JP2004203988A - Method for manufacturing particulate titanium oxide-containing powdery ion exchange resin adsorbent, and method and apparatus for cleaning air or water using the same - Google Patents

Method for manufacturing particulate titanium oxide-containing powdery ion exchange resin adsorbent, and method and apparatus for cleaning air or water using the same Download PDF

Info

Publication number
JP2004203988A
JP2004203988A JP2002373423A JP2002373423A JP2004203988A JP 2004203988 A JP2004203988 A JP 2004203988A JP 2002373423 A JP2002373423 A JP 2002373423A JP 2002373423 A JP2002373423 A JP 2002373423A JP 2004203988 A JP2004203988 A JP 2004203988A
Authority
JP
Japan
Prior art keywords
exchange resin
titanium oxide
water
adsorbent
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002373423A
Other languages
Japanese (ja)
Other versions
JP4395648B2 (en
Inventor
Fumio Maekawa
文男 前川
Koji Nukui
興治 貫井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002373423A priority Critical patent/JP4395648B2/en
Publication of JP2004203988A publication Critical patent/JP2004203988A/en
Application granted granted Critical
Publication of JP4395648B2 publication Critical patent/JP4395648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for improving the environment of a residence space by removing pet odors, disinfectant odors, cooking odors or bad smells from a production site and air-cleaning, or for easily and inexpensively sanitizing water including waste water from a factory. <P>SOLUTION: A powdery ion exchange resin-fiber adsorbent comprises a particulate titanium oxide-containing powdery ion exchange resin adsorbent for purifying air or water, and exhibits excellent functions for reacting with a floating dust or a bad smell component thereby adsorbing and removing them while titanium oxide for a photocatalyst exhibits an excellent bad smell-decomposing function. There are provided a manufacturing method and a utilizing method of a new material exhibiting enhanced synergetic effects by combining these two functions, and an apparatus therefor. The technique enables to utilize waste articles/recycled articles as a raw material of the new material and is simply and inexpensively applied in a wide range of applications. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
空気中又は水中に存在する浮遊粉塵や悪臭成分を除去することで、住居・公共施設・職域などの居住空間を快適にすることに関する。
【0002】
【従来の技術】
悪臭を除去する方法は、感覚的脱臭法であるマスキング法、活性炭、ゼオライトほかによる物理的脱臭法、微生物的方法、化学的脱臭法、プラズマほかによる電気的脱臭法などが一般的であり、活性炭やキトサン等の吸着剤、高分子機能性膜を通流させることで空気を清浄する装置はある。最近では、光触媒用酸化チタンを用いて、アンモニア臭いやタバコのヤニを分解して空気を清浄する試みがあるが、本発明のような粒径1〜50μmの粉末イオン交換樹脂による悪臭や浮遊微粒子を吸着する作用と、酸化チタンの持つ悪臭成分分解作用による相乗作用を利用した空気又は水の清浄方法や装置は見当らない。
【0003】
工業用に常用されているイオン交換樹脂は、スチレンとジビニールベンゼンとの共重合体に酸性或いはアルカリ性の交換基を付与した高分子体で、直径0.3〜2mmの球形の粒状物質である。
【0004】
本発明で使用する粉末イオン交換樹脂は、工業用に常用されている粒状イオン交換樹脂を、機械粉砕により平均粒径1〜50μmの微粒子状に調製したイオン交換樹脂で、一般には市販されていないが、特殊な産業分野で使用されているものである。
【0005】
本発明で使用する粉末イオン交換樹脂は、必ずしも新品である必要はなく、使用済みの粒状イオン交換樹脂を、微粒子状に調製したもので充分である。
【0006】
微粒子状イオン交換樹脂吸着体を利用した水の濾過清浄剤や簡易プランターについては、特開2000−312881、特願2001−277268他で開示しているが、浮遊粉塵や悪臭成分の除去について実行したものはない。
【0007】
粉末イオン交換樹脂は、優れた悪臭成分吸着作用があることは既に判っていたが、空気中の悪臭除去に利用した装置の開発例は無い。その最大の理由は、当該樹脂が高価で、研究対象にならなかったことによるものと思われる。使用済みイオン交換樹脂を破砕することで安価に原材料が得られることで始めて可能になった新しい技術である。また、微粒子状酸化チタン包含イオン交換樹脂で、空気又は水の清浄化を試みた例は見当たらない。
【0008】
【発明が解決しようとする課題】
近年、悪臭除去・空気清浄などの生活空間を改善するためのニーズが強くなっている。そこで、清浄化に使用する濾過材である微粒子状酸化チタン包含粉末イオン交換樹脂吸着体及び微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法と、その濾過材を使用して空気又は水を清浄化する安価な方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
課題を解決するための手段である本発明の第一は、請求項1の粒径1〜50μmの粉末イオン交換樹脂と粒径100nm以下の微粒子状酸化チタンを水中で接触混合することを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製造方法であり、本発明の第二は、請求項1の粒径1〜50μmの粉末イオン交換樹脂と粒径100nm以下の微粒子状酸化チタンを繊維太さ5デニール以下のカット繊維とを水中で接触反応させることを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法であり、本発明の第三は、請求項1と請求項2で使用するイオン交換樹脂が使用済みのものであることを特徴とする微粒子状酸化チタン包含微粒子状イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法であり、本発明の第四は、請求項1から請求項3の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を用いた空気又は水の清浄方法及びその装置である。
【0010】
【発明の実施の形態】
本発明の実施の形態を吸着体の製法、吸着体を用いた清浄方法、実施例の順に説明する。先ず、微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製法について説明する。原料である粒径100nm以下の微粒子状酸化チタンと粒径1〜50μmの粉末の陰イオン及び陽イオン粉末イオン交換樹脂とを適当な重量比率で撹拌槽に投入し、投入した原料全体が撹拌できる程度の水を注水して、両原料が混合接触できるように撹拌し乳状懸濁水溶液を作る。これが乳液状の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体であるが、保存し易くするために水分を適度に蒸発させた湿潤状態或いは乾燥粉末に近い状態にしても良い。
【0011】
このように調製した微粒子状酸化チタン包含粉末イオン交換樹脂吸着体は、粒径100nm以下の微粒子状酸化チタンが、粒径1〜50μmの粉末イオン交換樹脂の細孔部分にあるイオン交換基の持つ何らかの微弱な結合作用により保持され、粉末イオン交換樹脂に保持される微粒子状酸化チタンの量は、微粒子状酸化チタンの粒径が微細になる程多くなるものと推定される。
