JP2004202584A - Continuous casting method for high-quality cast piece - Google Patents

Continuous casting method for high-quality cast piece Download PDF

Info

Publication number
JP2004202584A
JP2004202584A JP2004114573A JP2004114573A JP2004202584A JP 2004202584 A JP2004202584 A JP 2004202584A JP 2004114573 A JP2004114573 A JP 2004114573A JP 2004114573 A JP2004114573 A JP 2004114573A JP 2004202584 A JP2004202584 A JP 2004202584A
Authority
JP
Japan
Prior art keywords
mold
molten steel
continuous casting
slab
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004114573A
Other languages
Japanese (ja)
Inventor
Junpei Konishi
淳平 小西
Kazuma Inaoka
数磨 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004114573A priority Critical patent/JP2004202584A/en
Publication of JP2004202584A publication Critical patent/JP2004202584A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for a high-quality cast piece which prevents defects and inner cracks brought about by inclusions in the surface layer and internal part of a cast piece and, at the same time, avoids the significant alteration of a continuous casting equipment and can easily be realized at low cost. <P>SOLUTION: In the continuous casting method for the high-quality cast piece which liquid steel 11 is introduced into a mold 13 through a dipping nozzle 15 and continuously withdrawn downward while it is solidified with the mold 13, a vertical part 19 is provided below a meniscus 20 of the liquid steel 11, and also a stream 22 circling along a peripheral wall near the meniscus 20 of the liquid steel 11 is provided through an electromagnetic stirring device 21 installed at a long side of the mold 13. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、溶鋼を鋳型に鋳造してスラブ、ブルーム等の高品質の鋳片を製造する連続鋳造方法に関する。 The present invention relates to a continuous casting method for producing high-quality slabs such as slabs and blooms by casting molten steel in a mold.

従来の溶鋼の連続鋳造方法においては、所定の成分に調整された溶鋼をタンディッシュから浸漬ノズルを介して水冷構造を有する鋳型に注湯して、鋳型により溶鋼を周囲から徐々に冷却して凝固殻を形成させる。この凝固殻を形成した後は、鋳型の下方に配置された複数のサポートロールと鋳片支持ロール群に付設された二次冷却水ノズルにより冷却水を噴射して、凝固の促進と凝固した鋳片の引き抜きが行われる。
この二次冷却された鋳片は、湾曲の鋳片支持ロール群の末端部で湾曲状態を矯正して所定のサイズに切断されて後工程に供給される。
この連続鋳造方法においては、欠陥の無い優れた品質の鋳片を鋳造することが重要であり、鋳造する溶鋼への介在物の混入の防止や介在物の浮上除去の促進による清浄度の向上と、鋳造過程における鋳片の内部割れ等を防止することが行われている。
鋳片の品質を低下させる介在物については、特許文献1に示されているように、鋳型長片の外側に電磁攪拌装置を設置して、鋳型の内側に鋳型内周壁に沿って旋回する流れを形成して凝固殻に捕捉される介在物を減少して表層の清浄度の良好な鋳片を鋳造することが行われている。
また、介在物の浮上除去と鋳片の内部割れ等については、特許文献2のように、鋳型を含めたその直下に垂直部を形成して、垂直部により溶鋼中の介在物を浮上させて除去すると共に、垂直部から曲げ部への接続を多点の湾曲矯正により順次緩やかに曲げて鋳片への歪みを緩和して鋳片内部に割れ等の発生を防止することが行われている。
In the conventional continuous casting method of molten steel, molten steel adjusted to a predetermined component is poured from a tundish into a mold having a water-cooled structure through a dipping nozzle, and the molten steel is gradually cooled from the surroundings by the mold and solidified. Form a shell. After the solidified shell is formed, cooling water is sprayed by a plurality of support rolls arranged below the mold and a secondary cooling water nozzle attached to the slab support roll group to promote solidification and solidify the cast metal. The strip is pulled out.
The secondary cooled slab is straightened at the end of the group of curved slab support rolls, cut into a predetermined size, and supplied to a subsequent step.
In this continuous casting method, it is important to cast a slab of excellent quality without defects, and it is necessary to improve the cleanliness by preventing the inclusion of inclusions in the molten steel to be cast and promoting the floating removal of the inclusions. In addition, it has been practiced to prevent internal cracks and the like of a slab during a casting process.
As for the inclusions that degrade the quality of the slab, as shown in Patent Document 1, a magnetic stirrer is installed outside the long mold piece, and the flow swirling inside the mold along the inner peripheral wall of the mold is described. It has been practiced to cast slabs having good surface cleanliness by forming inclusions to reduce inclusions trapped in the solidified shell.
In addition, for the floating removal of inclusions and internal cracks in cast slabs, as in Patent Document 2, a vertical portion is formed directly below the mold including the mold, and the inclusions in the molten steel are floated by the vertical portion. At the same time, the connection from the vertical portion to the bent portion is gradually and gradually bent by correcting the curvature at multiple points to relieve the strain on the slab and prevent the occurrence of cracks and the like inside the slab. .

