JP2004204562A - Method and system for mining submarine gas hydrate - Google Patents

Method and system for mining submarine gas hydrate Download PDF

Info

Publication number
JP2004204562A
JP2004204562A JP2002375298A JP2002375298A JP2004204562A JP 2004204562 A JP2004204562 A JP 2004204562A JP 2002375298 A JP2002375298 A JP 2002375298A JP 2002375298 A JP2002375298 A JP 2002375298A JP 2004204562 A JP2004204562 A JP 2004204562A
Authority
JP
Japan
Prior art keywords
base
gas hydrate
gas
mining
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002375298A
Other languages
Japanese (ja)
Other versions
JP3945809B2 (en
Inventor
Michihiro Inao
道裕 稲生
Hiromasa Igarashi
寛昌 五十嵐
Takeshi Iketani
毅 池谷
Masahiro Tanaka
昌宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002375298A priority Critical patent/JP3945809B2/en
Publication of JP2004204562A publication Critical patent/JP2004204562A/en
Application granted granted Critical
Publication of JP3945809B2 publication Critical patent/JP3945809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system in which a gas hydrate in a submarine stratum existing thinly and widely is mined efficiently. <P>SOLUTION: A spread region along the sea-bottom surface 4 of a gas-hydrate layer 2 in a submarine ground 1 is investigated, a mining base 10 equipped with a boring device 11, in which a drilling angle is operated freely, is submerged at a stable ground site in the spread region and a transport route is installed between the base 10 and a marine section. A plurality of horizontal wells 30 are drilled to the gas-hydrate layer 2 from the base 10, warm heat or a kicker is sent into the layer 2 through the wells 30 and the gas hydrate is decomposed and the decomposition-product gas of the layer 2 is gathered by the wells 30, the base 10 and the transport route 19. Seawater heated by energy from the marine section on the base 10 is sent into the layer 2 including an energy transport route 18 to the base 10 from the marine section to the route 19. Alternately, an energy conversion device converting a part of the decomposition product gas into energy may also be installed to the base 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は海底ガスハイドレート採掘方法及びシステムに関し、とくに新しいエネルギー資源として注目される海底のメタンハイドレート等を採掘する方法及びシステムに関する。
【0002】
【従来の技術】
最近の海上からの音波探査(地震探査)や深海底掘削により、大陸縁辺部の海底地盤中に天然のガスハイドレートが大量に賦存することが明らかにされている。ガスハイドレートはメタン等の有用ガス分子が水分子の結晶構造(籠構造)の中に包接されたシャーベット状物質であり、海底から比較的浅い地層中の間隙を充填して地層の安定に役立っている。ガス集積度の高いメタンハイドレート層は水深1000〜2000m程度以深の海底下200〜600m程度の深さに存在すると想定され、その埋蔵量は従来型天然ガスの確認埋蔵量の数10倍以上と推定されており、未来のエネルギー源として期待されている(非特許文献1参照)。
【0003】
海底のガスハイドレート層を採掘する方法の一例として、図7(A)に示すように従来の海洋石油・天然ガス採掘と同様に、海上の掘削リグ40等から海底面4に向けたボーリングによりガスハイドレート層2に達する垂直な坑井(以下、垂直井ということがある。)41を構築する方法が考えられる。但し、ガスハイドレートは低温高圧の海底地盤中では安定であるが、海上に搬出する過程で圧力減少と温度上昇とによりガスと水とに分解してしまうため、固体のまま大量のガスハイドレートを経済的に採掘することは難しい(非特許文献1参照)。このため、海底地盤のガスハイドレート層2中にガスハイドレートの分解を促進する温水・蒸気等の温熱や適当な分解促進剤(以下、温熱及び分解促進剤を纏めてガスハイドレート分解材ということがある。)を送入してガスハイドレートを地層中で分解し、分解生成ガスのみを採取する方法が提案されている。
【0004】
特許文献1は、図8に示すように、深海原子炉50の動力を利用して海面5付近の暖かい海水を海水配管51及びポンプ57により海底ガスハイドレート層2まで導いて注入し、層2内のガスハイドレートをガス7と水8とに分解し、分解生成ガス7をガス配管60経由で海底ガスハイドレート層2の外に引き出す海底ガスハイドレート分解システムを開示する。例えば海底メタンハイドレート層2が水深2400m程度にある場合、水深2400mの水圧下におけるメタンハイドレートの安定温度は21℃以下であることから、21℃より高温の海水を注入することによりメタンハイドレートを分解できる。図8のシステムでは、深海原子炉50の排熱を小配管59経由で海水配管51中に導入し、又は小配管62経由でガス配管60の入口に導入することによりガスハイドレートの分解を促進できる。
【0005】
また特許文献2は、図9に示すように、海上の採掘基地65から分解促進剤として二酸化炭素ガスを送気管68経由で海底メタンハイドレート層2内の採掘地点Pに注入し、その採掘地点Pで二酸化炭素ガスを二酸化炭素ハイドレートとして固定化すると共にその二酸化炭素ハイドレート生成時の反応熱を用いて採掘地点Pに存在するメタンハイドレートを水とメタンガスとに分解し、メタンガスを採掘地点Pから採掘管67経由で海上の採掘基地65に回収するシステムを開示する。図9のシステムでは、回収したメタンガスを輸送船72で陸上の熱利用システム66に送り、熱利用システム66でメタンガスから熱エネルギーを取り出し、熱利用システム66の排ガス中の二酸化炭素を分離して輸送船73で採掘基地65へ送り採掘に利用する。
【0006】
【非特許文献1】工業技術院資源環境技術総合研究所ニュース、第10巻第10号、2000年10月、pp1-5
【非特許文献2】石油工業便覧−石油技術協会創立50周年記念−「8.2.7傾斜堀」、昭和58年6月発行、pp396-399
【特許文献1】特開平9−158662号公報
【特許文献2】特開2000−061293号公報
【特許文献3】特開平10−317869号公報
【特許文献4】特表2002−536573号公報
【0007】
【発明が解決しようとする課題】
特許文献1及び2の採掘方法は、海上又は海面付近から海底ガスハイドレート層に至る垂直井を利用する方法といえるが、垂直井では坑井当りの採掘可能範囲が限られているため採掘効率が悪い問題点がある。特許文献2は、図10に示すようにメタンガス採掘管67と二酸化炭素ガス送気管68との組を水平方向の異なる位置に複数設置して順次切り替えることにより採掘効率の向上を図る方法を開示している。しかし、海底ガスハイドレート層2は水深1000〜2000m程度の海底に数10m程度の厚さで分布していると想定されており、このように薄く広く分布するガスハイドレート層2を特許文献1及び2の方法で採掘するためには多数の垂直井を設置しなければならず、ボーリング等を含む採掘コストが膨大となる。
【0008】
従来の油・ガス田の掘削では、坑井当りの採掘量を増やす方法として、図7(B)に示すように垂直井から水平向きに複数の枝を出した多枝坑井42により採掘範囲を広げる方法が知られている(非特許文献2のp399参照)。しかし、石油や従来型天然ガスのような液体又は気体と異なりガスハイドレートは固体であり、単に採掘範囲を広げるだけでは足りず、上述したようにガスハイドレート分解材により分解しつつ分解生成ガスを採取する必要がある。従来の多枝坑井42はガスハイドレート分解材の輸送を想定しておらず、例えば1000m以上の多枝坑井42でガスハイドレート分解材として温熱を輸送する方法ではエネルギーロスが大きくなり経済的・効率的な採掘は難しい。海底ガスハイドレートの採掘では、坑井当りの採掘可能範囲を広げると共に、ガスハイドレート分解のための供給熱量・動力を小さく抑えることが重要である。
【0009】
そこで本発明の目的は、薄く広く存在する海底地層中のガスハイドレートを効率的に採掘する方法及びシステムを提供することにある。
【0010】
【課題を解決するための手段】
図1の実施例を参照するに、本発明の海底ガスハイドレート採掘方法は、海底地盤1中のガスハイドレート層2の海底面4に沿った拡がり領域を探査し、前記領域の安定地盤部位に削孔角度操作自在なボーリング装置11が装備された採掘基地10を沈設し、採掘基地10と海上との間に輸送路19を設け、採掘基地10からガスハイドレート層2に複数の水平井30を削孔し、ガスハイドレート層2に水平井30を介し温熱又は分解促進剤を送入してガスハイドレートを分解し、ガスハイドレート層2の分解生成ガスを水平井30と採掘基地10と輸送路19とにより海上で採取してなるものである。
【0011】