【0012】
次に、本発明請求項2の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法について説明する。製法は、粉末イオン交換樹脂繊維を作る第一工程と、該繊維に微粒子状酸化チタンを包含させる第二工程からなる。粒径1〜50μmの粉末陰イオン及び微粒子状陽イオン交換樹脂と親水性のある微小繊維状セルローズ(商品名セリッシュ)やバルク状セラミック繊維との凝集体を作って、水を入れた撹拌槽に入れ、さらにその撹拌槽にポリエステルやポリプロピレン或いはレーヨン等のカット繊維を入れて、水中で混合して一体化させ粉末イオン交換樹脂繊維に調製する。このように調製した粉末イオン交換樹脂繊維は、空隙率が大きく微粒子状酸化チタンを包含させ易い状態になっている。
【0013】
粉末イオン交換樹脂繊維の製造に用いる該カット繊維は、繊維が太くなると粉末樹脂や微粒子状酸化チタンとの親和性が悪くなって、均一組成を持つ繊維状吸着体を調製することは難しく、繊維太さは5デニール以下の短繊維よりなる極細のカット繊維が望ましい。
【0014】
また、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の繊維は、必ずしも新品である必要はなく、いわゆる反毛業者が再生するリサイクル繊維でも使用できることを確認した。
【0015】
次に、第二工程で粉末イオン交換樹脂繊維に微粒子状酸化チタンを包含させる。粒径100nm以下の微粒子状酸化チタンを水に懸濁させた乳状の水溶液を作り、粉末イオン交換樹脂繊維の入った撹拌槽に注入し、粉末イオン交換樹脂繊維と混合攪拌して内部に分散し、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を作る。撹拌のために使用した余分な水は、槽内の撹拌溶液の沈殿が終わった後に排出又は蒸散させる。微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の作用効果は、湿潤状態の方が大きい。但し、乾燥した場合には、水を加えて湿潤状態にすれば作用効果が回復するので、保管・運搬時の水分の量は特に拘る必要はない。また、製造後使用目的に供するまでの間は、浮遊粉塵や悪臭成分の吸着による清浄効果低減を避けるためにできるだけ密封できる容器に保管するのが良い。
【0016】
以上のようにして作ったイオン交換樹脂に対する微粒子状酸化チタンの包含比率は、例えば、微粒子状酸化チタンに古河機械金属製商品名DN―1―0の平均粒径9nmの超微粒子状酸化チタンを使用した場合は、重量比率でイオン交換樹脂の10%程度まで吸着包含した超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を作ることができる。
【0017】
悪臭除去を目的として使用する場合の微粒子状イオン交換樹脂の組成について説明する。水の浄化を目的とする陰イオン交換樹脂を主体とする濾過体とは異なり、悪臭成分によって、イオン交換樹脂の組成を使い分けることが重要である。アンモニア等のカチオンを除くためには陽イオン交換樹脂、望ましくは強酸性陽イオン交換樹脂を主体とし、有機酸等のアニオン成分を除くためには陰イオン交換樹脂、望ましくは強塩基性陰イオン交換樹脂を主体とするのがよい。
【0018】
以下に、請求項4の請求項1から請求項3の吸着体を用いた空気又は水の清浄化方法とその装置について説明する。
【0019】
悪臭成分は、空気中の含有量が体積十億分率(ppb単位)の微量であっても、人間には強く感知される。該悪臭成分を含んだ空気を水と接触させると、速やかに臭い成分が水に溶解する。従って、清浄化作用を高めるためには、悪臭成分を含む空気又は水を微粒子状酸化チタン含有イオン交換樹脂吸着体、又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体などと、できるだけ接触面積を大きくすることが肝要である。
【0020】
以上の製法により作った吸着体を用いて、空気又は水を清浄化する方法について説明する。浮遊粉塵や悪臭成分を含む空気を清浄化する第一の方法は、繊維がなくても請求項1の製法による微粒子状酸化チタン包含粉末イオン交換樹脂の懸濁水溶液中に、悪臭成分を含んだ空気をエアーポンプで導入して通過させる方法である。
【0021】
浮遊粉塵や悪臭成分を含む空気を清浄化する第二の方法は、本発明である請求項2又は請求項3による微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を、空気が通流できる隙間や孔或いは開口部を有した容器に入れて、悪臭を発生する閉鎖系空間に置く方法である。閉鎖系空間内の空気の流動によって空気中の悪臭成分が該吸着体に接触・吸着されて、優れた清浄作用を発揮することができる。
【0022】
浮遊粉塵や悪臭成分を含む空気を清浄化第三の方法は、本発明お請求項2又は請求項3の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を水の入った水槽に入れ、浮遊粉塵や悪臭成分を含む空気をエアーポンプで吸入して水中に導入して、浮遊粉塵や悪臭成分を水に溶解する。該水溶液と粉末イオン交換樹脂とが接触して、粉末イオン交換樹脂の持つ化学・物理吸着作用で水中の浮遊粉塵や悪臭成分が粉末イオン交換樹脂に捕捉されて清浄化される。
【0023】
粉末イオン交換樹脂の吸着能力には一定の容量があり、やがて平衡になってそれ以上は吸着できなくなるが、この段階で水中の微生物を捕捉吸着して生物膜を形成するようになる。特に、平均粒径が10ミクロン前後と比表面積が大きい微粒子状イオン交換樹脂、特に塩基性イオン交換樹脂は水中の微生物をほぼ完全に捕捉吸着する。
【0024】
粉末イオン交換樹脂濾過吸着体に微粒子状酸化チタンを包含させることで、水溶液においてもアンモニアを始めとする有害成分の分解作用が、各々を単独使用した場合と比較にならない程向上した。この理由としては、イオン交換樹脂交換基に捕捉された有害成分とイオン交換樹脂細孔に捕捉されている微粒子状酸化チタンとの反応が活発化するためと推定される。
【0025】
空気又は水の清浄化のためには、平均粒径50μm以下の微粒子状イオン交換樹脂の持つイオン成分に対する優れた化学・物理吸着作用と、水中で使用する場合に発揚される微生物膜による作用を単独又は併用し、効果的に使用する必要がある。
【0026】
一般に酸化チタンが、悪臭成分を酸化分解することは、よく知られているが、粉末イオン交換樹脂繊維吸着体と粒状の微粒子状酸化チタンを併用する時、吸着体を通流して排出される空気の清浄効果が向上するという予期しない効果を認めた。
【0027】
清浄作用に最も効果的な吸着体は、粒径1〜50μmの微粒子状粉末イオン交換樹脂吸着体に粒径10nm以下の超微粒子状酸化チタン粉末を混合・攪拌することで調製した超微粒子状酸化チタン包含微粒子状イオン交換樹脂繊維吸着体である。
【0028】
使用する酸化チタンは、酸化作用があれば何れのものでもよいが、酸化チタンを均一に分散させ、繊維からの分離を防ぐためには、粒径10μm以下の微粒子状酸化チタン、より望ましくは100nm以下の粒径を持つ超微粒子状酸化チタン粉末がよい。
【0029】
既に本発明者らが特願2002―048937で出願済みのイオン交換樹脂吸着体を用いる水の清浄化方法の長所は、ある期間使用して粉末イオン交換樹脂の吸着能力が低下する段階で、水中で吸着した微生物が微生物膜を形成し、微生物膜による吸着分解能力が継続維持されることである。また、特徴的なことは、その微生物膜に磁場を働かせるとバイオリアクターの作用効果が倍増することで、この作用効果は工業的には極めて有用な事柄である。
【0030】
即ち、本発明の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を空気の清浄化に用い、磁場を働かせた粉末イオン交換樹脂繊維吸着体を水の清浄化に用いる複合的な装置によって、より効果的な空気又は水の清浄化を実現することができる。
【0031】
例えば、図1に示すシステムのように工業的規模のシャワー方式あるいは水槽内導入方式の大型装置にも適用できる。何れの方式でも、浮遊粉塵・悪臭成分を含む空気を本発明の請求項2又は請求項3の製法により作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体に通流して浄化するが、水に悪臭成分を溶解する工程で使用する水は、生物濾過効果を効果的に利用するために、貯水槽から循環ポンプによって微粒子状酸化チタンを含まない粉末イオン交換樹脂繊維吸着体又は磁石包含粉末イオン交換樹脂吸着体に循環通流するのがよい。本システムでは、清浄効果を上げるために浮遊粉塵や悪臭成分を含む空気を吸込むエアポンプの吸込能力が重要である。
【0032】
微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体は、酸化チタンによる抗菌作用を有するので、特に観賞魚を飼育する水の生物濾過・生物脱臭効果を期待するバイオリアクターとして使用する場合には、難点があることも判った。硝化・脱窒素作用を目的とする濾過吸着体として使用するためには、酸化チタンが共存することを避け、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体と微粒子状酸化チタンを包含しない粉末イオン交換樹脂繊維とを分離して併用するなどの配慮が必要である。
【0033】
例えば、特願2001―277268に記述した簡易プランターに適用する効果は大きく、本発明で言う水槽内の濾過吸着体と混合することなく、分割して適用することで、予期しない程の水の清澄効果と共に、このシステムより排出される空気中に存在する浮遊粉塵や落下菌が減少していることを認めた。特に、本発明による請求項2又は請求項3の製法で作った超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を、観葉植物を植えた植木鉢の表層部に置くことで、悪臭除去効果がを有したインテリアとしても期待される。