特開昭58−100955号公報JP-A-58-100955 特開平6−134558号公報JP-A-6-134558

しかしながら、前述の鋳型長片に電磁攪拌装置を設置して鋳型の内側に旋回する流れを形成して鋳片を鋳造する方法では、初期に凝固する凝固殻中の介在物を減少し表層の清浄度の高い鋳片を鋳造できるが、逆に溶鋼の内側に介在物が濃化して鋳片の内部欠陥となることが懸念される。溶鋼の内側に濃化した介在物は、下方から浮上する際に、内部の凝固殻の凝固界面に捕捉されて湾曲の鋳片支持ロール群の曲げ部の上側内面に集積する傾向にある。この介在物の集積した鋳片は、品質不合格材として屑化され、歩留りの低下を招く等の問題がある。
また、垂直部により溶鋼中の介在物を浮上させて除去し、垂直部から曲げ部への接続を多点の湾曲矯正により鋳片内部の矯正応力を緩和して鋳片内部割れ等を同時に防止する方法では、鋳片を多点に湾曲矯正するために鋳片支持ロール群の曲げ部の曲率が大きくなる。その結果、既存の湾曲型の連続鋳造装置に垂直部と多点の矯正を適用する場合は、鋳型及び鋳型支持装置、鋳片支持ロール群、建屋等を更新する必要があり建設費用の大幅な増大となる。
更に、溶鋼中の介在物を浮上させて除去する垂直部は、2.5m以上が必要であり、垂直部が大きくなる程に前記の問題がより顕著になる。しかも、多点の湾曲矯正であっても凝固殻の成長により鋳片の限界歪みが小さくなった位置で矯正を行うために、内部の脆弱な部位に内部割れが発生する。これは2.5mの垂直部から所定の曲率に湾曲矯正する一般的な垂直曲げ型の連続鋳造装置の場合においても同様の問題を持つことになる。
特に、湾曲型の連続鋳造装置においては、装置の大幅な改造を回避して低コストを維持し、鋳片の表層と内部の介在物に起因する欠陥を解消すると共に、同時に内部割れの発生を防止して鋳造することは困難である。
However, in the method of casting a slab by forming a swirling flow inside the mold by installing an electromagnetic stirrer on the long mold piece described above, the inclusion in the solidified shell that solidifies at the beginning is reduced, and the surface layer is cleaned. Although a high degree of slab can be cast, there is a concern that conversely, inclusions may be concentrated inside the molten steel and cause internal defects of the slab. Inclusions concentrated inside the molten steel tend to be trapped at the solidification interface of the solidified shell inside and float on the upper inner surface of the bent portion of the curved slab support roll group when floating from below. The cast slab in which the inclusions are accumulated has a problem that it is turned into waste as a quality rejected material, thereby lowering the yield.
In addition, the inclusions in the molten steel are lifted and removed by the vertical part, and the connection from the vertical part to the bending part is relaxed by multi-point bending correction to reduce the straightening stress inside the slab and simultaneously prevent the slab internal cracking etc. In this method, the curvature of the bent portion of the group of slab support rolls is increased in order to correct the slab at multiple points. As a result, when applying the vertical part and multipoint straightening to the existing curved continuous casting equipment, it is necessary to update the mold and the mold support device, the slab support roll group, the building, etc. Increase.
Further, the vertical portion for floating and removing the inclusions in the molten steel needs to be 2.5 m or more, and the above problem becomes more remarkable as the vertical portion becomes larger. In addition, even in the case of multi-point curvature correction, since the correction is performed at a position where the critical strain of the slab is reduced due to the growth of the solidified shell, an internal crack is generated in a fragile portion inside. This has the same problem in the case of a general vertical bending type continuous casting apparatus that corrects a curve from a vertical portion of 2.5 m to a predetermined curvature.
In particular, in the case of curved continuous casting equipment, large-scale modification of the equipment is avoided, cost is maintained, defects caused by the surface layer and internal inclusions of the slab are eliminated, and at the same time internal cracks are generated. It is difficult to prevent and cast.

本発明はかかる事情に鑑みてなされたもので、鋳片の表層と内部の介在物に起因した欠陥及び内部割れの防止と、同時に連続鋳造装置の大幅な改造を回避して、低コストでもって容易に実現できる高品質鋳片の連続鋳造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and prevents defects and internal cracks caused by the surface layer and internal inclusions of a slab, and at the same time, avoids large-scale remodeling of a continuous casting apparatus, and at a low cost. An object of the present invention is to provide a continuous casting method of high quality cast slab which can be easily realized.

前記目的に沿う請求項1記載の高品質鋳片の連続鋳造方法は、溶鋼を底部両側に吐出口を持つ浸漬ノズルを介して鋳型に注湯して、該鋳型により前記溶鋼を凝固させながら連続して下方に引き抜く高品質鋳片の連続鋳造方法において、
前記溶鋼のメニスカスから下方に0.7m以上1.5m未満の垂直距離を持つように前記鋳型の下に垂直部を設けると共に、前記鋳型の長片側に設けた電磁攪拌装置を介して前記溶鋼のメニスカス近傍に鋳型周壁に沿って旋回する流れを付与する。
鋳型内に形成される溶鋼のメニスカス(溶鋼の湯面)から下方に設けた垂直部により、溶鋼中に混入した介在物を浮上させて除去する。一方、鋳型内の溶鋼のメニスカス近傍に鋳型周壁に沿って旋回する流れを形成することにより、表層の凝固殻の清浄度を向上させると共に、溶鋼中に混入した介在物を凝集合体し、前述の垂直部で浮上除去することにより鋳片の表層及び内層の清浄度を共に向上する。
ここで、溶鋼のメニスカス近傍とは鋳型内の溶鋼により形成されるメニスカス(溶鋼の湯面)から鋳型下方500mmの範囲であり、好ましくは鋳型下方400mmの範囲である。
The continuous casting method for high quality cast slabs according to claim 1, which meets the above-mentioned object, comprises pouring molten steel into a mold through a dip nozzle having discharge ports on both sides of a bottom, and continuously solidifying the molten steel by the mold. In the continuous casting method of high quality cast slabs to pull down
A vertical portion is provided below the mold so as to have a vertical distance of 0.7 m or more and less than 1.5 m below the meniscus of the molten steel, and the molten steel is passed through an electromagnetic stirrer provided on one long side of the mold. A flow swirling along the peripheral wall of the mold is provided near the meniscus.
Inclusions mixed in the molten steel are lifted and removed by a vertical portion provided below a meniscus (a molten metal surface of the molten steel) of the molten steel formed in the mold. On the other hand, by forming a swirling flow along the peripheral wall of the mold near the meniscus of the molten steel in the mold, while improving the cleanliness of the solidified shell of the surface layer, the inclusions mixed in the molten steel are aggregated and coalesced, and By floating removal at the vertical portion, the cleanliness of both the surface layer and the inner layer of the slab is improved.
Here, the vicinity of the meniscus of the molten steel is within a range of 500 mm below the mold from the meniscus (the molten metal surface of the molten steel) formed by the molten steel in the mold, and is preferably within a range of 400 mm below the mold.