また図1の実施例を参照するに、本発明の海底ガスハイドレート採掘システムは、海底地盤1中のガスハイドレート層2の海底面4に沿った拡がり領域を探査する探査手段15、海底地盤1の力学的特性及び地質構造を調査する調査手段20(図2参照)、前記調査により定まる前記領域の安定地盤部位に採掘基地10を沈設する沈設手段16、採掘基地10内に設けた削孔角度操作自在なボーリング装置11と送入装置12と採取装置14、並びに採掘基地10と海上との間に設けた輸送路19を備えてなるものである。ボーリング装置11により採掘基地10からガスハイドレート層2に複数の水平井30を削孔し、送入装置12により水平井30へ温熱又は分解促進剤を送入してガスハイドレートを分解し、ガスハイドレート層2の分解生成ガスを採取装置14により水平井30と採掘基地10と輸送路19とを介して海上へ輸送する。
【0012】
好ましくは、図1に示すように前記輸送路19に海上から採掘基地10へのエネルギー輸送路18を含め、採掘基地10において海上からのエネルギーで加熱した海水をガスハイドレート層2に送入する。あるいは、採掘基地10に分解生成ガスの一部をエネルギーに変換するエネルギー変換装置(図示せず)を設け、その変換装置からのエネルギーで加熱した海水をガスハイドレート層2に送入する。
【0013】
【発明の実施の形態】
図1は、水深1000〜1200m程度の海底地盤1の200〜300m程度の地盤深さに数10m程度の厚さで分布するガスハイドレート層2の採掘に本発明を適用した実施例を示す。このような海底ガスハイドレート層2の分布は、例えば海上の作業船6(以下、支援母船6ということがある。)に音波探査計等の探査手段15を取り付け、母船2を探査線上で走行させることによって探査できる。ガスハイドレート層2の下側には地温等のためにガス化したフリーガス層3が存在すると考えられており、ガスハイドレート層2とフリーガス層3との間の物性のコントラストが強い境界面を音波探査で捉えることができる。この境界面は海底面4とほぼ平行に現れるという特徴があり、海底面4の形状を反映していることから海底疑似反射面(Bottom Simulating Reflector、BSR)と呼ばれている。従って、探査手段15により海底疑似反射面の分布を探査することにより、ガスハイドレート層2の海底面4に沿った拡がり領域を把握できる。
【0014】
本発明は、ガスハイドレート層2の拡がり領域の安定地盤部位に採掘基地10を設ける。採掘基地10は、例えば鋼及びコンクリートを用いて陸上で構築し、母船6により現場海域に曳航して沈設する。海底地盤と採掘基地10との間の隙間は、例えば水中不分離性コンクリート等で間詰めすることができる。採掘基地10は無人とし、点検や故障時には潜水艇等を用いて母船6から人員を送り込むものとすることができるが、有人の採掘基地10としてもよい。採掘基地10の自重により地盤沈下等が発生しないように、ガスハイドレート層2の拡がり領域の力学的特性及び地質構造を調査し、基地支持力のある安定地盤を選定して採掘基地10を沈設する。上述した音波探査等では海底地盤の地質構造の把握はある程度可能であるものの力学的特性が把握できないので、後述するように海底地盤に着床させる調査手段20(図2参照)を用いて、音波探査等と採泥調査・ボーリング調査等を組み合わせることにより海底地盤の力学的特性及び地層構造を把握する。
【0015】
安定地盤の選定に際し、ガスハイドレート層2が海底地盤の一部を形成しており、ガスハイドレート層2の採掘により海底地盤に応力変動が生じる可能性を考慮する必要がある。本発明では、後述するように採掘基地10から垂直下方ではなく水平放射状に坑井を削孔し、採掘基地10の直下のガスハイドレート層2を残して周囲のガスハイドレート層2のみを採掘することが可能であるが、周囲のガスハイドレート層2の採掘が採掘基地10の直下の支持地盤に影響するおそれもある。このため、力学的特性及び地質構造の調査にガスハイドレート層2の採掘による海底地盤の変形予測を含め、地盤沈下や崩壊等の危険がない安定地盤部位に採掘基地10を沈設する。必要に応じて、調査手段20の調査結果に基づきガスハイドレート層2の拡がり領域の一部に適当な地盤改良工事を施して安定地盤部位を形成してもよい。
【0016】
図示例の母船6は採掘基地10の沈設手段16を有する。沈設手段16は吊り下げ装置16とケーブル16aとを有し、採掘基地10をケーブル16aで吊り下げながら徐々に海底面4まで降下させる。図示例では1艘の母船6から吊り下げているが、2艘以上の母船6から吊り下げることが望ましい。採掘基地10に取り付けた傾斜計や方位計、加速度計等の出力に基づき吊り下げ時の採掘基地10の姿勢が制御できる制御装置を沈設手段16に含めることができ、その姿勢制御により採掘基地10を所定安定地盤部位に所定向きで正確に位置決めできる。また、沈設手段16に掘削及び均し機械を含め、その掘削及び均し機械を母船6から海底面4に降ろして安定地盤部位をある程度平坦にしてから採掘基地10を沈設することができる。更に沈設手段16により、母船6と採掘基地10との間に、採掘基地10に装備の機器を制御するための通信・制御ライン28や採掘基地10から海上への分解生成ガスの輸送路19等を設置する。
【0017】
採掘基地10には、削孔角度操作自在なボーリング装置11と送入装置12と採取装置14とを装備する。ボーリング装置11の一例は、図4に示すように、削孔角度を任意に決定できる削孔用ビット31を先端部に備えた地盤削孔用ロッド32とロッド押し込み機37とを有し、図示例のような斜め下向きから水平向きに傾斜角が徐々に減少する坑井(以下、水平井という。)30を掘削できる曲がりボーリング装置である。例えば図3に示すように、ビット31に設けた位置検出センサ36の出力位置信号を検知しながら、ビット31及びロッド32の間に設けた角度調節器35を遠隔操作することにより、目標位置に対し半径30cm程度以下の精度の正確な水平井30が削孔可能なものとする。ボーリング装置11として、従来のトンネルの機械化掘削に用いられてきたトンネルボーリングマシーンを使用することも考えられる。送入装置12と採取装置14は、ボーリング装置11で削孔した水平井30の基地側端に接続する。
【0018】
ボーリング装置11による水平井30の削孔方法の一例を図4に示す。先ず、前述した探査手段15で探査したガスハイドレート層2の拡がり及び深さと採掘基地10の沈設位置とに基づき、削孔すべき水平井30の設置位置を定める。次いで、同図(A)に示すように採掘基地10から設計したガスハイドレート層2内の設置位置の一端に向けてビット31付き地盤削孔用ロッド32を押し込み機37により回転させながら斜め下方に押し込む。位置検出センサ36の出力位置信号によりビット31が設置位置の一端に到達したことを確認したのち、同図(B)に示すようにビット31の削孔方向を水平に転換しながら、ジェッティングと押し込みとにより曲線部を削孔する。更に、ビット31の削孔方向を水平に維持しつつロッド32を回転させながら押し込み、水平井30の所定設置位置の他端まで水平な削孔を継続することにより、所定設置位置に水平井30を構築する。
【0019】
図5に示すように、採掘基地10に装備した適当な台数のボーリング装置11により、複数の水平井30を採掘基地10から放射状に削孔することができる。図1の採掘基地10は2台のボーリング装置11を装備しているが、1台のボーリング装置11で複数の水平井30を順次削孔し、又は3台以上のボーリング装置11で複数の水平井30を同時に削孔してもよい。図1に示すように採掘基地10の回りの同一角度向きに、異なる深さで複数の水平井30を設置することも可能である。本発明で用いるボーリング装置11によれば、複数の水平井30を適当な相互間隔で設置することができる。
【0020】
水平井30を所定設置位置に削孔したのち、送入装置12により水平井30へガスハイドレート分解材を送入してガスハイドレート層2のガスハイドレートを分解し、採取装置14によりガスハイドレート層2の分解生成ガス(例えばメタンガス)を水平井30経由で採掘基地10に収集する。例えば図3(A)に示すように水平井30の各々を二重管構造(ライザー方式)とし、水平井30毎に二重管の一方(例えば内管33)を介してガスハイドレート分解材を送入し、二重管の他方(例えば外管34)を介して分解生成ガスを採掘基地10に輸送する。図示例では、内管33を送入装置12に接続すると共に外管34を採取装置14に接続する。分解生成ガスを外管34に効率的に採取するため、採取装置14に吸気手段又は吸水手段を設けてガスハイドレート層2の分解生成ガスを採掘基地10へ吸引してもよい。分解生成ガスは、ガスハイドレートの分解時に生じる水と共に輸送してもよい。
【0021】
図3(A)の二重管構造は、先端ビット31背後の近傍部位の内管33及び外管34に適宜スリット等を設けて透気性又は透水性としたものであり、図5(A)に示すように水平井30の先端部からガスハイドレート分解材を放出して分解生成ガスを採取するものである。この二重管構造は、水平井30の削孔距離を徐々に伸ばしながら、削孔距離に応じて分解生成ガスを順次採取する採掘方法に適している。但し、ガスハイドレート分解材の放出部位及び分解生成ガスの採取部位は水平井30の先端部に限らず、水平井30の適当な部位に適当な数だけ設けることができる。例えば水平井30の長さ方向に沿って複数の放出部位と採取部位とを交互に設ければ、水平井30の全長から分解生成ガスを採取することも期待できる。そのような二重管構造は、ガスハイドレート層2内に広範囲に亘る水平井30を設置しておき、長期間かけて分解生成ガスを採取する採掘方法に適している。
【0022】
また本発明では、図5(B)に示すように、複数の水平井30から選択された特定の水平井30aを介してガスハイドレート分解材を送入し、他の水平井30bを介して分解生成ガスを採掘基地10に輸送することも可能である。この場合、図3(B)及び(C)に示すように水平井30を全長が透気性又は透水性のケーシングパイプ製とし、選択した特定水平井30aを送入装置12に接続すると共に他の水平井30bを採取装置14に接続する。図5(B)の方法によれば、採取装置14に接続された水平井30bを負圧とすることにより、送入装置12に接続された水平井30aと水平井30bとの間にガスハイドレート層2と交差するガスハイドレート分解材の面状の流れを形成することができ、その面状の流れにより分解生成ガスを押し流し水平井30bへ送り込むことが期待できる。面状の流れはガスハイドレート層2との交差面積を大きくとることができるので、少数の水平井30により広範囲の分解生成ガスの効率的な回収が期待できる。
【0023】
採取装置14により水平井30を介して採掘基地10に採取した分解生成ガスは、輸送路19を介して海上の母船6に送る。分解生成ガスをガスハイドレートの分解時に生じる水と共に輸送する場合は、採掘基地10において水とガスとを分離したのち母船6へ輸送することができる。分解生成ガスは輸送路19内で自然に浮上することが期待できるので、採掘基地10から母船6への輸送エネルギーは最小限で足りる。輸送路19をカプセルライナー等とすることも考えられる。採取装置14で採取した分解生成ガスを採掘基地10に一時貯蔵し、後述するように必要に応じて分解生成ガスの一部をエネルギーに変換して採掘基地10で利用し、残りを適宜に海上へ輸送してもよい。1艘の母船6に対して採掘基地10を複数設けることができる。母船6に集めた分解生成ガスは、必要に応じて一部をエネルギーに変換して利用することができ、残りは貯蔵して定期的にタンカー等で陸上の消費地等に輸送する。
【0024】