【0034】
このように、観葉植物と空気清浄を兼ねたインテリアとして、室内環境を重視するレストランやホテルに、また寝たきり老人の部屋の環境改善・癒しを考慮した福祉機器の一つとして提供することもできる。
【0035】
図1に示す様なシステムによる清浄化方法の最大のメリットは、浮遊粉塵や悪臭成分を水に溶解する工程で少量の水を用いる循環水システムでありながら、大量の水を放流するシステムに劣らない浮遊粉塵や悪臭成分の吸着・分解性能を発揮させることにある。これは1〜50μmの粉末イオン交換樹脂を使用することで始めて可能になったシステムで、磁場を働かせることによって効果を高め、その結果システムを簡略化・小型化することを可能にした。
【0036】
本発明の微粒子状酸化チタン包含粉末イオン交換樹脂吸着体又は微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を水中で用いる場合、酸化チタンがバイオリアクターの働きにどの程度関与しているかは不明であるが、恐らく酸化チタンの持つ酸化作用で生じる微量の有機性窒素分解物が、藻類発生を抑制する効果をもたらすものと推定される。
【0037】
以下に、本発明の請求項1から請求項3により製造した吸着体を使用した実施例とそれらに関連する実験結果について記述する。
【0038】
【実施例1】
ペットのトイレのある部屋や、歯科診療所の待合場所で発生する独特の異臭について、本発明請求項1により製造した微粒子状酸化チタン包含粉末イオン交換樹脂の懸濁水溶液に、周辺空気をエアーポンプで導入浄化する方法と請求項2により製造した吸着体である超微粒子状酸化チタンを包含させた微粒子状イオン交換樹脂繊維吸着体を上部の開放された容器に約250ml入れて設置する方法で、両方法ともにペットの悪臭や診療所特有の臭いを除くことができ、空気清浄効果が著しく向上した。後者の場合、粉末イオン交換樹脂繊維吸着体単独の場合とは比較にならない程の優れた脱臭効果を確認した。
【0039】
【実施例2】
観賞魚を飼育している水槽内に設置した遮光濾過筒内に、濾過材として、本発明請求項2の製法により作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を入れ、水槽水を内部循環させながら、水の汚れを観察し水質分析した結果、水の清浄効果が著しく向上した。観賞魚の死亡も少なく、藻類の発生も微粒子状酸化チタン単独使用の場合に比して激減した。特に、水槽水の透明度が向上し、光吸収分析において可視部吸収の減少のほか、紫外部特に200〜250nmの吸収が激減したばかりでなく、窒素化合物で代表される有害窒素化合物を少なくする作用効果が大きいことが判った。粒径9nmの超微粒子状酸化チタンは、粒状チタンに比べて清浄効果が大きく、粒径により著しく差異のあることを認めた。
【0040】
【実施例3】
室内で飼育している愛玩犬(チワワ10匹)の飼育ハウス(トイレのしつけハウス)居住区に毛布を置き、明らかにペット臭の感じられる実験布を調製する。30mの空間に該実験布を置き、そのそばに、次の8通りの方法で調製した各種脱臭剤を設置し、脱臭効果を3人のパネラーによる官能テストにより調べた。
【0041】
その1として、使用済み陽イオン交換樹脂(ダイアイオンPK216)を、気流粉砕法により調整した粉末陽イオン交換樹脂5gと微粒子状セルローズ(商品名セリッシユ)5gとバルク状セラミック繊維(イソライト工業)5gとポリエステルカット繊維(クラレ)5gに、超微粒子状酸化チタン(古河機械金属製、商品名DN−1−0)1gを水5リットルに混合し、ミキサー内で2〜5分間激しく攪拌する。10分間放置後、遠心分離機で水と繊維を分離し、繊維状吸着体を調製した。
【0042】
その2として、使用済み陽イオン交換樹脂に替えて、使用済み陰イオン交換樹脂(ダイアイオンPA308)を用いて調製した粉末陰イオン交換樹脂5gを用いて、その1と同様にして、微粒子状酸化チタン包含繊維状吸着体を調製した。
【0043】
その3として、使用済みイオン交換樹脂より調製された粉末陽イオン交換樹脂(ダイアイオンPK216)2.5gと粉末陰イオン交換樹脂(ダイアイオンPA308)2.5gを用いて、その1と同様にして、微粒子状酸化チタン包含繊維状吸着体を調製した。
【0044】
その4として、新品陽イオン交換樹脂(ダイアイオンPK216)を用いて、その1と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0045】
その5として、新品陰イオン交換樹脂(ダイアイオンPA308)を用いて、その2と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0046】
その6として、新品陽イオン交換樹脂(ダイアイオンPK216)と新品陰イオン交換樹脂(ダイアイオンPA308)を用いて、その3と同様に微粒子状酸化チタン包含繊維状吸着体を調製した。
【0047】
その7として、該超微粒子状酸化チタン単独では、繊維状吸着体は調製出来ないので、該超微粒子状酸化チタンを器に1g載せて比較資料とした。
【0048】
その8として、微粒子状酸化チタンを含まないその6と同様組成の陰・陽粉末イオン交換樹脂繊維吸着体を調製した。なお、その3、その6以外は微粒子状酸化チタンのリークがあり、微粒子状酸化チタンの包含量は減少した。
【0049】
評価は、実験前の臭いの強さを5とし、最も脱臭されたものを1とする5段階法で評価し、3人のパネラーが求めた平均値を四捨五入して求めた。以上の8通りで調製した脱臭剤の実験結果を表1に示す。
【0050】
実験結果で明らかなように、粉末陰・陽イオン交換樹脂と超微粒子状酸化チタンを包含したその3とその6に、優れた脱臭効果が認められた。利用する粉末イオン交換樹脂は、新品でも使用済みの物でも殆ど性能に差異は認められなかった。
【0051】
参考として、上記実験のその1からその8について、同一量の粉末イオン交換樹脂と微粒子状酸化チタンを水10Lに懸濁し、エアーポンプ(300ml/min)を用いて、周辺空気を導入させる実験を実施したが、各々の実験区に於いて、優るとも劣らない脱臭効果が認められた。
【0052】
【実施例4】
図2に示すように、水槽1の中に10リットルの水2を入れる。エアーポンプ4を稼動させて悪臭又は浮遊粉塵を含む空気を送るエアー導入パイプを、本発明の請求項2又は請求項3の製法で作った微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体3を収容する通水可能な吸着体収容容器8を経て、垂直に立つ直径2cmのエアーリフトパイプ3の下部に挿入する。空気は、エアーリフト現象により水を伴って上昇し、頂部から排出される。この時、持ち上げられた水は空気と水との接触が高まって悪臭が水に溶解し易くなるように、傘状落水板7を伝って広がりをもつて自然落下させる。
【0053】
頂部から排出される水を、滝の景観その他工夫をした造作物表層を流れるようにするとインテリア性を高めることができ応用範囲が広がる。
【0054】
頂部の傘状落水板の代わりに観葉植物を植えた植木鉢にすると、植木鉢の底の孔から水が自動的に潅水され、インテリアとしての効果と癒しの効果を求めることもできる。観葉植物の幹周辺の表層部に、本発明の請求項2又は請求項3の製法により作った微粒子状酸化チタン含有粉末イオン交換樹脂繊維吸着体を置くと清浄効果はさらに向上する。
【0055】
また、請求項2の微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の代わりに、本発明の請求項1の製法で作った微粒子状酸化チタン包含粉末イオン交換樹脂吸着体を水に投入して良い。この場合は、通水可能な吸着体収納容器は不要となる。
【0056】
さらに、水槽に観賞魚を飼育する場合は、微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体に代えて、酸化チタンを含まない磁石包含粉末イオン交換樹脂吸着体を用いて、微生物膜による清浄作用を利用するのも良い。
【0057】
微生物膜に磁場を働かせる場合、磁石を粉末イオン交換樹脂吸着体に包含させないで、流水経路の途中に永久磁石を設置して、磁場を働かせることによっても微生物膜による清浄作用を促すことができる。
【0058】
関連の実験として、広さ4.5畳の部屋に、愛玩犬の糞便200gを置き、そのそばに図xの空気清浄装置を設置し、1週間後の空気を定法により測定した結果、明らかに清浄効果が認められた。以下に、実験内容と結果を記載する。
【0059】
その1として、超微粒子状酸化チタン粒(不二機販製)150gを水槽底に設置し、粉末イオン交換樹脂吸着体500mlを使用した場合の空気清浄効果を試みた。、臭いについては実施例3と同様に3人のパネラーによる官能テストを行い、また浮遊粉塵量と落下菌数については定法により測定した。その結果を表2に示す。
【0060】
その2として、その1で使用した粉末イオン交換樹脂吸着体500mlの中から250mlを採取し、水中で膨潤させた後、超微粒子酸化チタン粉末(商品名;DN―1−0、古河機械金属製)0.5gを用いて、両者を混合攪拌させて該吸着体に均一に分散吸着さた。この超微粒子状酸化チタン含有粉末イオン交換樹脂吸着体を100メッシュの布で包み、前述粉末イオン交換樹脂吸着体の上部に分割して設置し、その1と同様にして、酸化チタン粒に代替えして、超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体を併用する実験をした。その結果を表3に示す。
【0061】
実験結果で明らかな様に、超微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の空気清浄効果は大きく、粉末イオン交換樹脂吸着体との相乗作用のあることを確認した。
【0062】
【実施例5】
次ノ二つについて試みる。材料Aとして、粉末陽イオン交換樹脂10g(商品名ダイアイオンPK216)と微粒子状陰イオン交換樹脂10g(商品名ダイアイオンPA308)と微小繊維状セルローズ10g(商品名セリッシュ)を水中で混合攪拌し、そこへ超微粒子状酸化チタン2g(古河機械金属製、商品名DN―1−0)を添加し凝集させる。