そして、前記垂直部を前記溶鋼のメニスカスから1.5m未満としてあるので、垂直部により溶鋼中に混入した介在物を浮上して除去すると共に、垂直部から曲げ部への湾曲矯正を限界歪みの大きな領域で行なうことができることから、鋳片に発生する内部割れを抑制できる。
また、溶鋼のメニスカスから下方の垂直部が1.5m以上であると垂直部から曲げ部への湾曲矯正が限界歪み値の小さい領域となり内部割れの発生を招くことになり、鋳型及び鋳型支持装置、鋳片支持ロール群の改造等のコストも上昇する。一方、溶鋼のメニスカスからの垂直部が0.7mより小さいと溶鋼中に混入した介在物の浮上除去に限界がある。これ等の理由から溶鋼のメニスカスから下方の垂直部は0.7m〜1.4mが好ましい。
And since the vertical part is less than 1.5 m from the meniscus of the molten steel, the vertical part removes inclusions mixed in the molten steel by floating, and corrects the bending from the vertical part to the bent part by limiting distortion. Since it can be performed in a large area, internal cracks generated in the slab can be suppressed.
If the vertical portion below the meniscus of the molten steel is 1.5 m or more, the straightening of the curve from the vertical portion to the bent portion becomes a region with a small critical strain value, causing internal cracks, and causing the mold and the mold supporting device. In addition, the cost of remodeling the slab support roll group and the like also increases. On the other hand, if the vertical portion from the meniscus of the molten steel is smaller than 0.7 m, there is a limit to the floating removal of inclusions mixed in the molten steel. For these reasons, the vertical portion below the meniscus of the molten steel is preferably 0.7 m to 1.4 m.

請求項記載の高品質鋳片の連続鋳造方法は、請求項1記載の高品質鋳片の連続鋳造方法において、前記鋳型周壁に沿って旋回する流れを0.2〜0.6m/secとしてあるので、鋳型内の溶鋼の旋回する流れにより鋳片の表層の介在物を洗浄除去して清浄度を高めると共に、溶鋼中に混入した介在物を凝集合体させて、介在物自体の浮力を高めて浮上除去し、鋳片の表層と内層の両方の清浄度を同時に向上させる。
鋳型周壁に沿って旋回する流れが0.2m/secより小さいと表層を形成する凝固殻の清浄度の低下と、溶鋼中に混入した介在物を凝集合体する働きが減少して鋳片の表層及び内層の品質が低下する。また、鋳型周壁に沿って旋回する流れが0.6m/secより大きいと溶鋼のメニスカスの上部に添加されたパウダーの巻き込みあるいは旋回する流れに淀みが発生して介在物や気泡に起因した欠陥が発生し易くなる。この理由から鋳型周壁に沿って旋回する流れは0.3〜0.5m/secがより好ましい。
The continuous casting method of high quality cast slab according to claim 2 is the continuous casting method of high quality cast slab according to claim 1 , wherein the flow swirling along the peripheral wall of the mold is 0.2 to 0.6 m / sec. Because of the swirling flow of molten steel in the mold, the inclusions in the surface layer of the slab are cleaned and removed by the swirling flow, increasing the cleanliness, and increasing the buoyancy of the inclusions by aggregating the inclusions mixed in the molten steel. To remove the slab and improve the cleanliness of both the surface layer and the inner layer of the slab at the same time.
If the flow swirling along the peripheral wall of the mold is less than 0.2 m / sec, the cleanliness of the solidified shell forming the surface layer is reduced, and the function of agglomerating and integrating inclusions mixed in the molten steel is reduced. And the quality of the inner layer is reduced. If the flow swirling along the peripheral wall of the mold is greater than 0.6 m / sec, powder added to the upper part of the meniscus of molten steel or stagnation occurs in the swirling flow, and defects caused by inclusions and bubbles may occur. It is easy to occur. For this reason, the flow swirling along the mold peripheral wall is more preferably 0.3 to 0.5 m / sec.

請求項1、2に記載の高品質鋳片の連続鋳造方法は、溶鋼のメニスカスから下方に垂直部を設け、電磁攪拌装置を介して、溶鋼のメニスカス近傍に鋳型周壁に沿って旋回する流れを付与して鋳造することから、溶鋼中に混入した介在物を浮上させて除去し、鋳型周壁に沿って旋回する流れにより凝固殻の清浄度を向上させると共に、溶鋼中に混入した介在物を凝集合体して垂直部により浮上除去して鋳片の表層及び内層の清浄度を共に向上する。 In the method for continuously casting high quality cast slabs according to claims 1 and 2 , a vertical portion is provided below the meniscus of the molten steel, and the flow swirling along the peripheral wall of the mold near the meniscus of the molten steel via an electromagnetic stirring device. Since it is applied and cast, the inclusions mixed in the molten steel are lifted and removed, and the swirling flow along the mold peripheral wall improves the cleanliness of the solidified shell and agglomerates the inclusions mixed in the molten steel. By combining and floating by the vertical portion, the cleanliness of both the surface layer and the inner layer of the slab is improved.

そして、前記垂直部を溶鋼のメニスカスから1.5m未満としてあるので、垂直部により溶鋼中に混入した介在物を浮上して除去すると共に、垂直部から曲げ部への湾曲矯正を限界歪みの大きな領域で行なうことができ、鋳片に発生する内部割れを抑制できる。 And, since as less than 1.5m said vertical portion of the meniscus of the molten steel, thereby removing emerged inclusions mixed in molten steel by the vertical section, it the size of the critical strain curvature correction from the vertical portion to the bent portion This can be performed in the region, and internal cracks generated in the slab can be suppressed.

請求項記載の高品質鋳片の連続鋳造方法は、前記鋳型周壁に沿って旋回する流れを0.2〜0.6m/secとしてあるので、鋳型内の溶鋼を旋回流れにより凝固殻の介在物を洗浄除去して清浄度を高めると共に、旋回流れにより溶鋼中に混入した介在物を凝集合体して浮上除去し、鋳片の表層及び内層共に清浄度を向上する。 In the continuous casting method for high quality cast slab according to claim 2, since the flow swirling along the peripheral wall of the mold is set to 0.2 to 0.6 m / sec, the molten steel in the mold is swirled by the solidified shell by the swirling flow. In addition to increasing the cleanliness by removing the objects, the inclusions mixed in the molten steel by swirling flow are aggregated and coalesced and removed by floating, thereby improving the cleanliness of both the surface layer and the inner layer of the slab.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る高品質鋳片の連続鋳造方法に適用する連続鋳造装置の概念図、図2は図1におけるメニスカスの面から見た鋳型周辺の概念図、図3はメニスカスからの距離と介在物の直径との関係を示す図、図4は鋳片の限界歪みと垂直部から曲げ部への湾曲矯正を行った場合の実歪みとの関係を示す図、図5は1.5m未満の垂直距離を設け鋳型内電磁攪拌を行う場合(本発明)と、1.5m未満の垂直距離を設けた場合(比較例)及び一般に用いられている湾曲型連続鋳造の場合(従来例)の内部欠陥指数の比較を示す図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is a conceptual view of a continuous casting apparatus applied to a continuous casting method for high quality cast slabs according to an embodiment of the present invention. FIG. 2 is a conceptual view of the periphery of a mold as viewed from a meniscus surface in FIG. FIG. 4 is a diagram showing the relationship between the distance from the meniscus and the diameter of inclusions, and FIG. 4 is a diagram showing the relationship between the critical strain of the slab and the actual strain when straightening from the vertical portion to the bent portion is performed. 5 shows a case where a vertical distance of less than 1.5 m is provided to perform electromagnetic stirring in a mold (the present invention), a case where a vertical distance of less than 1.5 m is provided (comparative example), and a commonly used curved continuous casting. FIG. 11 is a diagram showing a comparison of internal defect indices in the case (conventional example).

図1に示すように、連続鋳造装置10は、取鍋(図示せず)からの溶鋼11を受湯して保持するタンディッシュ12を備えており、タンディッシュ12の底部には、溶鋼11を鋳型13に注湯するための吐出口14を有する浸漬ノズル15が設けてある。また、鋳型13の直下に設置されたサポートロール16及び湾曲支持ロール群17により鋳片18を冷却し、鋳片18を図中の矢印の方向に引き抜くと共に、湾曲支持ロール群17を通過した鋳片18を矯正装置(図示せず)により曲がりを無くして平らに矯正を行なうようにしてある。
この鋳型13とその直下に設けたサポートロール16とにより、垂直部19を形成してあり、垂直部19の鋳造中における有効垂直距離は、溶鋼11のメニスカス20からサポートロール16の下端(図中の点線で表示)までであり、0.7m以上、1.5m未満にしてある。
As shown in FIG. 1, the continuous casting device 10 includes a tundish 12 for receiving and holding molten steel 11 from a ladle (not shown), and the molten steel 11 is provided at the bottom of the tundish 12. An immersion nozzle 15 having a discharge port 14 for pouring the mold 13 is provided. Further, the slab 18 is cooled by the support roll 16 and the curved support roll group 17 installed immediately below the mold 13, the slab 18 is pulled out in the direction of the arrow in the drawing, and the cast material that has passed through the curved support roll group 17 is cast. The piece 18 is straightened by a straightening device (not shown) without bending.
A vertical portion 19 is formed by the mold 13 and a support roll 16 provided immediately below the mold 13. The effective vertical distance during the casting of the vertical portion 19 is determined by a distance between the meniscus 20 of the molten steel 11 and the lower end of the support roll 16 (in the figure). (Indicated by a dotted line), and is 0.7 m or more and less than 1.5 m.

また、前述の垂直部19において、溶鋼11は、鋳型13により冷却されて凝固殻11aを形成し、複数のサポートロール16によって凝固殻11aは支持され、付設された冷却水の噴射ノズル(図示せず)から冷却水を噴射して冷却することにより凝固殻11aの剛性の確保と凝固の促進が図られる。このサポートロール16の下端に接続された湾曲支持ロール群17は、半径8〜15mの曲率を持って湾曲しており、複数の湾曲支持ロール17aにより鋳片18を支持すると共に、付設された冷却水の噴射ノズル(図示せず)から冷却水を噴射して鋳片18の凝固殻11aを厚くする。
更に、鋳型13の外側には、溶鋼11のメニスカス20の近傍に磁界を付与する電磁攪拌装置21が設けてある。
この電磁攪拌装置21においては、図2に示すように、鋳型13の鋳型長片13aの外側に複数の電磁攪拌装置21a、21b、21c、21dを設置してあり、制御装置23により、溶鋼11に所定の移動磁界を付与するようにしてある。この移動磁界の付与は、それぞれの電磁攪拌装置21a〜21dに流す電流値と位相移動速度とを制御装置23により所定の値に制御することにより行われる。即ち、吐出口14を備えた浸漬ノズル15から注湯された溶鋼11のメニスカス20(図1参照)を含めて鋳型下方400mmの範囲に移動磁界を付与して鋳型周壁に沿って旋回する流れ22(図2中矢印で表示)を形成してある。また、溶鋼11のメニスカス20の上面には、鋳型13と凝固殻11aの潤滑と介在物の捕捉や酸化防止等のために溶融層と未溶融層からなるパウダー(図示せず)の層を形成してある。
Further, in the vertical portion 19, the molten steel 11 is cooled by the mold 13 to form a solidified shell 11a, the solidified shell 11a is supported by the plurality of support rolls 16, and an attached cooling water spray nozzle (shown in FIG. By injecting the cooling water from the solidified shell 11) and cooling, the rigidity of the solidified shell 11a is ensured and the solidification is promoted. The curved support roll group 17 connected to the lower end of the support roll 16 is curved with a radius of curvature of 8 to 15 m, supports the cast slab 18 by a plurality of curved support rolls 17a, and has an attached cooling. Cooling water is injected from a water injection nozzle (not shown) to thicken the solidified shell 11a of the slab 18.
Further, an electromagnetic stirrer 21 for applying a magnetic field to the vicinity of the meniscus 20 of the molten steel 11 is provided outside the mold 13.
2, a plurality of electromagnetic stirrers 21a, 21b, 21c, and 21d are provided outside the mold long piece 13a of the mold 13, and the controller 23 controls the molten steel 11 as shown in FIG. To a predetermined moving magnetic field. The application of the moving magnetic field is performed by controlling the value of the current flowing through each of the electromagnetic stirring devices 21a to 21d and the phase moving speed to predetermined values by the control device 23. That is, a flow 22 that applies a moving magnetic field to a region 400 mm below the mold including the meniscus 20 (see FIG. 1) of the molten steel 11 poured from the immersion nozzle 15 having the discharge port 14 and turns along the mold peripheral wall. (Indicated by an arrow in FIG. 2). On the upper surface of the meniscus 20 of the molten steel 11, a powder layer (not shown) composed of a molten layer and an unmelted layer is formed for lubrication of the mold 13 and the solidified shell 11a, trapping of inclusions, prevention of oxidation, and the like. I have.

次に、本発明の一実施の形態に係る高品質鋳片の連続鋳造方法について説明する。
容量40トンのタンディッシュ12に溶鋼11を受湯して浸漬ノズル15の吐出口14から1.8トン/分の溶鋼11を鋳型13に注湯し、垂直部19が1.4mとなる鋳型13及びその直下のサポートロール16により冷却して凝固殻11aを形成した。同時に電磁攪拌装置21a、21cの電流値を675アンペア、電磁攪拌装置21b、21dに202〜675アンペアの電流を付加して溶鋼11のメニスカス20から鋳型下方400mmの範囲に移動磁界を付加して鋳型周壁に沿って0.2〜0.6m/secで旋回する流れ22を付与した。
図3は、前述の垂直部19の有効垂直距離(以降垂直距離)を1.4m、旋回する流れ22を0.2〜0.6m/secとした本発明(○)印と、単に垂直部を設けた従来の場合(●)印との介在物の凝集と浮上効果を溶鋼11中の介在物の大きさにより調査した結果である。明らかに、単に垂直部を設けた場合の(●)印では、溶鋼11中に混入した介在物は、殆ど最初の粒径の状態で垂直部を浮上するために、除去効率が悪く垂直距離が2.5mでも介在物個数が本発明(○)の2倍以上溶鋼11中に残存する。これに対し、垂直部19の垂直距離を1.4mとし、旋回する流れ22を付与する本発明(○)印では、介在物を溶鋼11中に巻き込まれたアルゴン等の不活性ガス若しくは他の介在物と接触させて凝集及び気泡捕捉を促進して、浮力を高めて垂直部19で積極的に浮上して除去するので、介在物を大幅に減少できる。更に、溶鋼11の下向き流の進入深さの減少により介在物の進入深さも減少し、鋳片18の表層及び内層の介在物の減少による品質向上が達成できる。
このように、旋回する流れ22を付与することにより直径が小から中程度の浮力の小さい介在物が積極的に凝集し溶鋼11中の不活性ガスの気泡に捕捉されて容易に浮上することから溶鋼11の表、内層の清浄度が向上できると共に、垂直距離が1.5m未満の垂直部19において直径が150μm以上の介在物の除去率は約65%以上となる。
Next, a method for continuously casting high quality cast slabs according to an embodiment of the present invention will be described.
The molten steel 11 is received in a tundish 12 having a capacity of 40 tons, and 1.8 tons / min of molten steel 11 is poured into the mold 13 from the discharge port 14 of the immersion nozzle 15 so that the vertical portion 19 becomes 1.4 m. The solidified shell 11a was formed by cooling with the support roll 13 and the support roll 16 therebelow. At the same time, the current value of the electromagnetic stirrers 21a and 21c is 675 amperes, and the current of 202 to 675 amperes is applied to the electromagnetic stirrers 21b and 21d to apply a moving magnetic field from the meniscus 20 of the molten steel 11 to a range of 400 mm below the mold. A flow 22 swirling at 0.2 to 0.6 m / sec along the peripheral wall was provided.
FIG. 3 shows the present invention in which the effective vertical distance (hereinafter referred to as “vertical distance”) of the above-described vertical portion 19 is 1.4 m, and the swirling flow 22 is 0.2 to 0.6 m / sec. This is a result of examining the aggregation and the floating effect of inclusions with the mark (●) in the conventional case provided with the symbol, based on the size of the inclusions in the molten steel 11. Obviously, in the mark (●) where only a vertical portion is provided, inclusions mixed in the molten steel 11 float on the vertical portion with almost the initial grain size, and therefore the removal efficiency is poor and the vertical distance is small. Even at 2.5 m, the number of inclusions remains in the molten steel 11 at least twice the number of the present invention ((). On the other hand, in the present invention (○) where the vertical distance of the vertical portion 19 is set to 1.4 m and the swirling flow 22 is given, the inclusions are inert gas such as argon or other inert gas which is entrained in the molten steel 11. Since it is brought into contact with inclusions to promote agglomeration and trapping of air bubbles, the buoyancy is increased and the particles are positively floated and removed at the vertical portion 19, so that inclusions can be significantly reduced. Furthermore, the penetration depth of the inclusions is also reduced due to the decrease in the penetration depth of the downward flow of the molten steel 11, and the quality improvement can be achieved by reducing the inclusions in the surface layer and the inner layer of the slab 18.
In this way, by providing the swirling flow 22, inclusions having small to medium diameters and small buoyancy are positively agglomerated and trapped by the inert gas bubbles in the molten steel 11 and easily float. The cleanliness of the front and inner layers of the molten steel 11 can be improved, and the removal rate of inclusions having a diameter of 150 μm or more in the vertical portion 19 having a vertical distance of less than 1.5 m is about 65% or more.

また、垂直部19から引き抜かれた垂直状態の鋳片18は、湾曲支持ロール群17の複数の湾曲支持ロール17aにより半径10mの曲率に湾曲矯正されて湾曲支持ロール群17内を下降する。
図4は、垂直距離が1.4mの垂直部19から半径10mの曲率に湾曲矯正した場合の鋳片18の限界歪みと実歪みとの関係を示すが、図中(○)印で示すように実歪みのピーク値は約0.67となり、限界歪みの範囲内で半径10mの曲率に矯正されることから鋳片18の内部割れを防止できる。しかし、垂直部19の垂直距離が1.5mを超えると限界歪みが0.53以下となり、湾曲支持ロール群17により鋳片18を支持した状態のみで垂直部から湾曲矯正を行わない場合の実歪み(図4中に点線で示す)との差が小さくなる。この領域(例えばメニスカスからの距離が2.5m)での矯正による実歪みは図中(●)印で示すように大きくなり限界歪みを超えることが発生する。
更に、限界歪みは一般的に用いられているもので良く、例えば鋼種、鋳片温度、鋳造速度、凝固厚、各ロール位置に供給される冷却水量等によってそれぞれの湾曲支持ロール17aの位置における限界歪みを実験により求めた値を用いるか、又は、実験により予め求められた値から計算により予測しても良い。湾曲矯正によって発生する実歪みも鋼種、鋳片温度、鋳造速度、凝固厚み、各ロール位置に供給される冷却水量等により同様に求めることができる。この限界歪み及び実歪みを求める際に用いる凝固殻11aの条件は、凝固殻11aの厚みS(mm)と溶鋼11のメニスカス20からの到達時間T(分)との凝固関係式S=K×T1/2 の関係があり、凝固係数Kは一般的な値として25〜30mm/M1/2 を用いる。なお、Mは時間単位の分を表す。
The cast slab 18 pulled out of the vertical portion 19 in a vertical state is corrected to have a radius of 10 m by the plurality of curved support rolls 17 a of the curved support roll group 17, and descends in the curved support roll group 17.
FIG. 4 shows the relationship between the critical strain and the actual strain of the slab 18 when the curvature is corrected from the vertical portion 19 having a vertical distance of 1.4 m to a curvature having a radius of 10 m. In addition, the peak value of the actual strain is about 0.67, and the curvature is corrected to a radius of 10 m within the range of the critical strain, so that the internal crack of the slab 18 can be prevented. However, when the vertical distance of the vertical portion 19 exceeds 1.5 m, the critical distortion becomes 0.53 or less, and the actual case where the straightening is not performed from the vertical portion only when the slab 18 is supported by the bending support roll group 17. The difference from the distortion (indicated by the dotted line in FIG. 4) becomes smaller. The actual distortion due to the correction in this region (for example, the distance from the meniscus is 2.5 m) becomes large as shown by the mark (●) in the figure, and exceeds the limit distortion.
Further, the critical strain may be a commonly used one. For example, the critical strain at the position of each curved support roll 17a depends on the type of steel, slab temperature, casting speed, solidification thickness, amount of cooling water supplied to each roll position, and the like. The distortion may be estimated using a value obtained by an experiment, or may be predicted by calculation from a value obtained in advance by an experiment. The actual distortion caused by the straightening can be determined in the same manner based on the type of steel, the slab temperature, the casting speed, the solidification thickness, the amount of cooling water supplied to each roll position, and the like. The condition of the solidified shell 11a used for obtaining the critical strain and the actual strain is a solidification relational expression S = K × between the thickness S (mm) of the solidified shell 11a and the arrival time T (minute) of the molten steel 11 from the meniscus 20. There is a relationship of T 1/2 , and a solidification coefficient K of 25 to 30 mm / M 1/2 is used as a general value. Note that M represents minutes in time units.

この限界歪みと湾曲矯正によって発生する実歪みとの関係からメニスカス20から1.5m未満の位置で湾曲矯正を行えば限界歪み以内の領域で湾曲矯正することが可能であり、1.5m以上になると限界歪みに近接あるいは限界歪みを超えることから、鋳片18の脆弱な凝固殻11aに割れが発生して内部割れとなることが判る。
なお、図4中において点線で示す実歪みは、湾曲型連続鋳造装置(図示せず)において鋼種、鋳片温度、鋳造速度、凝固厚み等を同一の条件とし、曲率半径10mの状態において、鋳片18を湾曲支持ロール群17で湾曲支持した際の鋳片バルジング等による歪み値である。従って、湾曲矯正を行った以降の実歪みは、同じ条件となるので点線で示す実歪みに近似する。
From the relationship between the limit distortion and the actual distortion generated by the curvature correction, if the curvature is corrected at a position less than 1.5 m from the meniscus 20, it is possible to correct the curvature within the area within the limit distortion, and to 1.5 m or more. Then, since the strain approaches or exceeds the critical strain, it is understood that the brittle solidified shell 11a of the slab 18 is cracked and becomes an internal crack.
The actual strain indicated by a dotted line in FIG. 4 is obtained by using a curved continuous casting apparatus (not shown) under the same conditions, such as steel type, slab temperature, casting speed, solidification thickness, and the like, when the radius of curvature is 10 m. This is a distortion value due to slab bulging or the like when the piece 18 is curved and supported by the curved support roll group 17. Therefore, the actual distortion after performing the curvature correction is the same as the actual distortion, and therefore approximates the actual distortion indicated by the dotted line.

次に、本発明の一実施の形態に係る高品質鋳片の連続鋳造方法の実施例について説明する。
長さ1200mm、厚み250mmの鋳型13に溶鋼11を1.8トン/分の供給速度で注湯し、鋳型13の上端から下方向へ100mmの位置にメニスカス20を形成してメニスカス20からサポートロール16の下端までの1.4mを垂直部19とした。
更に、鋳型長片13aの外側に、電磁攪拌装置21a、21b、21c、21dを設置し、電磁攪拌装置21a、21cに675アンペアの電流を流して強攪拌とし、電磁攪拌装置21b、21dには202〜675アンペアの電流を流して旋回する流れ22を0.3m/secとして1.2m/分の速度で鋳造した。また、曲率半径が10mの湾曲支持ロール群17により垂直部19から出た鋳片18を曲率に合わせて順次湾曲矯正した。また、従来例として、同一の鋳型13及び鋳造速度で、単に垂直距離が2.5mを有し、曲率半径が10mの湾曲支持ロール群17により曲率に合わせて順次湾曲矯正した場合の表面品質及び内部品質と総合品質の評価を比較して表1に示す。
従来例では、垂直距離が大きいために曲率に合わせて湾曲矯正する際に内部割れが発生して内部品質が悪化(△)するのに対して、本実施例(1)では、内部割れの無い良好な結果(○)が得られた。更に、表面品質は実施例(1)の場合電磁攪拌を行なうことで表層の介在物が除去されて良好(○)であるのに対して、従来例では、表層に介在物が残留して表面欠陥が発生して(△)となり表面品質がかなり低下している。総合品質についても本実施例(1)が(○)と優れた結果となっている。
Next, an example of a continuous casting method for high quality cast slabs according to an embodiment of the present invention will be described.
The molten steel 11 is poured into a mold 13 having a length of 1200 mm and a thickness of 250 mm at a supply speed of 1.8 tons / minute, and a meniscus 20 is formed at a position 100 mm downward from the upper end of the mold 13 and a support roll is formed from the meniscus 20. The vertical portion 19 was 1.4 m up to the lower end of 16.
Further, electromagnetic stirring devices 21a, 21b, 21c, and 21d are installed outside the mold long piece 13a, and a current of 675 amps is passed through the electromagnetic stirring devices 21a and 21c to perform strong stirring, and electromagnetic stirring devices 21b and 21d are provided. Casting was performed at a speed of 1.2 m / min with the flow 22 swirling by passing a current of 202 to 675 amps at 0.3 m / sec. In addition, the slab 18 coming out of the vertical portion 19 was sequentially curved and corrected by the curved support roll group 17 having a curvature radius of 10 m in accordance with the curvature. Further, as a conventional example, the surface quality and the surface quality in the case where the curvature is sequentially corrected in accordance with the curvature by the curved support roll group 17 having the vertical distance of 2.5 m and the radius of curvature of 10 m at the same mold 13 and casting speed at the same casting speed, Table 1 compares the evaluations of the internal quality and the overall quality.
In the conventional example, since the vertical distance is large, an internal crack is generated when the curvature is corrected according to the curvature, and the internal quality is deteriorated (△), whereas in the present embodiment (1), there is no internal crack. Good results (() were obtained. Furthermore, in the case of Example (1), the surface quality was good (O) because inclusions on the surface layer were removed by performing electromagnetic stirring, whereas in the conventional example, the inclusions remained on the surface layer and the surface quality was good. Defects occur (△) and the surface quality is considerably reduced. This example (1) is also excellent in overall quality (に つ い て).

Figure 2004202584
Figure 2004202584

また、図5は1.5m未満の垂直距離と鋳型内電磁攪拌を行う場合(本発明)と、1.5m未満の垂直距離を設けた場合(比較例)及び一般に用いられている湾曲型連続鋳造の場合(従来例)のそれぞれについて、一般に用いられている湾曲型連続鋳造の場合の内部欠陥を指数100として比較した場合を示してあり、1.5m未満の垂直距離を設けると共に、鋳型内電磁攪拌を行うことで小型の介在物の凝集合体(大型化)、もしくは不活性ガス気泡による介在物の捕捉促進と垂直距離による浮上効果が顕著であることがわかる。
以上、本発明の実施の形態を説明したが、本発明はこれらの実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲を含むものである。
例えば、実施の形態においては、鋳型13の直下にサポートロール16を設けたが、この他にクーリンググリットや分割サポートロール等を用いることが可能であり、電磁攪拌装置も強弱攪拌の他に一つあるいは複数の電磁攪拌装置を用いて単純攪拌により旋回の流れを形成しても良い。また、溶鋼11のメニスカスの鋳型内位置は、上端から下方向に100mmの位置としたが適宜位置を設定することができる。
FIG. 5 shows a case where the vertical distance of less than 1.5 m and the electromagnetic stirring in the mold are performed (the present invention), a case where a vertical distance of less than 1.5 m is provided (comparative example), and a commonly used curved continuous type. In each of the casting cases (conventional examples), a case is shown in which the internal defect in the case of the commonly used curved continuous casting is compared with an index of 100, where a vertical distance of less than 1.5 m is provided, and It can be seen that by performing the electromagnetic stirring, the inclusion of small inclusions (increase in size) or the promotion of inclusion trapping by inert gas bubbles and the floating effect by the vertical distance are remarkable.
The embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and includes a range that does not depart from the gist of the present invention.
For example, in the embodiment, the support roll 16 is provided directly below the mold 13, but a cooling grit, a divided support roll, or the like can be used in addition to the above. Alternatively, a swirling flow may be formed by simple stirring using a plurality of electromagnetic stirring devices. The position of the meniscus of the molten steel 11 in the mold is 100 mm downward from the upper end, but may be set as appropriate.

本発明の一実施の形態に係る高品質鋳片の連続鋳造方法に適用する連続鋳造装置の概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram of the continuous casting apparatus applied to the continuous casting method of the high quality cast piece which concerns on one Embodiment of this invention. 図1におけるメニスカスの面から見た鋳型周辺の概念図である。FIG. 2 is a conceptual diagram of a periphery of a mold as viewed from a meniscus surface in FIG. 1. メニスカスからの距離と介在物の直径との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a distance from a meniscus and a diameter of an inclusion. 鋳片の限界歪みと垂直部から曲げ部への矯正を行った場合の実歪みとの関係を示す図である。It is a figure which shows the relationship between the critical strain of a cast slab, and the actual strain at the time of performing correction from a perpendicular part to a bending part. 1.5m未満の垂直距離と鋳型内電磁攪拌を行う場合(本発明)と、1.5m未満の垂直距離を設けた場合(比較例)及び一般に用いられている湾曲型連続鋳造の場合(従来例)の内部欠陥指数の比較を示す図である。The case where the vertical distance of less than 1.5 m and the electromagnetic stirring in the mold are performed (the present invention), the case where the vertical distance of less than 1.5 m is provided (Comparative Example), and the case where the curved continuous casting is generally used (conventional) It is a figure which shows the comparison of the internal defect index of Example).

符号の説明Explanation of reference numerals

10:連続鋳造装置、11:溶鋼、11a:凝固殻、12:タンディッシュ、13:鋳型、13a:鋳型長片、14:吐出口、15:浸漬ノズル、16:サポートロール、17:湾曲支持ロール群、17a:湾曲支持ロール、18:鋳片、19:垂直部、20:メニスカス、21:電磁攪拌装置、21a〜d:電磁攪拌装置、22:旋回する流れ、23:制御装置 10: continuous casting apparatus, 11: molten steel, 11a: solidified shell, 12: tundish, 13: mold, 13a: mold long piece, 14: discharge port, 15: immersion nozzle, 16: support roll, 17: curved support roll Group, 17a: curved support roll, 18: cast slab, 19: vertical part, 20: meniscus, 21: electromagnetic stirrer, 21a to d: electromagnetic stirrer, 22: swirling flow, 23: controller

Claims (3)

溶鋼を浸漬ノズルを介して鋳型に注湯して、該鋳型により前記溶鋼を凝固させながら連続して下方に引き抜く高品質鋳片の連続鋳造方法において、前記溶鋼のメニスカスから下方に垂直部を設けると共に、前記鋳型の長片側に設けた電磁攪拌装置を介して前記溶鋼のメニスカス近傍に鋳型周壁に沿って旋回する流れを付与することを特徴とする高品質鋳片の連続鋳造方法。 In a continuous casting method of a high-quality cast slab in which molten steel is poured into a mold through an immersion nozzle and continuously drawn down while solidifying the molten steel by the mold, a vertical portion is provided downward from the meniscus of the molten steel. A method for continuously casting high quality cast slabs, wherein a flow of swirling along the peripheral wall of the mold is provided in the vicinity of the meniscus of the molten steel via an electromagnetic stirrer provided on one long side of the mold. 前記垂直部が前記溶鋼のメニスカスから1.5m未満であることを特徴とする請求項1記載の高品質鋳片の連続鋳造方法。 2. The method according to claim 1, wherein the vertical portion is less than 1.5 m from the meniscus of the molten steel. 前記鋳型周壁に沿って旋回する流れを0.2〜0.6m/secとすることを特徴とする請求項1又は2記載の高品質鋳片の連続鋳造方法。 3. The continuous casting method for high quality cast slabs according to claim 1, wherein a flow swirling along the peripheral wall of the mold is set to 0.2 to 0.6 m / sec.
JP2004114573A 2004-04-08 2004-04-08 Continuous casting method for high-quality cast piece Pending JP2004202584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114573A JP2004202584A (en) 2004-04-08 2004-04-08 Continuous casting method for high-quality cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114573A JP2004202584A (en) 2004-04-08 2004-04-08 Continuous casting method for high-quality cast piece

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20235597A Division JPH1133687A (en) 1997-07-10 1997-07-10 Method for continuously casting high quality cast slab

Publications (1)

Publication Number Publication Date
JP2004202584A true JP2004202584A (en) 2004-07-22

Family

ID=32822381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114573A Pending JP2004202584A (en) 2004-04-08 2004-04-08 Continuous casting method for high-quality cast piece

Country Status (1)

Country Link
JP (1) JP2004202584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123717A (en) * 2011-12-13 2013-06-24 Nippon Steel & Sumitomo Metal Corp Continuous casting method for metal
CN114850465A (en) * 2022-06-15 2022-08-05 北京科技大学 Molten steel castability prediction system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123717A (en) * 2011-12-13 2013-06-24 Nippon Steel & Sumitomo Metal Corp Continuous casting method for metal
CN114850465A (en) * 2022-06-15 2022-08-05 北京科技大学 Molten steel castability prediction system and method

Similar Documents

Publication Publication Date Title
JP4746398B2 (en) Steel continuous casting method
TWI268820B (en) Method for producing ultra low carbon steel slab
JP2010082638A (en) Method for producing continuously cast slab
JP5500401B2 (en) Continuous casting method of impact guarantee beam blank
JP4337565B2 (en) Steel slab continuous casting method
JP4749997B2 (en) Continuous casting method
JP2004202584A (en) Continuous casting method for high-quality cast piece
JP3765535B2 (en) Continuous casting method of aluminum ingot
CN112643007B (en) Continuous casting method for reducing large-size impurities on surface layer of aluminum-containing steel casting blank
JP2003164947A (en) Continuous casting for steel
JP4998734B2 (en) Manufacturing method of continuous cast slab
JPH1133687A (en) Method for continuously casting high quality cast slab
JP4259232B2 (en) Slab continuous casting method for ultra-low carbon steel
JP2007229736A (en) Vertical type continuous casting method of large cross section cast slab for thick steel plate
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP7068628B2 (en) Casting method
JP3283746B2 (en) Continuous casting mold
JP6904132B2 (en) Tandish for continuous casting
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP3558815B2 (en) High cleanliness steel continuous casting method with tundish equipped with fixed weir with closed bottom
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
JP2888155B2 (en) Continuous casting method of ultra low carbon steel containing Ti
JPH02247052A (en) Method for continuously casting cast slab for steel strip

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Effective date: 20070920

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A02 Decision of refusal

Effective date: 20080205

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A821