本発明で用いるガスハイドレート分解材は、ガスハイドレートを分解できるものであればとくに制限はなく、様々なものが使用できる。例えば図1の実施例では、採掘基地10と海上との間にエネルギー輸送路18を設け、送入装置12に海水取り入れ可能な加熱装置13を設け、エネルギー輸送路18からのエネルギーを用いて加熱装置13で加熱した海水(海底下の水圧に応じたガスハイドレートの安定温度以上の海水)を送入装置12から水平井30へ送入している。母船6上に改質器と燃料電池とを搭載し、母船6に集めたメタンガスの一部を改質器で水素に改質して燃料電池へ送り、燃料電池で発電した電力エネルギーを輸送路18で採掘基地10へ供給して海水の加熱に利用してもよい。海上から電力エネルギーを供給して海底の採掘基地10で温水を製造すれば、海上から温水や蒸気等を直接輸送する方法に比し、輸送時のエネルギー損失を小さく抑えることができる。
【0025】
また、採掘基地10に改質器と燃料電池とを装備し、採掘基地10において採取したメタンガスの一部を水素に改質して燃料電池へ送り、燃料電池で発電した電力エネルギーを加熱装置13に供給してもよい。採掘基地10でエネルギーを生産すれば、エネルギー損失を更に小さくして効率的なガスハイドレートの採掘が可能となる。図示例の符号13aは採掘基地10の周囲の海水(水温5℃程度)を加熱装置13に取り入れる弁を示すが、弁13aに代えて特許文献1のような海水配管51及びポンプ57(図8参照)を設け、海面5付近の暖かい海水(水温18〜30℃程度)を加熱装置13に取り入れて利用してもよい。更に、本発明で用いるガスハイドレート分解材として、温水に代えて特許文献2のような二酸化炭素又はガスハイドレート分解触媒等を利用することも可能である。この場合、二酸化炭素や分解触媒等を海上から輸送路経由で採掘基地10へ輸送するか、又は沈設前に採掘基地10内に貯蔵しておくことができる。
【0026】
本発明によれば、海底に採掘基地を設けて海底ガスハイドレート層に複数の水平井を配置するので、従来の垂直井に比し坑井当りの採掘範囲を拡大し、薄く広く分布する海底ガスハイドレートの効率的・経済的な採掘が可能となる。また、安定地盤部位に採掘基地を沈設するので、安定した状態で効率的・経済的な海底ガスハイドレートの採掘が可能となり、今後の資源開発への寄与が期待できる。更に、海底の採掘基地から水平井経由でガスハイドレート分解材をガスハイドレート層に送入するので、分解材の輸送時のエネルギー損失を最小限に抑え、採掘に必要なエネルギーに対する採掘した分解生成ガスのエネルギーの割合、すなわちガスハイドレート採掘におけるエネルギー収支の効率を高めることができる。
【0027】
こうして本発明の目的である「薄く広く存在する海底地層中のガスハイドレートを効率的に採掘する方法及びシステム」の提供を達成できる。
【0028】
【実施例】
図2は、本発明で用いる調査手段20の一実施例を示す。高圧下の浮泥等も存在する1000m級の超大水深の海底環境下において安定した固定式の採掘基地10を構築するためには、海底地盤の力学的特性の調査が不可欠である。海上からのボーリングによる超大水深の海底調査はコストが高く、必要十分な数量のボーリング調査を行ってガスハイドレート層2の賦存量や賦存形態等について十分なデータを得ることが難しい。図示例の調査手段20は海底面4に着床させる潜水調査機21を含み、潜水調査機21に遠隔操作可能な力学的特性調査装置24及び地質構造調査装置26を装備している。潜水調査機21によりガスハイドレート層2の埋蔵場所に近い位置での調査が可能となり、ガスハイドレート層2の海底地盤状況や資源賦存状況の詳細を経済的に把握できる。
【0029】
力学的特性調査装置24として、ボーリング調査装置、貫入試験装置、ボーリング孔を利用した検層装置、ボーリング孔を利用した孔内載荷試験装置等を含めることができる。また地質構造調査装置26として、潜水調査機21から発信した弾性波の地中不連続面からの反射波に基づき海底地盤の地質構造を推定する弾性波探査装置、弾性波トモグラフィによる構造解析装置、地中レーダ探査装置、透水試験装置等を含めることができる。このような力学的特性調査や地質構造調査には、従来の陸上における地下岩盤の構造や各種物性値の調査手法が利用できる。調査機器の制御は有人の母船6と潜水調査機21との間の通信・制御ライン28により行うことができ、調査データも通信・制御ライン28を通じて母船6に送ることができる。各種調査機器を作動させるに必要なエネルギー源は、例えばエネルギー輸送路18(図1参照)を通じて母船6から潜水調査機21へ輸送することができる。
【0030】
潜水調査機21は原則的には無人とし、点検や故障時に潜水艇等を用いて母船6から人員を送り込むものとする。また潜水調査機21は、前述した採掘基地10と同様に鋼及びコンクリートを用いて陸上で構築し、母船又は沈設支援船6により現場海域に曳航し、海底の所定地盤部位に位置決めして沈設することができる。海底地盤と潜水調査機21との間の隙間は、例えば水中不分離性コンクリート等で間詰めすることができる。図示例の潜水調査機21は、海水の取り入れ・排出により自重を調節する自重調節装置22を有し、例えば海水の取り入れにより沈降すると共に力学的特性調査装置24のボーリング調査や貫入試験の際に必要な反力を付与し、海水の排出により浮上することができる。
【0031】
図6は、調査手段20による海底地盤調査と採掘基地10によるガスハイドレート採掘とを含む本発明の流れ図の一例を示す。先ずステップS01において、母船6の探査手段15により海底のガスハイドレート層2の拡がりや深さを把握する。次いでステップS02〜S03において、その領域近傍の所定位置に潜水調査機21を沈設して着床させ、海水の取り入れにより自重を調節したのち、力学的特性調査装置24及び地質構造調査装置26により前記拡がり領域の力学的特性及び地質構造を調査する。ステップS04でガスハイドレート層2の拡がり領域の地盤安定性や採掘に伴う地盤変形の可能性を判断し、採掘基地10を構築できる安定地盤部位が検出できるまで潜水調査機21の沈設位置を代えながらステップS02〜S03を繰り返す。その後ステップS05において、海水を排出することにより潜水調査機21を海底から切り離し、浮上させて母船6に回収する。潜水調査機21が採掘基地10の構築の障害とならないのであればステップS05を省略し、潜水調査機21を適当な時期に浮上・回収してもよい。
【0032】
ガスハイドレート層2の拡がり領域に安定地盤部位を検出したのち、ステップS07において、その安定地盤部位に母船6から沈設手段16により採掘基地10を沈設する。ステップS07〜S08において、上述したように採掘基地10からボーリング装置11によりガスハイドレート層2に複数の水平井30を削孔し、送入装置12により水平井30を介してガスハイドレート層2に温熱又は分解促進剤を送入してガスハイドレートを分解し、採取装置14によりガスハイドレート層2の分解生成ガスを水平井30と採掘基地10と輸送路19とを介して海上へ輸送する。ステップS09においてガスハイドレート層2の採掘を終了するか否かを判断し、継続する場合はステップS07へ戻り、水平井30の削孔距離を徐々に延ばしながら又は新たな水平井30を構築しながらステップS07〜S08を繰り返す。ガスハイドレート層2の採掘が終了したときは、ステップS01へ戻り新たなガスハイドレート層2に対する採掘を行う。
【0033】
【発明の効果】
以上詳細に説明したように、本発明の海底ガスハイドレート採掘方法及びシステムは、海底地盤中のガスハイドレート層の海底面に沿った拡がり領域に削孔角度操作自在なボーリング装置が装備された採掘基地を沈設し、基地と海上との間に輸送路を設け、基地からガスハイドレート層に複数の水平井を削孔し、ガスハイドレート層に水平井経由で温熱又は分解促進剤を送入してガスハイドレートを分解し、ガスハイドレート層の分解生成ガスを水平井、採掘基地及び輸送路により海上で採取するので、次の顕著な効果を奏する。
【0034】
(イ)ガスハイドレート層に水平井を構築して採掘するので、薄く広く分布する海底ガスハイドレートの効率的・経済的な採掘が可能となる。
(ロ)ガスハイドレート採掘による地盤変形予測を踏まえた安定地盤部位に採掘基地を沈設することができるので、安定した状態で効率的な海底ガスハイドレートの採掘が可能である。
(ハ)ガスハイドレート分解用の温熱を採掘基地で生産できるので、温熱輸送に伴うエネルギー損失を最小限に抑え、ガスハイドレート採掘におけるエネルギー収支の効率を高めることができる。
(ニ)新しいエネルギー資源として注目される海底メタンハイドレートの採掘に適しており、今後の資源開発への寄与が期待できる。
(ホ)潜水調査機を用いて海底地盤の力学的特性・地層構造を調査することにより、採掘基地を海底に設置する際の有用な情報、例えば海底地すべりや海底地盤変形予測のための物性値を得ることができる。
(ヘ)潜水調査機を用いた調査により、広く薄く分布するガスハイドレート層の詳細な資源量評価を経済的に行うことができる。
(ト)潜水調査機を用いた海底地盤調査は、ガスハイドレート掘削だけでなく、一般の海底地盤の調査への適用も期待できる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の説明図である。
【図2】は、海底地盤の安定調査方法の一例の説明図である。
【図3】は、本発明で用いる水平井の構造の説明図である。
【図4】は、本発明で用いる水平井の削孔方法の説明図である。
【図5】は、水平井を用いた採掘方法の一例の説明図である。
【図6】は、本発明の採掘方法の流れ図の一例である。
【図7】は、従来の海底ガスハイドレート採掘方法の一例である。
【図8】は、従来の海底ガスハイドレート採掘方法の他の例である。
【図9】は、従来の海底ガスハイドレート採掘方法の更に他の例である。
【図10】は、図9の採掘方法の一実施態様の説明図である。
【符号の説明】
1…海底地盤 2…ガスハイドレート層
3…フリーガス層 4…海底面
5…海面 6…作業船(母船)
7…分解生成ガス 8…水
10…採掘基地 11…ボーリング装置
12…送入装置 13…加熱装置
13a…弁 14…回収装置
15…探査手段 16…沈設手段
16a…ケーブル
18…エネルギー輸送路 19…気密輸送路
20…調査手段 21…潜水調査機
22…自重調節装置 22a…弁
24…力学的特性調査装置 26…地質構造調査装置
28…通信・制御ライン
30…水平井 31…削孔用ビット
32…削孔用ロッド 33…内管
34…外管 35…角度調節器
36…位置検出センサ 37…ボーリング押し込み機
40…掘削リグ 41…坑井
42…多枝坑井
50…深海原子炉 51…海水配管
52…断熱材 53…浮力容器
54…配管下部 55…ロープ
56…ロープ巻き取り装置 57…ポンプ
58…電力ケーブル 59…小配管
60…ガス配管 61…気水分離器
62…小配管 63…排水ライン
65…採掘基地 66…熱利用システム
67…メタンガス採掘管 68…二酸化炭素ガス送気管
69…メタンガス容器 70…二酸化炭素容器
71…発電システム 72…メタン用輸送船
73…二酸化炭素用輸送船 74…ボイラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and system for mining marine gas hydrate, and more particularly to a method and system for mining methane hydrate and the like on the sea floor, which is attracting attention as a new energy resource.
[0002]
[Prior art]
Recent acoustic surveys (seismic surveys) and deep sea floor excavations from the sea have revealed that large amounts of natural gas hydrates exist in the seabed at the continental margin. Gas hydrate is a sherbet-like substance in which useful gas molecules such as methane are included in the crystal structure (cage structure) of water molecules, and fills gaps in a relatively shallow stratum from the seabed to stabilize the stratum. It is helpful. The methane hydrate layer with high gas accumulation is assumed to exist at a depth of about 200 to 600 m below the seabed with a water depth of about 1000 to 2000 m, and its reserve is several tens times or more than the confirmed reserve of conventional natural gas. It is estimated and expected as a future energy source (see Non-Patent Document 1).
[0003]
As an example of a method for mining a gas hydrate layer on the seabed, as shown in FIG. 7A, similarly to conventional marine oil and natural gas mining, boring from a drilling rig 40 on the sea to the seabed 4 is performed. A method of constructing a vertical well (hereinafter, sometimes referred to as a vertical well) 41 reaching the gas hydrate layer 2 is conceivable. However, gas hydrate is stable in low-temperature, high-pressure seabed ground, but is decomposed into gas and water by the pressure decrease and temperature rise during the process of being transported to the sea. It is difficult to extract mines economically (see Non-Patent Document 1). For this reason, in the gas hydrate layer 2 of the seafloor ground, heat such as hot water or steam that promotes the decomposition of gas hydrate or an appropriate decomposition accelerator (hereinafter, the heat hydrate and the decomposition accelerator are collectively referred to as a gas hydrate decomposition material) Has been proposed to decompose the gas hydrate in the stratum and collect only the decomposition product gas.
[0004]
In Patent Document 1, as shown in FIG. 8, warm seawater near the sea surface 5 is guided by a seawater piping 51 and a pump 57 to a submarine gas hydrate layer 2 and injected using the power of a deep-sea reactor 50, and a layer 2 is used. Disclosed is a submarine gas hydrate decomposition system that decomposes gas hydrate therein into gas 7 and water 8 and extracts the decomposition product gas 7 out of the submarine gas hydrate layer 2 via a gas pipe 60. For example, when the seabed methane hydrate layer 2 is at a depth of about 2400 m, the stable temperature of methane hydrate under a water pressure of 2400 m is 21 ° C. or less. Therefore, methane hydrate is injected by injecting seawater higher than 21 ° C. Can be decomposed. In the system of FIG. 8, the exhaust heat of the deep-sea reactor 50 is introduced into the seawater pipe 51 via the small pipe 59 or is introduced into the inlet of the gas pipe 60 via the small pipe 62 to promote the decomposition of gas hydrate. it can.
[0005]
Patent Document 2 discloses that, as shown in FIG. 9, carbon dioxide gas is injected from a marine mining base 65 to a digging point P in the marine methane hydrate layer 2 through an air pipe 68 as a decomposition accelerator, and P fixes the carbon dioxide gas as carbon dioxide hydrate and decomposes the methane hydrate present at the mining point P into water and methane gas by using the reaction heat when the carbon dioxide hydrate is generated. A system for recovering from P via a mining pipe 67 to a marine mining base 65 is disclosed. In the system shown in FIG. 9, the recovered methane gas is sent to the land-based heat utilization system 66 by the transport ship 72, heat energy is extracted from the methane gas by the heat utilization system 66, and carbon dioxide in the exhaust gas of the heat utilization system 66 is separated and transported. It is sent to the mining base 65 by the ship 73 and used for mining.
[0006]
[Non-Patent Document 1] News from the National Institute of Advanced Industrial Science and Technology, Vol. 10, No. 10, October 2000, pp1-5
[Non-Patent Document 2] Petroleum Industry Handbook-50th Anniversary of the Japan Petroleum Institute of Japan-"8.2.7 Inclined Moat", June 1983, pp396-399
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-158662
[Patent Document 2] JP-A-2000-061293
[Patent Document 3] JP-A-10-317869
[Patent Document 4] JP-T-2002-536573
[0007]
[Problems to be solved by the invention]
The mining methods of Patent Documents 1 and 2 can be said to be methods that use vertical wells extending from the sea or near the sea surface to the seafloor gas hydrate layer. However, in the case of vertical wells, the mining efficiency per well is limited because of the limited mining efficiency. But there is a bad problem. Patent Document 2 discloses a method of improving mining efficiency by installing a plurality of pairs of a methane gas mining pipe 67 and a carbon dioxide gas blowing pipe 68 at different positions in the horizontal direction and sequentially switching the sets as shown in FIG. ing. However, it is assumed that the sea bottom gas hydrate layer 2 is distributed on the sea floor at a depth of about 1000 to 2000 m with a thickness of about several tens of meters. In order to perform mining by the methods of (1) and (2), a large number of vertical wells must be installed, and the mining cost including boring is enormous.
[0008]
In the conventional drilling of oil and gas fields, as a method of increasing the amount of mining per well, as shown in FIG. Is known (see p. 399 in Non-Patent Document 2). However, unlike liquids or gases such as petroleum and conventional natural gas, gas hydrates are solids, and simply expanding the mining range is not enough. Need to be collected. The conventional Tae well 42 does not assume the transport of gas hydrate decomposers. For example, the method of transporting heat as a gas hydrate decomposer in a Tae well 42m of 1000 m or more results in large energy loss and economic It is difficult to find efficient and efficient mining. In the mining of submarine gas hydrates, it is important to expand the mining range per well and to reduce the amount of heat and power supplied for gas hydrate decomposition.
[0009]
Accordingly, an object of the present invention is to provide a method and a system for efficiently mining gas hydrate in a thin and wide existing seabed stratum.
[0010]
[Means for Solving the Problems]
Referring to the embodiment of FIG. 1, the method for mining a seabed gas hydrate according to the present invention searches for a spreading area along a seabed 4 of a gas hydrate layer 2 in a seabed ground 1 and obtains a stable ground portion of the area. A digging base 10 equipped with a boring device 11 whose drilling angle can be freely controlled is laid down, a transport path 19 is provided between the digging base 10 and the sea, and a plurality of horizontal wells are provided from the digging base 10 to the gas hydrate layer 2. The gas hydrate is decomposed by feeding heat or a decomposition promoting agent to the gas hydrate layer 2 through the horizontal well 30 and the gas hydrate is decomposed. It is obtained at sea by means of 10 and transport route 19.
[0011]
Referring to the embodiment of FIG. 1, the seafloor gas hydrate mining system of the present invention includes an exploration means 15 for exploring an expansion area of the gas hydrate layer 2 in the seafloor ground 1 along the seafloor 4. Investigation means 20 (see FIG. 2) for investigating the mechanical characteristics and geological structure of 1; digging means 16 for digging the mining base 10 in the stable ground portion of the area determined by the above-mentioned investigation; It is provided with a boring device 11, a feeding device 12, and a sampling device 14 which can be operated at an angle, and a transport path 19 provided between the mining base 10 and the sea. A plurality of horizontal wells 30 are drilled in the gas hydrate layer 2 from the mining base 10 by the boring device 11, and the gas hydrate is decomposed by feeding the heating or the decomposition accelerator to the horizontal well 30 by the feeding device 12, The decomposition product gas of the gas hydrate layer 2 is transported by the sampling device 14 to the sea via the horizontal well 30, the mining base 10, and the transport path 19.
[0012]
Preferably, as shown in FIG. 1, the transportation path 19 includes an energy transportation path 18 from the sea to the mining base 10, and the seawater heated by the energy from the sea at the mining base 10 is fed into the gas hydrate layer 2. . Alternatively, an energy converter (not shown) for converting a part of the decomposition product gas into energy is provided in the mining base 10, and seawater heated by the energy from the converter is fed into the gas hydrate layer 2.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment in which the present invention is applied to mining of a gas hydrate layer 2 distributed at a thickness of about several tens of meters at a ground depth of about 200 to 300 m of a seabed 1 at a depth of about 1000 to 1200 m. Such a distribution of the submarine gas hydrate layer 2 is obtained by, for example, attaching an exploration means 15 such as an acoustic probe to a work boat 6 (hereinafter, sometimes referred to as a support mother vessel 6) at sea, and moving the mother vessel 2 on a search line. Can be explored. It is considered that a free gas layer 3 gasified due to ground temperature or the like exists below the gas hydrate layer 2, and a boundary between the gas hydrate layer 2 and the free gas layer 3 where physical property contrast is strong. The surface can be captured by acoustic sounding. This boundary surface is characterized by appearing substantially parallel to the sea floor 4 and is called a sea bottom simulated reflector (Bottom Simulating Reflector, BSR) because it reflects the shape of the sea bottom 4. Therefore, by exploring the distribution of the seafloor pseudo-reflection surface by the exploration means 15, it is possible to grasp the spread area of the gas hydrate layer 2 along the seafloor 4.
[0014]
According to the present invention, a mining base 10 is provided in a stable ground portion in a region where the gas hydrate layer 2 extends. The mining base 10 is constructed on land using, for example, steel and concrete, and is towed by the mother ship 6 into the sea area at the site and settled. The gap between the seabed and the mining base 10 can be filled with, for example, underwater non-separable concrete. The mining base 10 may be unmanned, and personnel may be sent from the mother ship 6 using a submersible or the like in the case of inspection or failure, but may be a manned mining base 10. In order to prevent land subsidence etc. from occurring due to the weight of the mining base 10, the mechanical characteristics and geological structure of the spreading area of the gas hydrate layer 2 are investigated, and a stable ground with base supporting capacity is selected and the mining base 10 is laid. I do. Although the above-described sonic survey and the like can grasp the geological structure of the seafloor ground to some extent, but cannot grasp the mechanical characteristics, as described later, the sound wave using the survey means 20 (see FIG. 2) for landing on the seafloor ground is used. Understand the mechanical characteristics and stratum structure of the seafloor ground by combining exploration, etc. with mud sampling and drilling surveys.
[0015]
When selecting a stable ground, the gas hydrate layer 2 forms a part of the seabed ground, and it is necessary to consider the possibility that the mining of the gas hydrate layer 2 causes stress fluctuations in the seabed ground. In the present invention, as described later, a well is drilled from the mining base 10 in a horizontal radial direction instead of vertically downward, and only the surrounding gas hydrate layer 2 is mined while leaving the gas hydrate layer 2 immediately below the mining base 10. However, the mining of the surrounding gas hydrate layer 2 may affect the supporting ground immediately below the mining base 10. For this reason, the mining base 10 is laid in a stable ground portion where there is no danger of land subsidence or collapse, including the prediction of the deformation of the seabed ground due to the mining of the gas hydrate layer 2 in the investigation of the mechanical characteristics and the geological structure. If necessary, a stable ground portion may be formed by performing an appropriate ground improvement work on a part of the spread area of the gas hydrate layer 2 based on the inspection result of the inspection means 20.
[0016]
The mother ship 6 in the illustrated example has a submerging means 16 of the mining base 10. The submerging means 16 has a suspending device 16 and a cable 16a, and lowers the mining base 10 gradually to the sea bottom 4 while suspending the mining base 10 with the cable 16a. In the illustrated example, it is suspended from one mother ship 6, but it is desirable to suspend it from two or more mother ships 6. A control device that can control the attitude of the mining base 10 during suspension based on the output of an inclinometer, a compass, an accelerometer, and the like attached to the mining base 10 can be included in the sinking means 16. Can be accurately positioned in a predetermined direction on a predetermined stable ground portion. In addition, the excavation and leveling machine is included in the submerging means 16, and the excavation and leveling machine can be lowered from the mother ship 6 to the sea floor 4 to make the stable ground part flat to some extent before the mining base 10 is submerged. Further, a communication / control line 28 for controlling equipment mounted on the mining base 10 and a transport path 19 for the decomposition product gas from the mining base 10 to the sea are provided between the mother ship 6 and the mining base 10 by the submerging means 16. Is installed.
[0017]
The mining base 10 is equipped with a boring device 11, a feeding device 12, and a sampling device 14 capable of controlling the drilling angle. An example of the boring device 11 includes a ground drilling rod 32 having a drilling bit 31 capable of arbitrarily determining a drilling angle at a tip end thereof, and a rod pushing machine 37, as shown in FIG. This is a curved boring apparatus capable of excavating a well (hereinafter, referred to as a horizontal well) 30 whose inclination angle gradually decreases from diagonally downward to horizontal as shown in the example. For example, as shown in FIG. 3, by remotely controlling an angle adjuster 35 provided between the bit 31 and the rod 32 while detecting an output position signal of a position detection sensor 36 provided on the bit 31, On the other hand, it is assumed that an accurate horizontal well 30 with a radius of about 30 cm or less can be drilled. As the boring device 11, a tunnel boring machine that has been used for conventional mechanized excavation of a tunnel may be used. The feeding device 12 and the sampling device 14 are connected to the base side end of the horizontal well 30 drilled by the boring device 11.
[0018]
FIG. 4 shows an example of a method of drilling the horizontal well 30 by the boring device 11. First, the installation position of the horizontal well 30 to be drilled is determined based on the extent and depth of the gas hydrate layer 2 detected by the above-described exploration means 15 and the position where the mining base 10 is laid down. Next, as shown in FIG. 1A, the ground drilling rod 32 with the bit 31 is rotated obliquely downward by the pusher 37 toward one end of the installation position in the gas hydrate layer 2 designed from the mining base 10. Press After confirming that the bit 31 has reached one end of the installation position by the output position signal of the position detection sensor 36, while changing the drilling direction of the bit 31 horizontally as shown in FIG. The curved part is drilled by pushing. Further, by pushing the rod 32 while rotating it while keeping the drilling direction of the bit 31 horizontal, and continuing the horizontal drilling to the other end of the predetermined installation position of the horizontal well 30, the horizontal well 30 is placed at the predetermined installation position. To build.
[0019]
As shown in FIG. 5, a plurality of horizontal wells 30 can be drilled radially from the mining base 10 by an appropriate number of boring devices 11 installed in the mining base 10. The mining base 10 shown in FIG. 1 is equipped with two boring apparatuses 11, but one boring apparatus 11 drills a plurality of horizontal wells 30 sequentially, or three or more boring apparatuses 11 form a plurality of water wells. Hirai 30 may be drilled at the same time. As shown in FIG. 1, it is also possible to install a plurality of horizontal wells 30 at different depths at the same angle around the mining base 10. According to the boring device 11 used in the present invention, a plurality of horizontal wells 30 can be installed at appropriate intervals.
[0020]
After drilling the horizontal well 30 at a predetermined installation position, a gas hydrate decomposition material is fed into the horizontal well 30 by the feeder 12 to decompose the gas hydrate of the gas hydrate layer 2, and the gas is extracted by the sampling device 14. The decomposition product gas (for example, methane gas) of the hydrate layer 2 is collected at the mining base 10 via the horizontal well 30. For example, as shown in FIG. 3A, each of the horizontal wells 30 has a double pipe structure (riser type), and the gas hydrate decomposition material is provided for each horizontal well 30 through one of the double pipes (for example, the inner pipe 33). And transport the decomposition product gas to the mining base 10 via the other of the double pipes (for example, the outer pipe 34). In the illustrated example, the inner tube 33 is connected to the feeding device 12, and the outer tube 34 is connected to the sampling device 14. In order to efficiently collect the decomposition product gas into the outer pipe 34, the sampling device 14 may be provided with an intake unit or a water absorption unit, and the decomposition product gas of the gas hydrate layer 2 may be sucked into the mining base 10. The decomposition product gas may be transported together with the water generated during the decomposition of the gas hydrate.
[0021]
The double-pipe structure shown in FIG. 3A is provided with slits and the like in the inner pipe 33 and the outer pipe 34 in the vicinity behind the tip bit 31 so as to be air-permeable or water-permeable. As shown in (1), the gas hydrate decomposition material is discharged from the tip of the horizontal well 30 to collect the decomposition product gas. This double pipe structure is suitable for a mining method in which the drilling distance of the horizontal well 30 is gradually increased, and the decomposition product gas is sequentially collected according to the drilling distance. However, the release site of the gas hydrate decomposition material and the collection site of the decomposition product gas are not limited to the tip of the horizontal well 30, and an appropriate number of them can be provided at an appropriate site of the horizontal well 30. For example, if a plurality of discharge sites and sampling sites are provided alternately along the length of the horizontal well 30, it is expected that the decomposition product gas will be sampled from the entire length of the horizontal well 30. Such a double-pipe structure is suitable for a mining method in which a horizontal well 30 is installed over a wide area in the gas hydrate layer 2 and the decomposition product gas is collected over a long period of time.
[0022]
Further, in the present invention, as shown in FIG. 5 (B), the gas hydrate decomposition material is fed through a specific horizontal well 30a selected from a plurality of horizontal wells 30 and is fed through another horizontal well 30b. It is also possible to transport the decomposition product gas to the mining base 10. In this case, as shown in FIGS. 3 (B) and 3 (C), the horizontal well 30 is made of a casing pipe having a total length of air permeable or water permeable, and the selected specific horizontal well 30a is connected to the feeding device 12 and other wells are connected. The horizontal well 30b is connected to the sampling device 14. According to the method of FIG. 5 (B), by setting the horizontal well 30b connected to the sampling device 14 to a negative pressure, the gas hydration between the horizontal well 30a and the horizontal well 30b connected to the feeding device 12 is performed. A planar flow of the gas hydrate decomposition material that intersects with the rate layer 2 can be formed, and it can be expected that the decomposition product gas is flushed by the planar flow and sent to the horizontal well 30b. Since the planar flow can have a large intersection area with the gas hydrate layer 2, efficient recovery of a wide range of decomposition product gas can be expected with a small number of horizontal wells 30.
[0023]
The decomposition product gas collected by the sampling device 14 at the mining base 10 through the horizontal well 30 is sent to the mother ship 6 at sea via the transport path 19. In the case of transporting the decomposition product gas together with the water generated when the gas hydrate is decomposed, water and gas can be separated at the mining base 10 and then transported to the mother ship 6. Since the decomposition product gas can be expected to float naturally in the transport path 19, the transport energy from the mining base 10 to the mother ship 6 is minimal. It is also conceivable that the transport path 19 is a capsule liner or the like. The decomposition product gas collected by the sampling device 14 is temporarily stored in the mining base 10, and a part of the decomposition product gas is converted into energy as necessary and used in the mining base 10 as described later, and the rest is appropriately offshore. May be transported to A plurality of mining bases 10 can be provided for one mother ship 6. The decomposition product gas collected in the mother ship 6 can be partially converted into energy and used as needed, and the rest is stored and periodically transported to land-consuming areas by tankers or the like.
[0024]
The gas hydrate decomposition material used in the present invention is not particularly limited as long as it can decompose gas hydrate, and various materials can be used. For example, in the embodiment of FIG. 1, an energy transport path 18 is provided between the mining base 10 and the sea, a heating device 13 capable of taking in seawater is provided in the input device 12, and heating is performed using energy from the energy transport path 18. The seawater (seawater having a gas hydrate stable temperature or higher according to the water pressure under the seabed) heated by the device 13 is sent from the feeding device 12 to the horizontal well 30. The reformer and the fuel cell are mounted on the mother ship 6, and a part of the methane gas collected in the mother ship 6 is reformed into hydrogen by the reformer and sent to the fuel cell, and the power energy generated by the fuel cell is transferred to the transportation path. It may be supplied to the mining base 10 at 18 and used for heating seawater. If hot water is produced at the seabed mining base 10 by supplying electric energy from the sea, energy loss during transportation can be reduced as compared with a method of directly transporting hot water, steam, or the like from the sea.
[0025]
Also, the mining base 10 is equipped with a reformer and a fuel cell, a part of the methane gas collected at the mining base 10 is reformed into hydrogen and sent to the fuel cell, and the power energy generated by the fuel cell is heated by the heating device 13. May be supplied. If energy is produced at the mining base 10, the energy loss can be further reduced and the gas hydrate can be mined efficiently. Reference numeral 13a in the illustrated example indicates a valve for taking seawater (water temperature of about 5 ° C.) around the mining base 10 into the heating device 13, but instead of the valve 13a, a seawater pipe 51 and a pump 57 (see FIG. ), And warm seawater (water temperature of about 18 to 30 ° C.) near the sea surface 5 may be taken into the heating device 13 for use. Further, as a gas hydrate decomposition material used in the present invention, carbon dioxide or a gas hydrate decomposition catalyst as disclosed in Patent Document 2 can be used instead of hot water. In this case, the carbon dioxide, the decomposition catalyst, and the like can be transported from the sea to the mining base 10 via a transport route, or can be stored in the mining base 10 before being settled.
[0026]
According to the present invention, a mining base is provided on the sea floor and a plurality of horizontal wells are arranged in the sea bottom gas hydrate layer, so that the mining range per well is enlarged as compared with the conventional vertical well, and the sea floor which is thin and widely distributed is provided. Gas hydrate can be efficiently and economically mined. In addition, since a mining base is laid in a stable ground, stable and efficient mining of submarine gas hydrates is possible, which is expected to contribute to future resource development. Furthermore, since gas hydrate decomposition material is sent from the seabed mining base to the gas hydrate layer via a horizontal well, energy loss during transportation of the decomposition material is minimized, and the mined decomposition for the energy required for mining is performed. It is possible to increase the energy ratio of the generated gas, that is, the efficiency of the energy balance in gas hydrate mining.
[0027]
Thus, it is possible to achieve the object of the present invention, that is, the "method and system for efficiently mining gas hydrate in a thin and wide existing seabed stratum".
[0028]
【Example】
FIG. 2 shows an embodiment of the investigation means 20 used in the present invention. In order to construct a stable fixed-type mining base 10 under a seabed environment with a super-deep water depth of 1000m class where floating mud under high pressure exists, it is essential to investigate the mechanical characteristics of the seabed ground. A seabed survey at an ultra-deep water depth by boring from the sea is expensive, and it is difficult to perform a boring survey of a necessary and sufficient quantity to obtain sufficient data on the amount and form of the gas hydrate layer 2. The investigating means 20 in the illustrated example includes a diving survey machine 21 to be landed on the sea floor 4, and is equipped with a mechanical property surveying device 24 and a geological surveying device 26 which can be remotely operated. The dive survey device 21 enables an investigation at a position near the gas hydrate layer 2 buried area, and the details of the state of the seabed ground and resources in the gas hydrate layer 2 can be grasped economically.
[0029]
The mechanical characteristics inspection device 24 may include a boring inspection device, a penetration test device, a logging device using a boring hole, an in-hole loading test device using a boring hole, and the like. Also, as the geological structure survey device 26, an elastic wave exploration device that estimates the geological structure of the submarine ground based on the reflected wave from the underground discontinuity of the elastic wave transmitted from the diving survey machine 21, a structural analysis device using elastic wave tomography , An underground radar search device, a permeability test device, and the like. For such a mechanical property investigation and a geological structure investigation, a conventional method of investigating the structure of underground rock on land and various physical property values can be used. The control of the survey equipment can be performed by a communication / control line 28 between the manned mother ship 6 and the dive survey machine 21, and the survey data can be sent to the mother ship 6 through the communication / control line 28. The energy source required to operate various survey equipment can be transported from the mother ship 6 to the diving survey machine 21 through, for example, the energy transport path 18 (see FIG. 1).
[0030]
The dive survey machine 21 is basically unmanned, and personnel are sent from the mother ship 6 using a submersible or the like at the time of inspection or breakdown. The dive survey machine 21 is constructed on land using steel and concrete in the same manner as the above-mentioned mining base 10, towed to the site sea area by the mother ship or the sinking support ship 6, and positioned and settled on a predetermined ground portion on the sea floor. be able to. The gap between the seabed and the dive survey machine 21 can be filled with, for example, underwater non-separable concrete. The diving survey machine 21 in the illustrated example has a self-weight adjusting device 22 that adjusts its own weight by taking in and discharging seawater, for example, when sinking by taking in seawater and at the time of a boring survey or a penetration test of the mechanical characteristic surveying device 24, It gives the necessary reaction force and can float by discharging seawater.
[0031]
FIG. 6 shows an example of a flow chart of the present invention including a seabed survey by the surveying means 20 and a gas hydrate mining by the mining base 10. First, in step S01, the exploration means 15 of the mother ship 6 grasps the extent and depth of the gas hydrate layer 2 on the seabed. Next, in Steps S02 to S03, the diving survey machine 21 is laid down at a predetermined position near the area, the landing is performed, and after adjusting its own weight by taking in seawater, the mechanical characteristics surveying device 24 and the geological structure surveying device 26 Investigate the mechanical characteristics and geological structure of the spreading area. In step S04, the ground stability of the expansion area of the gas hydrate layer 2 and the possibility of ground deformation due to mining are determined, and the sunk position of the diving survey machine 21 is changed until a stable ground portion where the mining base 10 can be constructed can be detected. Steps S02 to S03 are repeated while doing so. Thereafter, in step S05, the dive survey machine 21 is separated from the seabed by discharging seawater, floated and collected by the mother ship 6. If the dive survey machine 21 does not hinder the construction of the mining base 10, step S05 may be omitted, and the dive survey machine 21 may be floated and collected at an appropriate time.
[0032]
After detecting a stable ground portion in the spread area of the gas hydrate layer 2, the mining base 10 is laid down from the mother ship 6 by the laying means 16 in the stable ground portion in step S07. In steps S07 to S08, a plurality of horizontal wells 30 are drilled in the gas hydrate layer 2 by the boring device 11 from the mining base 10 as described above, and the gas hydrate layer 2 The gas hydrate is decomposed by feeding warming or a decomposition accelerator to the sea, and the gas generated by decomposition of the gas hydrate layer 2 is transported by the sampling device 14 to the sea via the horizontal well 30, the mining base 10, and the transport path 19. I do. In step S09, it is determined whether or not the mining of the gas hydrate layer 2 is to be terminated. If the digging is to be continued, the process returns to step S07, and while gradually extending the drilling distance of the horizontal well 30, or constructing a new horizontal well 30 Steps S07 to S08 are repeated while doing so. When the mining of the gas hydrate layer 2 is completed, the process returns to step S01 and mining of a new gas hydrate layer 2 is performed.
[0033]
【The invention's effect】
As described in detail above, the seabed gas hydrate mining method and system of the present invention are provided with a boring device capable of manipulating the drilling angle in a region where the gas hydrate layer in the seabed ground extends along the sea bottom. A mining base is submerged, a transport route is provided between the base and the sea, multiple horizontal wells are drilled from the base to the gas hydrate layer, and thermal or decomposition promoters are sent to the gas hydrate layer via the horizontal well. The gas hydrate is decomposed to decompose the gas hydrate, and the gas produced by the decomposition of the gas hydrate layer is collected offshore by a horizontal well, a mining base, and a transport route.
[0034]
(B) Since a horizontal well is constructed and mined in the gas hydrate layer, efficient and economical mining of thin and widely distributed submarine gas hydrate is possible.
(B) Since a mining base can be laid in a stable ground part based on the prediction of ground deformation due to gas hydrate mining, stable and efficient mining of seabed gas hydrate is possible.
(C) Since heat for gas hydrate decomposition can be produced at the mining base, energy loss due to heat transportation can be minimized, and the efficiency of energy balance in gas hydrate mining can be increased.
(D) It is suitable for mining marine methane hydrate, which is attracting attention as a new energy resource, and is expected to contribute to future resource development.
(E) By investigating the mechanical properties and stratum structure of the submarine ground using a diving survey machine, useful information when installing a mining base on the seabed, for example, physical property values for predicting submarine landslides and submarine ground deformation Can be obtained.
(F) By using a diving survey machine, detailed resource assessment of gas hydrate layers distributed widely and thinly can be performed economically.
(G) Submarine ground surveys using diving survey equipment can be expected to be applied not only to gas hydrate excavation but also to general submarine ground surveys.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of one embodiment of the present invention.
FIG. 2 is an explanatory diagram of an example of a method for examining stability of a seabed ground.
FIG. 3 is an explanatory view of a structure of a horizontal well used in the present invention.
FIG. 4 is an explanatory view of a horizontal well drilling method used in the present invention.
FIG. 5 is an explanatory diagram of an example of a mining method using a horizontal well.
FIG. 6 is an example of a flowchart of the mining method of the present invention.
FIG. 7 is an example of a conventional method of mining undersea gas hydrate.
FIG. 8 is another example of a conventional method of mining undersea gas hydrate.
FIG. 9 shows still another example of the conventional method of mining a seabed gas hydrate.
FIG. 10 is an explanatory diagram of one embodiment of the mining method of FIG. 9;
[Explanation of symbols]
1: Undersea ground 2: Gas hydrate layer
3: Free gas layer 4: Sea bottom
5 Sea level 6 Work boat (mother ship)
7: Decomposition gas 8: Water
10… Mining base 11… Drilling equipment
12 ... Infeed device 13 ... Heating device
13a… Valve 14… Recovery device
15 ... Exploration means 16 ... Sinking means
16a… Cable
18… Energy transport route 19… Airtight transport route
20 ... Survey method 21 ... Dive survey machine
22 ... weight adjustment device 22a ... valve
24… Mechanical property survey device 26… Geological structure survey device
28… Communication / control line
30 ... Horizontal well 31 ... Bit for drilling
32 ... Drilling rod 33 ... Inner tube
34 ... Outer tube 35 ... Angle adjuster
36… Position detection sensor 37… Boring pusher
40 ... drilling rig 41 ... well
42 ... Taeda well
50… Deep sea reactor 51… Sea water piping
52… Insulation material 53… Buoyancy container
54 ... Piping bottom 55 ... Rope
56… Rope winding device 57… Pump
58 ... Power cable 59 ... Small piping
60… Gas piping 61… Gas-water separator
62… Small piping 63… Drainage line
65… Mining base 66… Heat utilization system
67… Methane gas extraction pipe 68… Carbon dioxide gas supply pipe
69… Methane gas container 70… Carbon dioxide container
71: Power generation system 72: Transport ship for methane
73… Carrier for carbon dioxide 74… Boiler

Claims (15)

海底地盤中のガスハイドレート層の海底面に沿った拡がり領域を探査し、前記領域の安定地盤部位に削孔角度操作自在なボーリング装置が装備された採掘基地を沈設し、当該基地と海上との間に輸送路を設け、前記基地から前記層に複数の水平井を削孔し、前記層に水平井を介し温熱又は分解促進剤を送入してガスハイドレートを分解し、前記層の分解生成ガスを水平井、基地及び輸送路により海上で採取してなる海底ガスハイドレート採掘方法。Exploring the spreading area along the sea floor of the gas hydrate layer in the seafloor ground, digging a mining base equipped with a boring device capable of drilling angle operation in the stable ground part of the area, A transport route is provided between the base, a plurality of horizontal wells are drilled from the base to the layer, and a gas or a thermal hydrate is fed into the layer through the horizontal well to decompose gas hydrate. An undersea gas hydrate mining method in which cracked gas is sampled at sea by horizontal wells, bases and transport routes. 請求項1の方法において、前記輸送路に海上から前記基地へのエネルギー輸送路を含め、前記基地において海上からのエネルギーで加熱した海水を前記層に送入してなる海底ガスハイドレート採掘方法。The method according to claim 1, wherein the transportation path includes an energy transportation path from the sea to the base, and seawater heated by energy from the sea at the base is fed into the formation. 請求項1の方法において、前記基地に前記分解生成ガスの一部をエネルギーに変換するエネルギー変換装置を設け、当該変換装置からのエネルギーで加熱した海水を前記層に送入してなる海底ガスハイドレート採掘方法。The method according to claim 1, wherein the base is provided with an energy conversion device for converting a part of the decomposition product gas into energy, and the seawater heated by the energy from the conversion device is fed into the bed. Rate mining method. 請求項1から3の何れかの方法において、前記水平井の各々を二重管構造とし、前記水平井毎に二重管の一方を介して温熱又は分解促進剤を送入すると共に二重管の他方を介して分解生成ガスを前記基地に輸送してなる海底ガスハイドレート採掘方法。The method according to any one of claims 1 to 3, wherein each of the horizontal wells has a double pipe structure, and each of the horizontal wells is supplied with heat or a decomposition accelerator through one of the double pipes and has a double pipe structure. A seabed gas hydrate mining method comprising transporting a decomposition product gas to the base via the other of the above. 請求項1から3の何れかの方法において、前記複数の水平井から選択した特定水平井を介して温熱又は分解促進剤を送入し且つ他の水平井を介して分解生成ガスを前記基地に輸送してなる海底ガスハイドレート採掘方法。The method according to any one of claims 1 to 3, wherein a heating or decomposition promoting agent is supplied through a specific horizontal well selected from the plurality of horizontal wells, and a decomposition product gas is supplied to the base through another horizontal well. Submarine gas hydrate mining method that is transported. 請求項1から5の何れかの方法において、前記採掘基地を設置すべき安定地盤部位を、前記海底地盤に着床させた潜水調査機による当該地盤の力学的特性及び地質構造の調査結果に基づき定めてなる海底ガスハイドレート採掘方法。The method according to any one of claims 1 to 5, wherein the stable ground portion on which the mining base is to be installed is based on a result of a survey of mechanical properties and a geological structure of the ground by a diving survey machine that is landed on the seabed ground. Specified seabed gas hydrate mining method. 請求項6の方法において、前記潜水調査機を、海水の取り入れにより自重調節可能で且つ海水の排出により浮上可能なものとしてなる海底ガスハイドレート採掘方法。7. The method according to claim 6, wherein the dive survey machine is capable of adjusting its own weight by taking in seawater and capable of rising by discharging seawater. 海底地盤中のガスハイドレート層の海底面に沿った拡がり領域を探査する探査手段、海底地盤の力学的特性及び地質構造を調査する調査手段、前記調査により定まる前記領域の安定地盤部位に採掘基地を沈設する沈設手段、前記基地内に設けた削孔角度操作自在なボーリング装置と送入装置と採取装置、並びに前記基地と海上との間に設けた輸送路を備え、前記ボーリング装置により前記基地から前記層に複数の水平井を削孔し、前記送入装置により水平井へ温熱又は分解促進剤を送入してガスハイドレートを分解し、前記層の分解生成ガスを前記採取装置により水平井、基地及び輸送路経由で海上へ輸送してなる海底ガスハイドレート採掘システム。Exploration means for exploring the spreading area of the gas hydrate layer in the seafloor layer along the sea floor, research means for investigating the mechanical characteristics and geological structure of the seafloor ground, and a mining base at a stable ground part of the area determined by the research A boring device provided in the base, a boring device operable at a drilling angle, a feeding device, and a sampling device, and a transport path provided between the base and the sea, and the boring device provides the base with the boring device. A plurality of horizontal wells are drilled in the layer from above, the heating device is fed into the horizontal well by the inlet device to decompose the gas hydrate, and the gas produced by decomposition of the layer is removed by the sampling device. A submarine gas hydrate mining system transported to the sea via Hirai, bases and transport routes. 請求項8のシステムにおいて、前記輸送路に海上から前記基地へのエネルギー輸送路を含め、前記基地において海上からのエネルギーで加熱した海水を前記送入装置により前記層へ送入してなる海底ガスハイドレート採掘システム。9. The system according to claim 8, wherein the transportation path includes an energy transportation path from the sea to the base, and the seawater heated by the energy from the sea at the base is sent into the formation by the feeding device. Hydrate mining system. 請求項8のシステムにおいて、前記基地内に前記分解生成ガスの一部をエネルギーに変換するエネルギー変換装置を設け、当該変換装置からのエネルギーで加熱した海水を前記送入装置により前記層へ送入してなる海底ガスハイドレート採掘システム。9. The system according to claim 8, further comprising an energy conversion device for converting a part of the decomposition product gas into energy in the base, and feeding the seawater heated by the energy from the conversion device to the bed by the input device. Marine gas hydrate mining system. 請求項8から10の何れかのシステムにおいて、前記水平井の各々を二重管構造とし、前記水平井毎に二重管の一方を前記送入装置に接続すると共に二重管の他方を前記採取装置に接続してなる海底ガスハイドレート採掘システム。The system according to any one of claims 8 to 10, wherein each of the horizontal wells has a double-pipe structure, and one of the double pipes is connected to the feeding device and the other of the double pipes is connected to each of the horizontal wells. A submarine gas hydrate mining system connected to a sampling device. 請求項8から10の何れかのシステムにおいて、前記複数の水平井から選択した特定水平井を前記送入装置に接続すると共に他の水平井を前記採取装置に接続してなる海底ガスハイドレート採掘システム。The system according to any one of claims 8 to 10, wherein a specific horizontal well selected from the plurality of horizontal wells is connected to the feeding device, and another horizontal well is connected to the sampling device. system. 請求項8から12の何れかのシステムにおいて、前記調査手段に海底地盤に着床させる潜水調査機を含めてなる海底ガスハイドレート採掘システム。13. The submarine gas hydrate mining system according to any one of claims 8 to 12, wherein the surveying means includes a diving survey machine for landing on a seabed ground. 請求項13のシステムにおいて、前記潜水調査機を、海水の取り入れにより自重調節可能で且つ海水の排出により浮上可能なものとしてなる海底ガスハイドレート採掘システム。14. The undersea gas hydrate mining system according to claim 13, wherein the diving survey machine is capable of adjusting its own weight by taking in seawater and being able to float by discharging seawater. 請求項13又は14のシステムにおいて、前記潜水調査機に海底地盤のボーリング調査装置、貫入試験装置、ボーリング孔利用の検層装置、ボーリング孔利用の孔内載荷試験装置及び/又は弾性波探査装置を含めてなる海底ガスハイドレート採掘システム。15. The system according to claim 13 or 14, wherein the diving survey machine is provided with a boring survey device for a seabed, a penetration test device, a logging device using a boring hole, an in-hole loading test device using a boring hole, and / or an elastic wave exploration device. Subsea gas hydrate mining system to be included.
JP2002375298A 2002-12-25 2002-12-25 Submarine gas hydrate mining method and system Expired - Fee Related JP3945809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375298A JP3945809B2 (en) 2002-12-25 2002-12-25 Submarine gas hydrate mining method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375298A JP3945809B2 (en) 2002-12-25 2002-12-25 Submarine gas hydrate mining method and system

Publications (2)

Publication Number Publication Date
JP2004204562A true JP2004204562A (en) 2004-07-22
JP3945809B2 JP3945809B2 (en) 2007-07-18

Family

ID=32813082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375298A Expired - Fee Related JP3945809B2 (en) 2002-12-25 2002-12-25 Submarine gas hydrate mining method and system

Country Status (1)

Country Link
JP (1) JP3945809B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161531A (en) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization Robot for mining methane hydrate
JP2006214164A (en) * 2005-02-03 2006-08-17 Kajima Corp Recovering equipment of underground resources
WO2008002172A1 (en) * 2006-06-20 2008-01-03 Gennadiy Petrovich Kuznetsov Complex for developing undersea mineral deposits
JP2008239651A (en) * 2007-03-23 2008-10-09 Tokyo Gas Co Ltd Method for collecting gas from gas hydrate sedimentary layer, and apparatus therefor
CN100439651C (en) * 2006-09-06 2008-12-03 何满潮 Land bridge method for recovery of pressed coal under highway
US7546880B2 (en) 2006-12-12 2009-06-16 The University Of Tulsa Extracting gas hydrates from marine sediments
JP2010209591A (en) * 2009-03-10 2010-09-24 Tohoku Univ Method and system for power generation with low exhaustion of carbon dioxide
CN102322264A (en) * 2011-05-26 2012-01-18 上海交通大学 Gas hydrate exploitation, well completion, collection and conveying platform system
CN102392646A (en) * 2011-12-07 2012-03-28 常州大学 Marine gas hydrate electronic-spraying pump composite exploitation method and apparatus
JP2014528524A (en) * 2011-10-03 2014-10-27 マリーン リソーシーズ エクスプロレイション インターナショナル ビーヴイ How to collect sediment from the seabed
KR101519967B1 (en) 2013-09-09 2015-05-15 한국지질자원연구원 Method for solution mining by cycling process
CN104948143A (en) * 2015-06-15 2015-09-30 西南石油大学 Method and device for exploiting seabed surface layer natural gas hydrate
JP2018116050A (en) * 2017-01-18 2018-07-26 青▲島▼海洋地▲質▼研究所 Cpt combined type geochemical microelectrode probe system
JP2018127207A (en) * 2017-01-18 2018-08-16 青▲島▼海洋地▲質▼研究所 Sea bottom station multipoint home position long term observation system
CN109252832A (en) * 2018-10-09 2019-01-22 广州海洋地质调查局 A kind of the hydrate recovery method and quarrying apparatus stable based on reservoir
CN111141330A (en) * 2020-01-08 2020-05-12 中国海洋大学 Five-component marine natural gas hydrate intelligent sensing node
JP2021515122A (en) * 2019-04-19 2021-06-17 中国海洋大学 Deep Sea Multimetal Nodule Mining Work System
CN114771755A (en) * 2022-04-08 2022-07-22 国网黑龙江省电力有限公司鸡西供电公司 Offshore movable power plant
CN115217445A (en) * 2021-04-16 2022-10-21 中国石油化工股份有限公司 Device and method for exploiting natural gas hydrate in U-shaped well
CN115726742A (en) * 2022-12-20 2023-03-03 西南石油大学 Natural gas hydrate-shallow gas-deep gas multi-source multi-method combined mining system and method
CN115754152A (en) * 2022-11-21 2023-03-07 大连理工大学 Experimental system for simulating hydrate decomposition triggering seabed slope damage and using method
JP2023126160A (en) * 2022-02-28 2023-09-07 山東科技大学 Deep sea natural gas hydrate strip segmental mining method
CN117168912A (en) * 2023-11-01 2023-12-05 四川交通职业技术学院 Drilling sampling device and method for tunnel investigation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806205B (en) * 2015-05-12 2017-04-19 吉林大学 Method for exploiting terrestrial natural gas hydrate
CN107701151A (en) * 2017-11-17 2018-02-16 中国矿业大学 A kind of method of directional drilling decompression extraction gas hydrates

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161531A (en) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization Robot for mining methane hydrate
JP4581719B2 (en) * 2005-02-03 2010-11-17 鹿島建設株式会社 Underground resource recovery facility
JP2006214164A (en) * 2005-02-03 2006-08-17 Kajima Corp Recovering equipment of underground resources
WO2008002172A1 (en) * 2006-06-20 2008-01-03 Gennadiy Petrovich Kuznetsov Complex for developing undersea mineral deposits
EA011648B1 (en) * 2006-06-20 2009-04-28 Геннадий Петрович КУЗНЕЦОВ Complex for developing undersea mineral deposits
CN100439651C (en) * 2006-09-06 2008-12-03 何满潮 Land bridge method for recovery of pressed coal under highway
US7546880B2 (en) 2006-12-12 2009-06-16 The University Of Tulsa Extracting gas hydrates from marine sediments
JP2008239651A (en) * 2007-03-23 2008-10-09 Tokyo Gas Co Ltd Method for collecting gas from gas hydrate sedimentary layer, and apparatus therefor
JP2010209591A (en) * 2009-03-10 2010-09-24 Tohoku Univ Method and system for power generation with low exhaustion of carbon dioxide
CN102322264A (en) * 2011-05-26 2012-01-18 上海交通大学 Gas hydrate exploitation, well completion, collection and conveying platform system
JP2014528524A (en) * 2011-10-03 2014-10-27 マリーン リソーシーズ エクスプロレイション インターナショナル ビーヴイ How to collect sediment from the seabed
CN102392646A (en) * 2011-12-07 2012-03-28 常州大学 Marine gas hydrate electronic-spraying pump composite exploitation method and apparatus
KR101519967B1 (en) 2013-09-09 2015-05-15 한국지질자원연구원 Method for solution mining by cycling process
CN104948143A (en) * 2015-06-15 2015-09-30 西南石油大学 Method and device for exploiting seabed surface layer natural gas hydrate
JP2018116050A (en) * 2017-01-18 2018-07-26 青▲島▼海洋地▲質▼研究所 Cpt combined type geochemical microelectrode probe system
JP2018127207A (en) * 2017-01-18 2018-08-16 青▲島▼海洋地▲質▼研究所 Sea bottom station multipoint home position long term observation system
CN109252832A (en) * 2018-10-09 2019-01-22 广州海洋地质调查局 A kind of the hydrate recovery method and quarrying apparatus stable based on reservoir
CN109252832B (en) * 2018-10-09 2023-10-20 广州海洋地质调查局 Hydrate exploitation method and exploitation device based on reservoir stability
JP2021515122A (en) * 2019-04-19 2021-06-17 中国海洋大学 Deep Sea Multimetal Nodule Mining Work System
CN111141330A (en) * 2020-01-08 2020-05-12 中国海洋大学 Five-component marine natural gas hydrate intelligent sensing node
CN115217445B (en) * 2021-04-16 2024-05-14 中国石油化工股份有限公司 Device and method for exploiting natural gas hydrate by U-shaped well
CN115217445A (en) * 2021-04-16 2022-10-21 中国石油化工股份有限公司 Device and method for exploiting natural gas hydrate in U-shaped well
JP2023126160A (en) * 2022-02-28 2023-09-07 山東科技大学 Deep sea natural gas hydrate strip segmental mining method
CN114771755A (en) * 2022-04-08 2022-07-22 国网黑龙江省电力有限公司鸡西供电公司 Offshore movable power plant
CN115754152A (en) * 2022-11-21 2023-03-07 大连理工大学 Experimental system for simulating hydrate decomposition triggering seabed slope damage and using method
CN115726742B (en) * 2022-12-20 2023-07-21 西南石油大学 Multi-source multi-method combined exploitation system and method for natural gas hydrate, shallow gas and deep gas
CN115726742A (en) * 2022-12-20 2023-03-03 西南石油大学 Natural gas hydrate-shallow gas-deep gas multi-source multi-method combined mining system and method
CN117168912A (en) * 2023-11-01 2023-12-05 四川交通职业技术学院 Drilling sampling device and method for tunnel investigation
CN117168912B (en) * 2023-11-01 2024-01-16 四川交通职业技术学院 Drilling sampling device and method for tunnel investigation

Also Published As

Publication number Publication date
JP3945809B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3945809B2 (en) Submarine gas hydrate mining method and system
Liu et al. Progress in global gas hydrate development and production as a new energy resource
US20220098958A1 (en) Deep-sea submarine gas hydrate collecting method and production house
US9260949B2 (en) Subsea production system having arctic production tower
CN203824784U (en) Underwater vibration sampling device
KR20190011716A (en) A method for providing a seabed support unit and a shallow piercing terminal
JP2009274047A (en) Underground storage system of carbon dioxide gas
CN112709552A (en) Device and method for developing marine natural gas hydrate system based on hydrate method
CN114075967A (en) Natural gas hydrate exploitation monitoring system and method based on optical fiber sensing technology
Wu et al. Development of a novel self-entry exploitation device for marine natural gas hydrate and the feasibility studies
WO2012110096A1 (en) Marine exploration vehicle
Spagnoli et al. First deployment of the underwater drill rig MeBo200 in the North Sea and its applications for the geotechnical exploration
CN112253058B (en) System and method for artificially enriching and exploiting deep-water shallow-layer low-abundance unconventional natural gas
EP2824276A1 (en) A device for collecting methane gas
Collett Gas hydrate petroleum systems in marine and arctic permafrost environments
JPH10317869A (en) Development drilling method for methane hydrate present in sea bottom stratum
Spagnoli et al. Underwater drilling rig for offshore geotechnical explorations for Oil & Gas structures
JP6432916B1 (en) Methane hydrate mining method
CN113982561B (en) Natural gas hydrate exploitation monitoring system and method based on time-frequency electromagnetic of ground well
CN109577924A (en) A method of based on memory alloy material exploiting ocean shallow layer gas hydrate
Guosheng et al. The effect of thermal properties of sediments on the gas production from hydrate reservoirs by depressurization and thermal stimulation
Stow et al. Geohazards and ocean hazards in deepwater: overview and methods of assessment
Hawkins et al. New Development in Offshore Geotechnical Investigation
Talalay Geological and scientific offshore drilling and core sampling in ice-covered waters
RU2818392C1 (en) Method for advance drilling of pilot shafts during construction of wells on shelf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3945809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees