supply means includes a power supply device according to the first or second aspect of the present invention, and supplies a signal of the two kinds of high and low compensation voltages or an input from the external power supply to the compensation signal line. is there.
[0034]
Further, according to a fourth aspect of the present invention, there is provided a scanning electrode line (117) and an image electrode line (116) arranged in a matrix, and a height 2 which is arranged corresponding to the scanning electrode line and fluctuates at a predetermined cycle. Compensation electrode lines for supplying compensation voltages of different voltages, display elements to which signals from the scanning electrode lines and the image electrode lines are inputted, and compensation capacitors to which signals from the compensation electrode lines are inputted. A power supply method for supplying the compensation voltage to a liquid crystal display panel for CC (Charge-Coupling) driving,
A compensation voltage generation step of boosting and stepping down an input from an external power supply to generate the high and low compensation voltages;
A bypass step of directly outputting an input from the external power supply,
A selection output step of inputting the output from the compensation voltage generation step and the output from the bypass step, selecting either the high or low compensation voltage or the input from the external power supply, and outputting to the compensation power line. With
When the compensation voltage fluctuates from high to low, the selecting and outputting step selects such that the high compensation voltage, the input from the external power supply, and the low compensation voltage are output in this order,
When the compensation voltage varies from low to high, the selecting and outputting step includes a power supply method for selecting so that the low compensation voltage, the input from the external power supply, and the high compensation voltage are output in this order. It is.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings showing the embodiments.
[0036]
(Embodiment 1)
FIG. 1 shows a configuration diagram of a liquid crystal display device according to an embodiment of the present invention, and FIG. 2 shows a signal waveform thereof.
[0037]
In FIG. 1, reference numeral 100 denotes a compensation power supply switching circuit, 101 denotes a compensation power supply, 102 denotes a compensation power generation circuit, 103 denotes a power supply circuit, 104 denotes an input power input to the liquid crystal display device, 105 denotes a compensation electrode line drive voltage, and 106 denotes a compensation electrode line drive voltage. Compensation electrode drive power supply control signal, 107 is a power supply circuit control signal, 108 is a control signal generation circuit, 109 is a scan electrode signal electrode control signal, 110 is a scan electrode drive circuit group, 111 is a signal electrode drive circuit group, 112 is a compensation capacitor , 113 are liquid crystal layers, 114 is a pixel transistor of the liquid crystal panel of the present invention, 115 is a pixel of the liquid crystal panel, 116 is a signal electrode line, 117 is a scanning electrode line, 118 is a compensation electrode line, and 119 is a counter electrode. A bypass line 104a connects the compensation power supply switching circuit 100 and the input power supply 104.
[0038]
The liquid crystal display device according to the embodiment of the present invention configured as described above will be described, and the embodiment of the power supply method of the present invention will be described.
[0039]
The power supply circuit 103 of the liquid crystal display device of the present embodiment is different from the conventional power supply circuit 503 in that the compensation power supply 101 created by the compensation power supply creation circuit 102 and the input power supply 104 directly input via the bypass line 104a. , A compensation power supply control circuit 106 that switches the compensation power supply at an arbitrary prescribed time during one horizontal period, and switches between the compensation power supply 101 and the input power supply 104. Is input to the scan electrode drive circuit group 109, a signal for driving the compensation electrode line 118 is generated, and the compensation capacitor 112 is charged and discharged.
[0040]
Next, switching between the compensation power supply 101 for driving the compensation capacitor 112 connected to the compensation electrode line 118 and the input power supply 104 in the above-described configuration using the signal waveform of FIG. 2 will be described in more detail. I do.
[0041]
2, reference numeral 201 denotes a positive-polarity change waveform of the voltage VGEn from the conventional compensation power supply, 211 denotes a negative-polarity change waveform of the voltage VGEn from the conventional compensation power supply, and 202 denotes a positive polarity of the voltage VGEn from the compensation power supply 101 of the present embodiment. A change waveform 212 is a negative change waveform of the voltage VGEn from the compensation power supply 101 according to the present embodiment.
[0042]
Here, for the sake of simplicity, the description will be made assuming that the input voltage 104 is double.
[0043]
First, in the power supply circuit 103, the input voltage 104 is boosted by the booster circuit 401. A power supply whose voltage level can be used by the compensation power supply circuit 403 from the input power supply 104 is generated by the output power supply circuit 402, and the voltage value is raised. By using the power source that has been boosted twice, the compensating power supply circuit 403 creates the compensating electrode line driving voltage 105, and finally, the scan electrode driving circuit group 110 creates the compensating electrode line 118 driving voltage. .
[0044]
Normally, when the signal level of the compensation electrode line 118 reaches the positive side from the negative side like the positive polarity change waveform 201 of the conventional voltage VGEn, or when the signal level changes to the positive side like the conventional negative change waveform 211 of the voltage VGEn. When the charge reaches the negative side from the above, all the charges to charge or discharge the compensation capacitor, that is, the current, are supplied from the compensation power supply circuit 403 using the voltage obtained by boosting the input voltage 104. The flowing current is twice as large as the value of the input power supply 104.
[0045]
That is, the voltage VGE_Hi, which is the compensation electrode line driving voltage 105, is represented by a calculation formula where the voltage of the input power supply 104 is VCC.
[0046]
(Equation 1)
VCC <VGE_Hi ≦ 2VCC
The relationship between the current IVGE flowing through the compensation electrode line driving voltage 105 and the current IVCC flowing through the input power supply 104 is expressed by a calculation formula.
[0047]
(Equation 2)
IVCC = 2IVGE
It becomes.
[0048]
Here, in the present embodiment, when the signal level of the compensation electrode line 118 reaches the positive side from the negative side, that is, when the compensation capacitance 112 is charged, the compensation capacitance 112 is set negative for a predetermined time of one horizontal period. Charging from the input power supply 104 to the potential VCC of the input power supply 104 from the potential VGE_Lo on the input side to the potential VCC of the input power supply 104 to the potential VGE_Hi on the positive side of the compensation electrode line 118 in the remaining period of one horizontal period. By performing charging with the output signal of the compensation power supply circuit 403, the compensation capacitor 112 is charged in two stages as shown by the positive polarity change waveform 202 in FIG.
[0049]
At this time, when the value of the current flowing through the compensation electrode line 118 is converted into the value of the current of the input power supply 104, the first period in which the compensation capacitor 112 is charged from the negative potential to the potential VCC of the input power supply 104 is equal to the current of the input power supply 104. While the current is one-time, the value of the input power supply 104 is twice as large in the second period in which the current is charged from the potential VCC of the input power supply 104 to the potential VGE_Hi on the positive side of the compensation capacitor 112. This is because the current flowing through the compensation power supply circuit 403 is generated by double boosting.
[0050]
When these are summed, the current value IVGE supplied from the input power supply 104 to the compensation capacitance line 118 has the following value according to each stage. That is, IVGE = IVCC in the first period, and IVGE = (1/2) IVCC in the second period.
[0051]
Here, assuming that the current value in the first period is I1 and the current value in the second period is I2, the total value of the current flowing to the input power supply 104 is (I1 + I2) × 2 in the related art. In the embodiment, (I1 + I2) × 2. Therefore, the difference between the two is (conventional current value) − (current value of the present embodiment) = I1, and in the present embodiment, the current for I1 can be suppressed as compared with the conventional example, and the power consumption is reduced. Becomes possible.
[0052]
Actually, since the loss always occurs in the booster circuit 401 of the power supply circuit 103, this current further increases. However, when the input power supply 104 is directly input, no loss occurs. , (I1 + I2) × 2 × (1 + loss rate), and in the present embodiment, (I1 + I2) × 2 × (1 + loss rate).
[0053]
Therefore, even when the loss due to the booster circuit 401 is considered, (conventional current value)-(current value of the present embodiment) = I1 (1 + 2 × the loss rate), and the current of I1 (1 + 2 × the loss rate) And power consumption can be reduced.
[0054]
Since the compensation power supply generating circuit 102 generally has a loss, the larger the loss, the greater the effect of further reducing power consumption.
[0055]
On the other hand, when the signal level of the compensation electrode line 118 reaches the potential on the negative side from the potential on the positive side, that is, when the compensation capacitance 112 is discharged, the potential of the compensation capacitance 112 is changed to the potential on the positive side for a predetermined period of one horizontal period. Discharge is performed directly from the input power supply 104 from VGE_Hi to the potential VCC of the input power supply 104, and from the potential VCC of the input power supply 104 to the potential VGE_Lo on the negative side of the compensation electrode line 118 during the remaining period of one horizontal period. By performing discharge with the output signal of the compensation power supply circuit 403, the compensation capacitor 112 is discharged in two stages as shown by the positive polarity change waveform 212 in FIG.
[0056]
Also at this time, the same calculation formula as when the compensation capacitor 12 is charged holds, the current of I1 (1 + 2 × the loss rate) can be suppressed, and the power consumption can be reduced.
[0057]
As described above, according to the present embodiment, in each of the charging period and the discharging period of the compensation capacitor 112, the output from the compensation power generation circuit 102 is not used in all the steps, but the input power By interposing a step of charging and discharging directly at 104, unnecessary power consumption can be suppressed, and the power consumption of the liquid crystal display device can be reduced.
[0058]
In the above embodiment, the input power supply 104 corresponds to the external power supply of the present invention, the compensation power supply generating circuit 102 corresponds to the compensation voltage generating means of the present invention, and the bypass line 104a corresponds to the bypass means of the present invention. Then, the compensation power supply switching circuit 100 corresponds to the selection output unit of the present invention. Further, the booster circuit 401 corresponds to the step-up / step-down means of the present invention, and the compensation power supply circuit 403 corresponds to the conversion means of the present invention.
[0059]
The positive potential VGE_Hi corresponds to the high compensation voltage of the present invention, the negative potential VGE_Lo corresponds to the low compensation voltage of the present invention, and the voltage VCC of the input power supply 104 is supplied from the external power supply of the present invention. Input voltage.
[0060]
The scan electrode drive circuit group 110 and the signal electrode drive circuit group 111 constitute a signal supply unit of the present invention, and include a liquid crystal layer 113, a pixel transistor 114, a pixel 115, a signal electrode line 116, a scan electrode line 117, and a compensation electrode line. The liquid crystal display panel of the present invention includes the liquid crystal layer 113, the pixel transistor 114, the pixel 115, and the counter electrode 119. The compensation capacitor 112 includes the liquid crystal display panel of the present invention. Of the compensation capacitor.
[0061]
However, the present invention is not limited to the above embodiment. Further, in the above-described embodiment, the liquid crystal display device has been described as an example, but may be realized as a power supply device for supplying a compensation voltage to a liquid crystal panel driven by independent CC. In this case, in the compensation power supply generation circuit 102, the compensation power supply circuit 403 generates the compensation power supply based on the signal from the output power supply circuit 402. However, the compensation power supply circuit 403 may generate the compensation power supply directly from the booster circuit 401.
[0062]
Also, the boost rate (or the step-down rate) has been described as being twice, but the step-up rate (or the step-down rate) may be any value as long as it is a numerical value of 1 or more.
[0063]
Further, as an example of the predetermined cycle of the present invention, the cycle in which the potential change between the positive side and the negative side of the compensation voltage is performed is one vertical synchronization period (1 V period), but is another cycle. You may. In addition, the period of the fluctuation of the potential between the positive side and the negative side of the compensation voltage itself is one horizontal synchronization period (1H period). However, as long as the process of directly charging and discharging with the voltage of the external power supply is interposed therebetween, Other periods may be used.
[0064]
【The invention's effect】
As described above, according to the present invention, the current loss in the booster circuit can be suppressed, and as a result, the power consumption can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a liquid crystal display device according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a signal waveform of a liquid crystal display device according to an embodiment of the present invention. FIG. 4 is a diagram showing waveforms. FIG. 4 is a detailed configuration diagram of a power supply circuit of a conventional liquid crystal display device. FIG. 5 is an overall configuration diagram of a conventional liquid crystal display device.
REFERENCE SIGNS LIST 100 Compensation power supply switching circuit 101 Compensation power supply 102 Compensation power supply creation circuit 103 Power supply circuit 104 Input power supply 105 input to liquid crystal display device Compensation electrode line drive voltage 106 Compensation electrode drive power supply control signal 107 Power supply circuit control signal 108 Control signal generation circuit 109 Scan electrode signal electrode control signal 110 scan electrode drive circuit group 111 signal electrode drive circuit group 112 compensation capacitor 113 liquid crystal layer 114 liquid crystal panel pixel transistor 115 liquid crystal panel pixel 116 signal electrode line 117 scan electrode line 118 compensation electrode line 119 counter electrode 201 Conventional positive-polarity change waveform of potential VGEn 202 Conventional negative-polarity change waveform 211 of potential VGEn Positive-polarity change waveform 212 of potential VGEn of the present embodiment 212 Negative-polarity change waveform 301 of potential VGEn of this embodiment Eye signal waveform G1
302 Signal waveform G2 of the second line of the scanning electrode line 117
303 Signal Waveform Gn of nth Line of Scanning Electrode Line 117
311 Signal waveform GE1 of the first line of the compensation electrode line 118
312 Signal waveform GE2 of the second line of the compensation electrode line 118
313 Signal Waveform GEn of nth Line of Compensation Electrode Line 118
401 booster circuit 402 output power circuit 403 compensation power circuit 503 conventional power circuit

Claims (4)

マトリックス状に配置された走査電極線および画像電極線と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線と、前記走査電極線および前記画像電極線からの信号が入力される表示素子と、前記補償電極線からの信号が入力される補償キャパシタとを少なくとも有する独立CC(Charge−Coupling)駆動用の液晶表示パネルに、前記補償電圧を供給する電源装置であって、
外部電源からの入力を昇圧および降圧して、前記高低2種類の補償電圧を生成する補償電圧生成手段と、
前記外部電源からの入力をそのまま出力するバイパス手段と、
前記補償電圧生成手段からの出力および前記バイパス手段からの出力を入力し、高または低の前記補償電圧もしくは前記外部電源からの入力のいずれかを選択して前記補償電力線に出力する選択出力手段とを備え、
前記補償電圧が高から低に変動するとき、前記選択出力手段は、高の前記補償電圧、前記外部電源からの入力、低の前記補償電圧がこの順で出力されるよう選択を行い、
前記補償電圧が低から高に変動するとき、前記選択出力手段は、低の前記補償電圧、前記外部電源からの入力、高の前記補償電圧がこの順で出力されるよう選択を行う電源装置。
Scanning electrode lines and image electrode lines arranged in a matrix, and compensating electrode lines that are arranged corresponding to the scanning electrode lines and supply compensation voltages of two kinds of high and low voltages that fluctuate at a predetermined cycle; An independent CC (Charge-Coupling) driving liquid crystal display panel having at least a display element to which signals from scanning electrode lines and the image electrode lines are inputted and a compensation capacitor to which signals from the compensation electrode lines are inputted. A power supply device for supplying the compensation voltage,
Compensation voltage generation means for increasing and decreasing an input from an external power supply to generate the high and low compensation voltages;
Bypass means for directly outputting an input from the external power supply,
A selection output unit that receives an output from the compensation voltage generation unit and an output from the bypass unit, selects one of a high or low compensation voltage and an input from the external power supply, and outputs the selected one to the compensation power line. With
When the compensation voltage fluctuates from high to low, the selection output means performs selection so that the high compensation voltage, the input from the external power supply, and the low compensation voltage are output in this order,
The power supply device, wherein when the compensation voltage fluctuates from low to high, the selection output means selects so that the low compensation voltage, the input from the external power supply, and the high compensation voltage are output in this order.
前記補償電圧生成手段は、
前記外部電圧からの入力を昇圧または降圧する昇降圧手段と、
前記昇降圧手段からの出力を前記補償電力線に出力する前記高低2種類の補償電圧の信号に変換する変換手段とを備えた請求項1に記載の電源装置。
The compensation voltage generating means includes:
Step-up / step-down means for stepping up or stepping down an input from the external voltage;
2. The power supply device according to claim 1, further comprising: a conversion unit configured to convert an output from the step-up / step-down unit to the two types of high and low compensation voltage signals that are output to the compensation power line.
マトリックス状に配置された走査電極線および画像電極線と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線と、前記走査電極線および前記画像電極線からの信号が入力される表示素子と、前記補償電極線からの信号が入力される補償キャパシタとを少なくとも有する独立CC(Charge−Coupling)駆動用の液晶表示パネルと、
前記走査電極線、前記画像電極線および前記補償電極線にそれぞれ対応する信号を供給する信号供給手段とを備え、
前記信号供給手段は、請求項1または2に記載の電源装置を有し、前記補償信号線に、前記高低2種類の補償電圧の信号もしくは前記外部電源からの入力を供給する液晶表示装置。
Scanning electrode lines and image electrode lines arranged in a matrix, and compensating electrode lines that are arranged corresponding to the scanning electrode lines and supply compensation voltages of two kinds of high and low voltages that fluctuate at a predetermined cycle; An independent CC (Charge-Coupling) driving liquid crystal display panel having at least a display element to which signals from the scanning electrode lines and the image electrode lines are input and a compensation capacitor to which signals from the compensation electrode lines are input; ,
A signal supply unit that supplies a signal corresponding to each of the scan electrode line, the image electrode line, and the compensation electrode line,
3. A liquid crystal display device having the power supply device according to claim 1 or 2, wherein the signal supply means supplies a signal of the two kinds of high and low compensation voltages or an input from the external power supply to the compensation signal line.
マトリックス状に配置された走査電極線および画像電極線と、前記走査電極線に対応して配置された、所定の周期で変動する高低2種類の電圧の補償電圧を供給する補償電極線と、前記走査電極線および前記画像電極線からの信号が入力される表示素子と、前記補償電極線からの信号が入力される補償キャパシタとを少なくとも有する独立CC(Charge−Coupling)駆動用の液晶表示パネルに、前記補償電圧を供給する電源供給方法であって、
外部電源からの入力を昇圧および降圧して、前記高低2種類の補償電圧を生成する補償電圧生成工程と、
前記外部電源からの入力をそのまま出力するバイパス工程と、
前記補償電圧生成工程からの出力および前記バイパス工程からの出力を入力し、高または低の前記補償電圧もしくは前記外部電源からの入力のいずれかを選択して前記補償電力線に出力する選択出力工程とを備え、
前記補償電圧が高から低に変動するとき、前記選択出力工程は、高の前記補償電圧、前記外部電源からの入力、低の前記補償電圧がこの順で出力されるよう選択を行い、
前記補償電圧が低から高に変動するとき、前記選択出力工程は、低の前記補償電圧、前記外部電源からの入力、高の前記補償電圧がこの順で出力されるよう選択を行う電源供給方法。
Scanning electrode lines and image electrode lines arranged in a matrix, and compensating electrode lines that are arranged corresponding to the scanning electrode lines and supply compensation voltages of two kinds of high and low voltages that fluctuate at a predetermined cycle; An independent CC (Charge-Coupling) driving liquid crystal display panel having at least a display element to which signals from scanning electrode lines and the image electrode lines are inputted and a compensation capacitor to which signals from the compensation electrode lines are inputted. , A power supply method for supplying the compensation voltage,
A compensation voltage generation step of boosting and stepping down an input from an external power supply to generate the high and low compensation voltages;
A bypass step of directly outputting an input from the external power supply,
A selection output step of inputting the output from the compensation voltage generation step and the output from the bypass step, selecting either the high or low compensation voltage or the input from the external power supply, and outputting to the compensation power line. With
When the compensation voltage fluctuates from high to low, the selecting and outputting step selects such that the high compensation voltage, the input from the external power supply, and the low compensation voltage are output in this order,
When the compensation voltage varies from low to high, the selecting and outputting step includes a power supply method for selecting so that the low compensation voltage, the input from the external power supply, and the high compensation voltage are output in this order. .
JP2002372748A 2002-12-24 2002-12-24 Power unit, liquid crystal display device, and power supply method Pending JP2004205670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372748A JP2004205670A (en) 2002-12-24 2002-12-24 Power unit, liquid crystal display device, and power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372748A JP2004205670A (en) 2002-12-24 2002-12-24 Power unit, liquid crystal display device, and power supply method

Publications (1)

Publication Number Publication Date
JP2004205670A true JP2004205670A (en) 2004-07-22

Family

ID=32811269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372748A Pending JP2004205670A (en) 2002-12-24 2002-12-24 Power unit, liquid crystal display device, and power supply method

Country Status (1)

Country Link
JP (1) JP2004205670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198001A (en) * 2009-02-25 2010-09-09 Au Optronics Corp Liquid crystal display with common voltage driving circuit and method of driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198001A (en) * 2009-02-25 2010-09-09 Au Optronics Corp Liquid crystal display with common voltage driving circuit and method of driving the same

Similar Documents

Publication Publication Date Title
JP2001075536A (en) Booster circuit, source circuit and liquid crystal drive device
JP2007060732A (en) Display
JP2007011346A (en) Display device and drive apparatus for the display device
JP4010124B2 (en) Power supply circuit, liquid crystal display device and electronic device
JPH10319368A (en) Driving device for display panel
JP2008508841A (en) Device with charge pump and LCD driver with such device
US7385581B2 (en) Driving voltage control device, display device and driving voltage control method
JP5415039B2 (en) Boosting circuit, driver, display device, and boosting method
US7289116B2 (en) Electric power unit for driving a display and a display utilizing such power unit
US7230471B2 (en) Charge pump circuit of LCD driver including driver having variable current driving capability
JP2005274658A (en) Liquid crystal display apparatus
JP4474366B2 (en) Low power multi-stage driving method for liquid crystal display device
JP3281290B2 (en) Voltage generating circuit and liquid crystal display device having the same
JP2005352497A (en) Power source unit for driving display device, and display device
JP2007225843A (en) Liquid crystal driving circuit
KR20080050039A (en) Voltage generating circuit and display apparatus having the same
US8310479B2 (en) Display panel drive apparatus and display panel drive method
JP2004205670A (en) Power unit, liquid crystal display device, and power supply method
KR101186005B1 (en) LCD and drive method thereof
KR100557362B1 (en) Power supply circuit
CN100405452C (en) Display panel driving circuit
JP3751953B2 (en) Power supply device for driving display device, and display device
JP2006094670A (en) Voltage supply circuit, power source circuit, display driver, electro-optical device, and electronic equipment
JP4765495B2 (en) Driving circuit
KR20080037460A (en) Circuit making out voltage for drivign liquid crystal display device