【0063】
材料Bとして、ポリエステルカット繊維(クラレ製、0.43dN×3mm)5gとポリプロピレンカット繊維(ダイワ紡製、2dN×2mm)5gにバルク状セラミック繊維(イソライト工業製)5gを水中で混合分散して均一にし、これらカット繊維よりなる吸着体を作る。
【0064】
材料Aと材料Bを混合し、上記濾過体に粉末イオン交換樹脂と超微粒子状酸化チタンを均一に包含した繊維状濾過吸着体を調製する。
【0065】
調製した吸着体300mlを、実施例4で説明した装置に投入したその1と、酸化チタンを除いた粉末イオン交換樹脂繊維濾過体を投入したその2について、水の清浄効果について比較実験を行った。原液は、腐敗臭のある溜まり水を純水で3倍稀釈して水槽水とした。エアーポンプを稼動して水槽水を濾過体に通流させ、24時間後の水質の変化を測定した。水槽は、直射日光の当たる場所に置いた。その測定結果を表4に示す。
【0066】
【実施例6】
次の二つについて試みる。その1として、微粒子状陽イオン交換樹脂5gと微粒子状陰イオン交換樹脂5gを基本成分とする繊維状吸着体(特開2000−312881)を直径10cm×高さ20cmのカラムに充填する。
【0067】
その2として、その1に示す濾過吸着体の頂部より、微粒子状酸化チタンを均一に分散させた水を注ぎ(1gを水5リットルに懸濁させる)、微粒子状酸化チタン含有イオン交換樹脂濾過体を調製する。
【0068】
このカラムに充填された濾過体頂部から水がシャワー状になって噴出し、空気と接触した後落下する。この貯留水は循環ポンプによりカラム内部の吸着体を通流して、底部から頂部に排出する機能を持つ循環水10リットルを持つ閉鎖系水清浄作用を環システムを作る。1mの密閉空間を有するテスト装置に、本発明装置を入れ、アンモニアと酢酸について、使用前と使用後の濃度を、市販の検知管を用いて濃度変化を測定した。24時間稼動後の測定結果を表5に示す。
【0069】
【表1】

Figure 2004203988
【0070】
【表2】
Figure 2004203988
【0071】
【表3】
Figure 2004203988
【0072】
【表4】
Figure 2004203988
【0073】
【表5】
Figure 2004203988
【0074】
【発明の効果】
本発明は、以上説明したような構成であるので、以下に記載するような効果を奏する。
【0075】
粒状イオン交換樹脂を気流粉砕することで調製した粉末イオン交換樹脂は、物理的吸着機能が著しく向上することが認められており、溶液の濾過材としての利用方法は本発明者等が開発してきたが、空気中の浮遊粉塵や悪臭成分の除去については未開発の分野であった。本発明によって、粉末イオン交換樹脂に微粒子状酸化チタンを含有させて相乗効果を高め、微粒子状粉末イオン交換樹脂の利用価値を著しく高めることができる。
【0076】
粉末イオン交換樹脂の原料は、発電所などの産業廃棄物である使用済み粒状イオン交換樹脂を細かく粉砕して本発明に使用する粉末イオン交換樹脂の材料として使用でき、また微粒子状酸化チタン含有粉末イオン交換樹脂繊維吸着体に使用する繊維も、反毛業者の作るリサイクル繊維が活用できるので、資源有効活用の面から有効な技術である。
【0077】
イオン交換樹脂は、特定の臭気に自在に適応できるように調製できる素材であり、本発明の素材が安価で簡便な方法と装置であるので、空気又は水の清浄化に広範囲な分野での適用が期待される。
【0078】
空気や水の清浄化を目的とする各種技術があるが、本発明は光触媒酸化チタンによる空気浄化作用と微生物膜による水の浄化作用のように寿命の長い作用効果を合わせた相乗効果により、効果対費用及び効果対期間に優れている。
【図面の簡単な説明】
【図1】本発明の空気又は水の清浄化工程概念図である。
【図2】本発明の一実施形態を示す清浄化装置の立断面図である。
【符号の説明】
1.水槽
2.水
3.微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体又は磁石包含微粒子状酸化チタン含有イオン交換樹脂繊維吸着体
4.エアーポンプ
5.エアー導入パイプ
6.エアーリフトパイプ
7.傘状落水板
8.通流可能な吸着体収納容器
9.空気流方向を示す矢印
10.水流方向を示す矢印[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to making living spaces such as dwellings, public facilities, and work areas comfortable by removing airborne dust and odor components existing in the air or water.
[0002]
[Prior art]
Methods for removing bad smells include masking method, which is a sensory deodorization method, physical deodorization method using activated carbon, zeolite, etc., microbial method, chemical deodorization method, and electrical deodorization method using plasma and others. There is a device for purifying air by flowing an adsorbent such as chitosan or chitosan or a polymer functional membrane. Recently, there has been an attempt to purify air by decomposing ammonia odor and cigarette tar by using titanium oxide for photocatalyst. There is no method or apparatus for purifying air or water that utilizes the synergistic action of the action of adsorbing water and the action of decomposing malodorous components of titanium oxide.
[0003]
An ion exchange resin commonly used in industry is a polymer obtained by adding an acidic or alkaline exchange group to a copolymer of styrene and divinylbenzene, and is a spherical granular substance having a diameter of 0.3 to 2 mm. .
[0004]
The powder ion-exchange resin used in the present invention is a granular ion-exchange resin that is commonly used in industry, an ion-exchange resin prepared by mechanical pulverization into fine particles having an average particle diameter of 1 to 50 μm, and is not generally commercially available. Are used in special industrial fields.
[0005]
The powder ion-exchange resin used in the present invention does not necessarily need to be brand new, and it is sufficient to use used granular ion-exchange resin in the form of fine particles.
[0006]
Japanese Patent Application Laid-Open No. 2000-312881 and Japanese Patent Application No. 2001-277268 disclose a filtration detergent and a simple planter for water using a particulate ion-exchange resin adsorbent. There is nothing.
[0007]
It has been known that powdered ion exchange resin has an excellent odor component adsorption action, but there is no development example of a device used for removing odors in the air. The most likely reason is that the resin was expensive and was not studied. This is a new technology that became possible only when raw materials were obtained at low cost by crushing used ion exchange resins. In addition, there is no example in which an attempt is made to purify air or water with an ion exchange resin containing fine particulate titanium oxide.
[0008]
[Problems to be solved by the invention]
In recent years, there has been an increasing need for improving living spaces such as removing odors and purifying air. Therefore, a method for producing a particulate titanium oxide-containing powder ion-exchange resin adsorbent and a particulate titanium oxide-containing powder ion-exchange resin fiber adsorbent, which are filter materials used for cleaning, and using the filter material to remove air or water. It is an object to provide an inexpensive method for cleaning.
[0009]
[Means for Solving the Problems]
The first aspect of the present invention, which is a means for solving the problem, is characterized in that the powdered ion-exchange resin having a particle size of 1 to 50 μm and the particulate titanium oxide having a particle size of 100 nm or less are contact-mixed in water. A method for producing a fine particle titanium oxide-containing powder ion exchange resin adsorbent for purifying air or water, the second aspect of the present invention relates to a powder ion exchange resin having a particle diameter of 1 to 50 μm according to claim 1. A powdered ion-exchange resin containing fine-grained titanium oxide for purifying air or water, wherein fine-grained titanium oxide having a particle size of 100 nm or less is contacted and reacted in water with cut fibers having a fiber thickness of 5 denier or less. The third aspect of the present invention is a method for producing a fiber adsorbent. The third aspect of the present invention is that the ion exchange resin used in the first and second aspects is used, and the fine particle ion exchange containing fine titanium oxide is used. A fourth aspect of the present invention is a method for producing a powdered ion-exchange resin fiber adsorbent containing an exchanged resin adsorbent or a particulate ion-exchanged titanium oxide containing fine particle titanium oxide. A method and an apparatus for purifying air or water using a powder ion-exchange resin fiber adsorbent containing powdered titanium oxide.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in the order of a method for manufacturing an adsorbent, a cleaning method using the adsorbent, and an example. First, a method for producing a fine particle titanium oxide-containing powder ion-exchange resin adsorbent will be described. Raw materials, i.e., fine particle titanium oxide having a particle size of 100 nm or less, and anion and cation powder ion-exchange resin of a powder having a particle size of 1 to 50 μm are charged into a stirring tank at an appropriate weight ratio, and the whole of the charged raw materials can be stirred. A small amount of water is injected, and the mixture is stirred so that both raw materials can be brought into contact with each other to prepare a milky aqueous suspension. This is the powdery ion-exchange resin adsorbent containing the finely particulate titanium oxide in the form of milky liquid. However, in order to facilitate storage, the adsorbent may be in a wet state in which water is appropriately evaporated or in a state close to a dry powder.
[0011]
The fine particle titanium oxide-containing powder ion-exchange resin adsorbent prepared as described above has a fine particle titanium oxide having a particle diameter of 100 nm or less having an ion-exchange group in a pore portion of a powder ion-exchange resin having a particle diameter of 1 to 50 μm. It is estimated that the amount of particulate titanium oxide retained by some weak binding action and retained in the powdered ion exchange resin increases as the particle size of the particulate titanium oxide becomes finer.
[0012]
Next, the method for producing the powdery ion-exchange resin fiber adsorbent containing finely divided titanium oxide according to claim 2 of the present invention will be described. The production method comprises a first step of producing a powdered ion exchange resin fiber and a second step of incorporating the particulate titanium oxide into the fiber. Agglomerates of powdered anion and particulate cation exchange resin with particle size of 1 to 50 μm and hydrophilic microfibrous cellulose (trade name Celish) or bulk ceramic fiber are made into a stirring tank filled with water. Then, cut fibers such as polyester, polypropylene or rayon are put into the stirring tank, mixed in water and integrated to prepare powder ion exchange resin fibers. The powder ion-exchange resin fiber thus prepared has a large porosity and is in a state where it can easily contain fine-grained titanium oxide.
[0013]
The cut fibers used in the production of powdered ion-exchange resin fibers are difficult to prepare a fibrous adsorbent having a uniform composition because the affinity of the cut fibers with the powdered resin or fine-grained titanium oxide deteriorates as the fibers become thicker. Ultrafine cut fibers made of short fibers of 5 denier or less are desirable.
[0014]
Further, it was confirmed that the fibers of the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent do not necessarily have to be new, and that so-called recycled fibers regenerated by a so-called anti-hair company can be used.
[0015]
Next, in the second step, the fine particle titanium oxide is included in the powder ion exchange resin fiber. A milky aqueous solution in which fine-particle titanium oxide having a particle size of 100 nm or less is suspended in water is poured into a stirring tank containing powdered ion-exchange resin fibers, mixed with the powdered ion-exchange resin fibers, stirred and dispersed therein. Then, an ion exchange resin fiber adsorbent containing fine titanium oxide powder is produced. Excess water used for stirring is drained or evaporated after precipitation of the stirred solution in the tank is finished. The action and effect of the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent is greater in the wet state. However, in the case of drying, the action and effect can be recovered by adding water to make it wet, so that there is no particular need to be concerned with the amount of water during storage and transportation. In addition, after production and before use for the purpose of use, it is preferable to store it in a container that can be sealed as much as possible in order to avoid a reduction in the cleaning effect due to adsorption of floating dust and malodorous components.
[0016]
The inclusion ratio of the fine particle titanium oxide to the ion-exchange resin prepared as described above is, for example, ultrafine titanium oxide having an average particle diameter of 9 nm of Furukawa Machinery Metals, trade name DN-1-0, as the fine particle titanium oxide. When used, an ultrafine particulate titanium oxide-containing powder ion-exchange resin fiber adsorbent that adsorbs and incorporates up to about 10% of the ion-exchange resin by weight can be produced.
[0017]
The composition of the particulate ion exchange resin when used for the purpose of removing offensive odors will be described. It is important to selectively use the composition of the ion exchange resin depending on the malodorous component, unlike the filter mainly composed of an anion exchange resin for purifying water. A cation exchange resin, preferably a strongly acidic cation exchange resin, is mainly used for removing cations such as ammonia, and an anion exchange resin is preferably used for removing anionic components such as organic acids. It is preferable to use resin as a main component.
[0018]
Hereinafter, a method and an apparatus for purifying air or water using the adsorbent of claims 1 to 3 of claim 4 will be described.
[0019]
Even if the content of the offensive odor in the air is as small as one billion parts by volume (ppb unit), it is strongly perceived by humans. When the air containing the malodorous component is brought into contact with water, the odorous component is immediately dissolved in the water. Therefore, in order to enhance the cleaning action, air or water containing a malodorous component is contacted with a particulate titanium oxide-containing ion-exchange resin adsorbent containing fine titanium oxide or a powder ion-exchange resin fiber-containing adsorbent containing fine particulate titanium oxide as much as possible in contact area. It is important to make it larger.
[0020]
A method for purifying air or water using the adsorbent produced by the above-described method will be described. A first method for purifying air containing suspended dust and malodorous components is that, even if there is no fiber, a malodorous component is contained in the aqueous suspension of the fine particle titanium oxide-containing powder ion exchange resin according to the method of claim 1. In this method, air is introduced by an air pump and passed therethrough.
[0021]
A second method for purifying air containing airborne dust and odorous components is the present invention, wherein the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent according to claim 2 or 3 is provided with a gap through which air can flow. This is a method in which the container is placed in a container having holes or openings and placed in a closed system space that generates an odor. The malodorous components in the air are brought into contact with and adsorbed by the adsorbent due to the flow of the air in the closed space, so that an excellent cleaning action can be exhibited.
[0022]
A third method of purifying air containing airborne dust and odorous components is to put the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent of claim 2 or 3 in a water tank containing water and float the air. Air containing dust and odor components is sucked by an air pump and introduced into water to dissolve floating dust and odor components in water. The aqueous solution and the powdered ion exchange resin come into contact with each other, and due to the chemical and physical adsorption action of the powdered ion exchange resin, floating dust and malodorous components in the water are captured by the powdered ion exchange resin and cleaned.
[0023]
The adsorption capacity of the powder ion-exchange resin has a certain capacity, and eventually becomes equilibrium and can no longer be adsorbed. At this stage, microorganisms in water are captured and adsorbed to form a biofilm. In particular, a particulate ion exchange resin having a large specific surface area with an average particle diameter of about 10 microns, particularly a basic ion exchange resin, captures and adsorbs microorganisms in water almost completely.
[0024]
By incorporating fine particulate titanium oxide in the powdered ion exchange resin filtration adsorbent, the decomposing action of harmful components such as ammonia in an aqueous solution was improved to a level incomparable to the case of using each alone. The reason for this is presumed to be that the reaction between the harmful component trapped by the ion exchange resin exchange group and the particulate titanium oxide trapped in the pores of the ion exchange resin is activated.
[0025]
To purify air or water, the excellent chemical / physical adsorption of ionic components of the particulate ion exchange resin with an average particle size of 50 μm or less and the action of microbial membranes that evolve when used in water. It must be used alone or in combination and used effectively.
[0026]
It is well known that titanium oxide generally oxidizes and decomposes odorous components. However, when a powdered ion-exchange resin fiber adsorbent and a particulate titanium oxide are used in combination, air discharged through the adsorbent is exhausted. An unexpected effect of improving the cleansing effect was observed.
[0027]
The most effective adsorbent for the cleaning action is an ultrafine particulate oxide prepared by mixing and stirring an ultrafine particulate titanium oxide powder having a particle size of 10 nm or less with a fine powder ion exchange resin adsorbent having a particle size of 1 to 50 μm. It is a fine particle ion exchange resin fiber adsorbent containing titanium.
[0028]
The titanium oxide to be used may be any one as long as it has an oxidizing effect, but in order to uniformly disperse the titanium oxide and prevent separation from the fiber, a fine particle titanium oxide having a particle size of 10 μm or less, more preferably 100 nm or less. Ultrafine titanium oxide powder having a particle size of
[0029]
The advantage of the method for purifying water using the ion-exchange resin adsorbent, which has already been filed by the present inventors in Japanese Patent Application No. 2002-048937, is that when the adsorption capacity of the powder ion-exchange resin is reduced after a certain period of use, the water The microorganism adsorbed in the step forms a microbial membrane, and the ability of the microbial membrane to adsorb and decompose is continuously maintained. Also, what is characteristic is that when a magnetic field is applied to the microbial membrane, the effect of the bioreactor is doubled. This effect is extremely useful industrially.
[0030]
That is, the fine particle titanium oxide-containing powder ion-exchange resin adsorbent or the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent of the present invention is used for purifying air, and the powder ion-exchange resin fiber adsorbent using a magnetic field is applied to water. A more effective cleaning of air or water can be realized by a composite device used for cleaning air.
[0031]
For example, the present invention can be applied to a large-scale apparatus of an industrial-scale shower type or a water tank introduction type like the system shown in FIG. In either method, air containing suspended dust and malodorous components is passed through a fine particle titanium oxide-containing powder ion exchange resin fiber adsorbent produced by the method of claim 2 or 3 of the present invention to purify water. The water used in the step of dissolving the malodorous component is a powder ion-exchange resin fiber adsorbent or a magnet-containing powder ion that does not contain particulate titanium oxide by a circulating pump from a water tank in order to effectively use the biological filtration effect. It is good to circulate through the exchange resin adsorbent. In this system, the suction capacity of an air pump that sucks air containing airborne dust and odorous components is important to improve the cleaning effect.
[0032]
Since the powdered ion-exchange resin fiber adsorbent containing fine titanium oxide has an antibacterial effect by titanium oxide, it is difficult to use it especially as a bioreactor that expects a biological filtration and biological deodorization effect of water for rearing ornamental fish. It turned out that there was. In order to use as a filtration adsorbent for the purpose of nitrification and denitrification, avoid the coexistence of titanium oxide, powder ion-exchange resin fiber adsorbent containing fine titanium oxide and powder ion not containing fine titanium oxide Care must be taken to separate and use the exchange resin fibers.
[0033]
For example, the effect applied to the simple planter described in Japanese Patent Application No. 2001-277268 is great, and it is possible to clarify water unexpectedly by dividing and applying the mixed adsorbent in the water tank according to the present invention without mixing. In addition to the effect, it was recognized that the suspended dust and falling bacteria present in the air discharged from this system were reduced. In particular, the powdery ion-exchange resin fiber adsorbent containing ultrafine titanium oxide powder produced by the method according to claim 2 or 3 according to the present invention is placed on the surface layer of a flowerpot in which a houseplant is planted, whereby an odor removing effect is obtained. It is also expected as an interior with
[0034]
As described above, as an interior that combines houseplants and air purification, it can be provided to restaurants and hotels that place importance on the indoor environment, and as one of welfare equipment that takes into consideration the improvement and healing of the environment of a bedridden elderly person.
[0035]
The greatest advantage of the cleaning method using the system as shown in Fig. 1 is that it is inferior to a system that discharges a large amount of water, even though it is a circulating water system that uses a small amount of water in the process of dissolving suspended dust and odor components in water. The purpose is to exhibit the adsorption / decomposition performance of no floating dust and odorous components. This is a system that was made possible only by using a powder ion exchange resin of 1 to 50 μm. The effect was enhanced by applying a magnetic field, and as a result, the system could be simplified and downsized.
[0036]
When using the fine particle titanium oxide-containing powder ion-exchange resin adsorbent or the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent of the present invention in water, it is unknown how much titanium oxide is involved in the function of the bioreactor. However, it is presumed that a trace amount of organic nitrogen decomposition product probably generated by the oxidizing action of titanium oxide has an effect of suppressing algae generation.
[0037]
Hereinafter, examples using the adsorbents according to claims 1 to 3 of the present invention and experimental results related thereto will be described.
[0038]
Embodiment 1
For the peculiar odor generated in the room where the pet toilet is located or the waiting area of the dental clinic, the surrounding air is air-pumped into the aqueous suspension of the particulate ion-exchange resin containing fine titanium oxide produced according to claim 1 of the present invention. A method of introducing and purifying the fine particle ion-exchange resin fiber adsorbent containing the ultrafine titanium oxide, which is the adsorbent produced according to claim 2, in a container having an open top, and installing the adsorbent. In both methods, the odor of pets and the odor peculiar to clinics could be removed, and the air cleaning effect was significantly improved. In the latter case, an excellent deodorizing effect that was incomparable with the case of using the powder ion-exchange resin fiber adsorbent alone was confirmed.
[0039]
[Example 2]
A fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent containing fine titanium oxide produced by the method according to claim 2 of the present invention is put into a light-shielding filter tube installed in an aquarium breeding ornamental fish as a filtering material. As a result of observing the contamination of water and analyzing the water quality while circulating the water internally, the cleaning effect of the water was remarkably improved. Ornamental fish also died less, and the occurrence of algae was significantly reduced as compared with the case of using particulate titanium oxide alone. In particular, the transparency of the aquarium water is improved, the absorption in the visible region is reduced in the optical absorption analysis, and the absorption of ultraviolet, particularly in the range of 200 to 250 nm, is drastically reduced, and the action of reducing harmful nitrogen compounds represented by nitrogen compounds. It turned out that the effect was great. It was recognized that ultrafine titanium oxide having a particle size of 9 nm has a greater cleaning effect than that of granular titanium, and that there is a significant difference depending on the particle size.
[0040]
Embodiment 3
A blanket is placed in a breeding house (toilet training house) of a pet dog (10 Chihuahuas) bred indoors, and an experimental cloth with a clear pet odor is prepared. 30m 3 Was placed in the space, and various deodorizers prepared by the following eight methods were placed near the experimental cloth, and the deodorizing effect was examined by a sensory test by three panelists.
[0041]
As a first, 5 g of powdered cation exchange resin, 5 g of fine cellulose (trade name: Cerisshiu), and 5 g of bulk ceramic fiber (Isolite Kogyo) prepared by using a used cation exchange resin (Diaion PK216) by an air current pulverization method. To 5 g of polyester cut fiber (Kuraray), 1 g of ultrafine titanium oxide (made by Furukawa Kikai Metal, trade name: DN-1-0) is mixed with 5 liters of water, and the mixture is vigorously stirred for 2 to 5 minutes in a mixer. After standing for 10 minutes, water and fibers were separated by a centrifuge to prepare a fibrous adsorbent.
[0042]
Second, in place of the used cation exchange resin, 5 g of a powdered anion exchange resin prepared using a used anion exchange resin (Diaion PA308) was used. A titanium-containing fibrous adsorbent was prepared.
[0043]
As the third method, using 2.5 g of a powdered cation exchange resin (Diaion PK216) and 2.5 g of a powdered anion exchange resin (Diaion PA308) prepared from a used ion exchange resin, in the same manner as in the first step. A fibrous adsorbent containing titanium oxide fine particles was prepared.
[0044]
As a fourth example, a fibrous adsorbent containing fine particulate titanium oxide was prepared in the same manner as in the first example, using a new cation exchange resin (Diaion PK216).
[0045]
As a fifth example, a fibrous adsorbent containing fine titanium oxide particles was prepared in the same manner as in the second example using a new anion exchange resin (Diaion PA308).
[0046]
As a sixth example, a fibrous adsorbent containing fine particulate titanium oxide was prepared in the same manner as in the third example using a new cation exchange resin (Diaion PK216) and a new anion exchange resin (Diaion PA308).
[0047]
As No. 7, since the fibrous adsorbent cannot be prepared using the ultrafine titanium oxide alone, 1 g of the ultrafine titanium oxide was placed on a vessel and used as comparative data.
[0048]
As No. 8, an anion-positive powder ion-exchange resin fiber adsorbent having the same composition as that of No. 6 containing no fine-particle titanium oxide was prepared. Except for Nos. 3 and 6, there was a leak of fine titanium oxide particles, and the content of fine titanium oxide particles was reduced.
[0049]
The evaluation was performed by a five-step method in which the odor intensity before the experiment was 5, and the deodorized one was 1, and the average value obtained by three panelists was rounded off. Table 1 shows the experimental results of the deodorants prepared in the above eight ways.
[0050]
As is evident from the experimental results, excellent deodorizing effects were observed for Nos. 3 and 6 containing the powdered anion / cation exchange resin and the ultrafine titanium oxide particles. The powder ion exchange resin used showed little difference in performance between new and used ones.
[0051]
For reference, in the experiments 1 to 8, the same amount of powdered ion-exchange resin and particulate titanium oxide were suspended in 10 L of water, and the surrounding air was introduced using an air pump (300 ml / min). As a result, in each of the experimental groups, a deodorizing effect not less than excellent was recognized.
[0052]
Embodiment 4
As shown in FIG. 2, 10 liters of water 2 is put in a water tank 1. The air pump 4 that operates the air pump 4 to send air containing odors or floating dusts is made of the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent 3 made by the method of claim 2 or 3 of the present invention. It is inserted into the lower part of an air lift pipe 3 having a diameter of 2 cm and standing vertically through a water-permeable adsorbent container 8 to be accommodated. The air rises with water due to the airlift phenomenon and is discharged from the top. At this time, the lifted water is allowed to fall naturally along the umbrella-shaped falling plate 7 so that the contact between the air and the water is increased and the bad smell is easily dissolved in the water.
[0053]
If the water discharged from the top is allowed to flow through the surface of a creature that has been devised, such as a waterfall landscape, the interior can be enhanced and the range of applications can be expanded.
[0054]
If a pot is planted with houseplants instead of an umbrella-shaped waterfall plate at the top, water is automatically irrigated from the hole at the bottom of the pot, and the effect as an interior and the effect of healing can be obtained. The cleaning effect is further improved when the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent produced by the method of claim 2 or 3 of the present invention is placed on the surface layer around the stem of the houseplant.
[0055]
Further, instead of the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent of claim 2, the fine particle titanium oxide-containing powder ion-exchange resin adsorbent produced by the method of claim 1 of the present invention is introduced into water. good. In this case, a water-permeable adsorbent storage container is not required.
[0056]
Furthermore, when breeding ornamental fish in an aquarium, instead of the fine particle titanium oxide-containing powder ion-exchange resin fiber adsorbent, a magnet-containing powder ion-exchange resin adsorbent that does not contain titanium oxide is used to purify the microbial membrane. It is also good to use.
[0057]
When a magnetic field is applied to the microbial membrane, the cleaning action by the microbial membrane can be promoted by installing a permanent magnet in the flowing water path without including the magnet in the powder ion exchange resin adsorbent and applying the magnetic field.
[0058]
As a related experiment, 200 g of stool of a pet dog was placed in a 4.5 tatami room, and the air purifier shown in Fig. X was set up near the stool. A cleaning effect was observed. The details of the experiment and the results are described below.
[0059]
As a first example, 150 g of ultrafine titanium oxide particles (manufactured by Fuji Kikai Co., Ltd.) were placed on the bottom of a water tank, and an air cleaning effect was attempted when 500 ml of a powder ion exchange resin adsorbent was used. The smell and smell were measured by a sensory test by three panelists in the same manner as in Example 3, and the amount of suspended dust and the number of falling bacteria were measured by a standard method. Table 2 shows the results.
[0060]
As a second part, 250 ml was collected from 500 ml of the powdered ion exchange resin adsorbent used in the first part, and after swelling in water, ultrafine titanium oxide powder (trade name: DN-1-0, manufactured by Furukawa Kikai Metal) ) Using 0.5 g, the two were mixed and stirred to uniformly disperse and adsorb on the adsorbent. This ultrafine particulate titanium oxide-containing powder ion-exchange resin adsorbent is wrapped with a 100-mesh cloth, divided and placed above the powder ion-exchange resin adsorbent, and replaced with titanium oxide particles in the same manner as in 1. Then, an experiment was conducted in which a powder ion-exchange resin fiber adsorbent containing ultrafine titanium oxide powder was used in combination. Table 3 shows the results.
[0061]
As is clear from the experimental results, it was confirmed that the powder ion-exchange resin fiber adsorbent containing ultrafine titanium oxide had a large air cleaning effect and had a synergistic effect with the powder ion-exchange resin adsorbent.
[0062]
Embodiment 5
I will try the next two. As a material A, 10 g of powdered cation exchange resin (trade name: Diaion PK216), 10 g of fine anion exchange resin (trade name: Diaion PA308), and 10 g of fine fibrous cellulose (trade name: Celish) are mixed and stirred in water, Then, 2 g of ultrafine titanium oxide (made by Furukawa Kikai Metal Co., Ltd., trade name DN-1-0) is added thereto and agglomerated.
[0063]
As material B, 5 g of a polyester cut fiber (manufactured by Kuraray, 0.43 dN × 3 mm) and 5 g of a polypropylene cut fiber (manufactured by Daiwa spinning, 2 dN × 2 mm) were mixed and dispersed in water with 5 g of bulk ceramic fiber (manufactured by Isolite Industries). The adsorbent is made uniform and made of these cut fibers.
[0064]
The material A and the material B are mixed to prepare a fibrous filtration adsorbent in which the powdered ion exchange resin and the ultrafine titanium oxide are uniformly contained in the filtration body.
[0065]
A comparative experiment was conducted on the water-cleaning effect of the sample No. 1 in which 300 ml of the prepared adsorbent was charged into the apparatus described in Example 4 and the sample No. 2 in which a powder ion-exchange resin fiber filter from which titanium oxide had been removed was charged. . The stock solution was prepared by diluting pool water having a putrefactive odor three times with pure water to obtain aquarium water. An air pump was operated to flow tank water through the filter, and a change in water quality after 24 hours was measured. The aquarium was placed in direct sunlight. Table 4 shows the measurement results.
[0066]
Embodiment 6
Try the following two: As a first method, a column having a diameter of 10 cm and a height of 20 cm is packed with a fibrous adsorbent (JP-A-2000-31288) containing 5 g of fine-particle cation exchange resin and 5 g of fine-particle anion exchange resin as basic components.
[0067]
As a second part, from the top of the filtration adsorbent shown in the first part, water in which fine particulate titanium oxide is uniformly dispersed is poured (1 g is suspended in 5 liters of water). Is prepared.
[0068]
Water is ejected from the top of the filter packed in the column in a shower-like manner and falls after coming into contact with air. This stored water flows through the adsorbent inside the column by a circulation pump to create a closed system water purifying ring system having 10 liters of circulating water having a function of discharging from the bottom to the top. 1m 3 The apparatus of the present invention was placed in a test apparatus having a closed space of No. 3 and the concentrations of ammonia and acetic acid before and after use were measured using a commercially available detector tube. Table 5 shows the measurement results after 24 hours operation.
[0069]
[Table 1]
Figure 2004203988
[0070]
[Table 2]
Figure 2004203988
[0071]
[Table 3]
Figure 2004203988
[0072]
[Table 4]
Figure 2004203988
[0073]
[Table 5]
Figure 2004203988
[0074]
【The invention's effect】
The present invention has the configuration as described above, and thus has the following effects.
[0075]
It has been recognized that the powder ion exchange resin prepared by subjecting the granular ion exchange resin to airflow pulverization has a remarkably improved physical adsorption function, and a method of using the solution as a filter material has been developed by the present inventors. However, removal of airborne dust and odorous components was an undeveloped field. According to the present invention, it is possible to enhance the synergistic effect by adding fine-particle titanium oxide to the powder ion-exchange resin, thereby significantly increasing the utility value of the fine-particle powder ion-exchange resin.
[0076]
The raw material of the powdered ion-exchange resin can be used as a material for the powdered ion-exchange resin used in the present invention by finely pulverizing used granular ion-exchange resin, which is industrial waste such as power plants, The fibers used in the ion-exchange resin fiber adsorbent can also be used from recycled fibers made by anti-hair companies, so this is an effective technique from the viewpoint of effective use of resources.
[0077]
Ion exchange resin is a material that can be prepared so as to be freely adaptable to a specific odor, and since the material of the present invention is an inexpensive and simple method and apparatus, it can be applied to a wide range of fields for cleaning air or water. There is expected.
[0078]
Although there are various technologies aimed at purifying air and water, the present invention is effective due to the synergistic effect of combining the long-life function such as air purification by photocatalytic titanium oxide and water purification by microbial membrane. Excellent cost / effectiveness vs. time.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an air or water cleaning process of the present invention.
FIG. 2 is an elevational sectional view of a cleaning device showing one embodiment of the present invention.
[Explanation of symbols]
1. Aquarium
2. water
3. Fine particle titanium oxide containing powder ion exchange resin fiber adsorbent or magnet containing fine particle titanium oxide containing ion exchange resin fiber adsorbent
4. Air pump
5. Air introduction pipe
6. Air lift pipe
7. Umbrella-shaped falling board
8. Adsorbent storage container that can flow
9. Arrow indicating airflow direction
Ten. Arrow indicating water flow direction

Claims (4)

粒径100nm以下の微粒子状酸化チタンと粒径1〜50μmの粉末イオン交換樹脂とを水中で接触混合することを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂吸着体の製法。Powder ion exchange containing fine particle titanium oxide for purifying air or water, characterized in that fine particle titanium oxide having a particle diameter of 100 nm or less and a powder ion exchange resin having a particle diameter of 1 to 50 μm are contact-mixed in water. Manufacturing method of resin adsorbent. 微粒子状酸化チタン、粉末イオン交換樹脂、及び繊維太さ5デニール以下のカット繊維とを水中で接触反応させることを特徴とする、空気又は水を清浄化するための微粒子状酸化チタン包含粉末イオン交換樹脂繊維吸着体の製法。Powder ion exchange containing fine particle titanium oxide for purifying air or water, characterized in that a fine particle titanium oxide, a powder ion exchange resin, and a cut fiber having a fiber thickness of 5 denier or less are contacted and reacted in water. Manufacturing method of resin fiber adsorbent. 請求項1又は請求項2で使用するイオン交換樹脂が、使用済みのリサイクル品であることを特徴とする微粒子状酸化チタン包含微粒子状イオン交換樹脂吸着体の製法。3. A method for producing a particulate ion exchange resin adsorbent containing particulate titanium oxide, wherein the ion exchange resin used in claim 1 or 2 is a used recycled product. 請求項1から請求項3の製法により作った吸着体を用いた空気又は水の清浄方法及びその装置。A method and an apparatus for purifying air or water using an adsorbent produced by the method according to claim 1.
JP2002373423A 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same Expired - Fee Related JP4395648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373423A JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373423A JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004203988A true JP2004203988A (en) 2004-07-22
JP4395648B2 JP4395648B2 (en) 2010-01-13

Family

ID=32811704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373423A Expired - Fee Related JP4395648B2 (en) 2002-12-25 2002-12-25 Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4395648B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029270A (en) * 2005-07-25 2007-02-08 Daikin Ind Ltd Deodorizing mechanism
JP2009247244A (en) * 2008-04-03 2009-10-29 Universal Bio Research Co Ltd Method for separating and recovering organism-related material
JP2013226149A (en) * 2013-06-10 2013-11-07 Universal Bio Research Co Ltd Method for separating and collecting organism-related substance
JP7411504B2 (en) 2020-06-01 2024-01-11 神田 謹造 environmental disinfection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029270A (en) * 2005-07-25 2007-02-08 Daikin Ind Ltd Deodorizing mechanism
JP2009247244A (en) * 2008-04-03 2009-10-29 Universal Bio Research Co Ltd Method for separating and recovering organism-related material
JP2013226149A (en) * 2013-06-10 2013-11-07 Universal Bio Research Co Ltd Method for separating and collecting organism-related substance
JP7411504B2 (en) 2020-06-01 2024-01-11 神田 謹造 environmental disinfection equipment

Also Published As

Publication number Publication date
JP4395648B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
KR100719788B1 (en) Naturally humidifying air cleaner using water filtering method and activated carbon filtering method
JP2003507184A (en) Microbial water filter
JPH06277431A (en) Gas suction filter device
JP4853800B1 (en) A water purification method using a powder ion-exchange resin-containing adsorbent as a filtration layer.
JP4395648B2 (en) Method for producing fine particle titanium oxide-containing powder ion exchange resin adsorbent, air or water cleaning method and apparatus using the same
CN207187420U (en) A kind of water dissolving type dedusting deodorizing device
JP6389979B2 (en) Deodorant manufacturing method
JP3650785B2 (en) Filtration device
CN208244451U (en) The funginert plant nethike embrane air filter of decomposing formaldehyde benzene
JP3720079B2 (en) Water treatment agent and method for producing the same
CN211903137U (en) Air purification and disinfection system
JP2010058994A (en) Silicate-coated titanium oxide material for decomposing volatile organic compound
JP5082034B2 (en) Composite functional photocatalyst dispersion and porous composite functional photocatalyst
JP2006272038A (en) Filter medium and its manufacturing method
JP3751147B2 (en) Purification agent and water purification apparatus using the same
JP2008067728A (en) Simplified urine purifying apparatus
KR101674933B1 (en) Rainwater treatment systems using membrane separation
JP2585157B2 (en) Adsorbent composition and method for producing the same
JPS5857965B2 (en) Sterilizing and filtering agent for water treatment
CN108310959A (en) The funginert plant nethike embrane air filter of decomposing formaldehyde benzene and manufacturing method
CN106422598A (en) Liquid-chemical-grid absorption-type indoor gas purifier
KR20010096437A (en) Water purification port by titanium dioxide photocatalist
JP4771609B2 (en) Planter with air purifier
JP2005288438A (en) Filter for purifying water
JP2005102674A (en) Deodorant using used ion exchange resin and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090416

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees