JP2004200800A - Transmission antenna - Google Patents

Transmission antenna Download PDF

Info

Publication number
JP2004200800A
JP2004200800A JP2002364276A JP2002364276A JP2004200800A JP 2004200800 A JP2004200800 A JP 2004200800A JP 2002364276 A JP2002364276 A JP 2002364276A JP 2002364276 A JP2002364276 A JP 2002364276A JP 2004200800 A JP2004200800 A JP 2004200800A
Authority
JP
Japan
Prior art keywords
vswr
amplifier circuit
circuit
transmitting antenna
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002364276A
Other languages
Japanese (ja)
Other versions
JP4149252B2 (en
Inventor
Michiya Hayashi
倫也 林
Toshihiro Sugiura
敏博 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP2002364276A priority Critical patent/JP4149252B2/en
Priority to KR1020030039045A priority patent/KR100963398B1/en
Publication of JP2004200800A publication Critical patent/JP2004200800A/en
Application granted granted Critical
Publication of JP4149252B2 publication Critical patent/JP4149252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission antenna having a function for protecting internal apparatus against reflected powers from antenna elements without providing any isolator. <P>SOLUTION: A CPU 30 in an automatic level control circuit 8 has a VSWR abnormality deciding function. Data detected by a traveling wave power detector circuit 4 and a reflected wave power detector circuit 5 are inputted to the control data input unit 31 of the CPU 30 to compare and decide the data with predetermined thresholds, and, if the VSWR is decided to be abnormal, it opens the input of an amplifier circuit 1 and terminates a connected signal transmission line. It further maximizes the attenuation of a variable attenuator 2 and operates a power switch 37 to turn off the power of the amplifier circuit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、送信アンテナに関し、詳しくは送信アンテナのVSWRが劣化した場合に、送信アンテナに接続されている機器を保護する技術に関する。
【0002】
【従来の技術】
衛星を使用した衛星放送システムが、地上に大がかりなインフラを整備しなくても広範囲に放送を提供できるため普及が進んでいる。ところが、移動体向けの放送にもこのようなシステムを適用しようとした場合、こうした衛星放送システムでは、例えばSバンド(2.6〜4GHz)といった高い周波数が使用されるため、電波の直進性が強く山陰やビル陰では電波が極端に弱くなる性質を有している。そのため、このような衛星放送システムをそのまま移動体向けに適用することができない。そこで、電波の弱いエリアに対しては局所的に電波を再放射するギャップフィラー装置を設けることで対応させて、移動体に対しても衛星放送システムを適用する開発が進められている。
このギャップフィラー装置は、衛星受信アンテナと衛星受信アンテナで受信した信号を局所的に放射する送信アンテナから構成されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−230718号公報
【0004】
【発明が解決しようとする課題】
しかし、ギャップフィラー装置で使用される送信アンテナ装置は、衛星電波の遮られる地域をカバーする電波強度が必要であるが、周囲の電波施設に影響を及ぼすことがないように必要以上に強度を上げることはできないため、増幅回路や利得調整回路等の内部回路が内蔵され、常時出力が一定となるようコントロールされている。このように、送信アンテナは複雑な構造となっているため、アンテナ素子等に異常が生じてVSWRが劣化した際に内部機器が故障してしまう問題があった。
そのため、増幅回路とアンテナ素子の間にアイソレータを設けて、VSWRが劣化した際に増大する反射電力から回路機器を保護する形態が考えられるが、送信アンテナは小型なものが望まれ、比較的大きな容積を必要とするアイソレータはギャップフィラー装置の送信アンテナには適さなかった。
【0005】
そこで、本発明は上記問題点に鑑み、アイソレータを設けなくともアンテナ素子からの反射電力に対して内部回路を保護する機能を備えた送信アンテナを提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明は、アンテナ素子から放射する信号を増幅する増幅回路を備えた送信アンテナであって、進行波電力検出手段及び反射波電力検出手段と、検出した進行波電力及び反射波電力を基にVSWRを演算すると共に予め設定した閾値と前記VSWR演算値とを比較してVSWR異常を判定する演算手段と、前記増幅回路の入力部を解放するスイッチ手段と、を有し、前記演算手段がVSWR異常発生と判定したら、前記スイッチ手段を動作させて、前記増幅回路の入力部を解放する回路保護機能を備えたことを特徴とする。
【0007】
請求項2の発明は、請求項1の発明において、演算手段は、VSWR異常発生と判断したら、増幅回路の電源を止めることを特徴とする。
また、請求項3の発明は、請求項1又は2の発明において、スイッチ手段は終端抵抗を備え、増幅回路の入力部を解放すると同時に増幅回路に信号を送る信号伝送路を前記終端抵抗に接続することを特徴とする。
【0008】
請求項4の発明は、請求項1乃至3の何れかの発明において、増幅回路の入力段に可変アッテネータを備え、該可変アッテネータをCPUを備えた自動レベル制御回路が制御して増幅回路の出力を一定に保持する送信アンテナにあっては、VSWR異常を判定する演算手段が前記CPUであることを特徴とする。
また、請求項5の発明は、請求項4の発明において、VSWR異常が発生したら、CPUが可変アッテネータのアッテネート量を操作して減衰量を最大にすることを特徴とする。
【0009】
請求項6の発明は、請求項1乃至5の何れの発明において、スイッチ手段が解放動作したら、増幅回路が動作停止したことを報知する報知手段を有することを特徴とする。
請求項7の発明は、請求項1乃至6の何れかの発明において、演算手段は、VSWR異常発生と判断した後、予め定めた所定の時間経過後に復帰信号を発し、該復帰信号によりスイッチ手段、増幅回路は復帰動作することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。図1は本発明に係る送信アンテナの一例を示すブロック図であり、1は信号を増幅する増幅回路、2は増幅回路1の入力信号の大きさを制御する可変アッテネータ、3はバンドパスフィルタ、4は進行波電力検出回路、5は反射波電力検出回路、6は増幅回路1の入力部を開放するスイッチ手段としての高周波スイッチ、7は送信アンテナの制御部であり、この制御部7は自動レベル制御回路(以下、ALC回路と称する。)8(図3に示す。)を備え、このALC回路8には後述する回路保護機能が備えられている。
【0011】
また、10はアンテナ素子、11は制御部に電源を供給する制御部電源ライン、12は増幅回路1へ電力を供給する増幅回路電源ライン、13,14はアッテネータ、15aは可変アッテネータ2の制御線、15bは高周波スイッチ6の制御線を示し、進行波電力検出回路4と反射波電力検出回路5は夫々アッテネータ13,14を介して接続されてカプラ16を形成し、出力側信号線に接続されている。
更に、17は直流電源と信号を分離する低域通過フィルタ、18は例えば50Ωの終端抵抗であり、高周波スイッチ6が動作して、増幅回路1の入力部を開放した際に、接続されていた信号伝送路19を終端させて前段回路の特性を維持させるために設けられている。また、4a,5aは夫々進行波電力検出回路4及び反射波電力検出回路5の出力線で、何れもALC回路8に入力される。
【0012】
そして、図2はこの送信アンテナを備えたギャップフィラー装置のブロック図を示し、21が上記送信アンテナである。送信アンテナ21は、入力端子22に分配器23が接続され、分配器23及び信号処理器24を介して衛星受信アンテナ25に接続されている。ここでは、1台の衛星受信アンテナ25に対して3台の送信アンテナ21を接続可能なギャップフィラー装置を示している。また、26は通信手段であり、分配器23、信号処理器24、送信アンテナ21等の動作状態を遠隔地にある監視センターに通報するためのものである。
【0013】
次に、ALC回路8について説明する。制御部7に設けられたALC回路8は、図3のブロック図に示すように構成されている。図3において、30はCPU、31は制御データ入力部、32はA/D変換回路(ADC)、33はマルチプレクサであり、マルチプレクサ33には、進行波電力検出回路4、反射波電力検出回路5の出力線4a,5aが接続されている。マルチプレクサ33は、それらの出力信号を順に選択して検出値をADC32に送り、ADC32がA/D変換してCPU30にデータ入力している。
そして、34は可変アッテネータ2をコントロールするゲインコントロール信号出力部であり、D/A変換回路(DAC)35を介して制御線15aに出力され、可変アッテネータ2を制御している。また、36は回路保護信号出力部であり、制御線15bが接続されて高周波スイッチ6を制御するし、37aは増幅回路制御出力部であり、増幅回路1の電源スイッチ37を制御する。
【0014】
更に、39は送信アンテナ21の状態を表示するLED、40は出力レベル設定やフラッシュメモリ初期化等の操作をする操作部、41はパーソナルコンピュータ等を接続して、プログラムの書き込みや回路保護機能の動作状態の表示に使用するシリアル通信ポートである。
尚、42は各種パラメータを格納するフラッシュメモリ、43はCPUプログラムを格納するプログラム用のフラッシュメモリ、44はプログラム実行中に使用されるSRAMを示している。
【0015】
このように構成されたALC回路8は、進行波電力検出回路4により検出されたデータから、進行波電力即ちアンテナ素子10からの放射電波の出力が所定の範囲になるように可変アッテネータ2のアッテネート量を制御すると共に、図4に示すフローチャートに従い回路保護動作をする。
以下、図4を基に回路保護動作の流れを説明する。まず、S1で初期化処理をし、シリアル通信、ADC32、DAC35等の各種レジスタの設定やメモリのクリア等を行うと共に、可変アッテネータ2のアッテネート量や高周波スイッチ6をアンテナ素子10から電波を送信する標準状態に設定する。そして、S2に進み、進行波,反射波の電力データ等の監視データを取得し、S3で取得した監視データからVSWRを演算すると共に、予め設定した閾値と演算値を比較する。例えば閾値を6と設定されていたら、6未満であれば正常、6以上であれば異常値と判断し、正常であればS12に進み、異常値を示していたならばS4に進む。
【0016】
S12では、VSWR異常検出回数カウンタを初期設定値にし、S13でアンテナ異常継続時間回数カウンタをリセットする。そして、S14でシリアル通信ポートに異常なし等の情報を出力し、S2に戻りVSWR異常検出動作を継続する。
また、S4では異常継続時間のカウントをスタート或いは継続し、S5で継続時間が規定値に達したか判断する。規定値に達したならばS6に進み、達しなければS14に進んでシリアル通信ポート41に異常発生中の情報等を出力して、S2に戻り監視を継続する。
尚、VSWR異常検出回数カウンタは、VSWR異常が発生しても、設定した回数まで増幅回路を自動で再起動させるためのカウンタであり、VSWR異常判定閾値等と共に予め設定しておく。
【0017】
そして、S6では、回路保護信号出力部36から信号を出力し、高周波スイッチ6をオンさせて、増幅回路1の入力を開放すると共に信号伝送路19を終端する。更に、ゲインコントロール信号出力部34から信号を送出し、可変アッテネータ2のアッテネート量を最大に、即ち減衰量を最大にする。続いて、S7で増幅回路1の電源をオフし、S8でシリアル通信ポート41に増幅回路オフの情報を出力する。
次に、S9でVSWR異常検出回数カウンタをデクリメントする。例えば回数カウンタが初期設定の4であれば3にしてS10に進む。S10では、その回数カウンタ値を判断し、カウンタ値が0でなければS15に進み、10秒待った後S1に戻り初期化処理を行い、増幅回路の再起動操作を行う。0であればS11に進み、LED39を点滅等させてVSWR異常発生の報知動作をさせ、増幅回路1の復帰動作をせずVSWR異常検出動作を終了する。
【0018】
このように、VSWR異常が発生したら、スイッチ手段である高周波スイッチの動作により増幅回路の入力部が解放されるので、増幅回路等の内部回路及びその前段に接続された分配器等の機器をアンテナのVSWR異常から保護でき、送信アンテナの信頼性が向上する。また、同時に増幅回路の電源が止まるので、消費電力を最小限に抑えることができる。
また、スイッチ手段は、増幅回路の入力部を開放操作した際に開放された信号伝送路を終端するので、増幅回路前段に接続された機器の特性を劣化させることがない。
更に、上記実施の形態は、自動レベル制御回路がVSWRを判定する演算手段を兼用している。このように、自動レベル制御回路を備えた送信アンテナにあっては別途演算手段を設ける必要がないし、VSWR異常が発生した際に、増幅回路入力部のアッテネート量を最大にすれば、仮にスイッチ手段の解放動作が不十分であったり、スイッチ手段のアイソレーションが不十分であっても、確実に増幅回路を保護できる。
【0019】
また、報知手段としてLEDを設けることで、一目で異常発生や動作停止の原因がVSWR異常であることが分かるし、シリアル通信ポートから情報が出力されるので、その情報により送信アンテナの動作停止の原因を容易に知ることができ、装置の復旧操作等に役立つ。
そして、VSWR異常により送信が停止しても、一定時間後(ここでは10秒後)復帰動作するので、VSWR異常が例えばメンテナンス作業による一時的なものであれば、送信アンテナは自動で送信動作を開始でき、利用者に対する迷惑を最小限に留めることができる。また、本発明の送信アンテナを有するギャップフィラー装置を上述するように通信手段を設けて構成すれば、VSWR異常の発生を遠隔地にある監視センターに通報することができ、直接送信アンテナを調査することなく遠隔地にて送信アンテナを管理できる。
【0020】
尚、上記実施の形態はVSWR異常発生後、10秒経過したら復帰動作させているが、送信アンテナの使用環境に応じて設定すればよい。また、異常発生回数をカウントして、4回異常判定をしたら復帰動作しないように設定しているが、この設定は解除しても良い。
また、自動レベル制御回路を有するギャップフィラー装置に使用する送信アンテナについて説明したが、ギャップフィラー装置に限定するものではなく、増幅回路を備えた送信アンテナに対して広く適用できる。また自動レベル制御回路は無くとも演算手段として例えば専用のマイコンを設けることで本発明は実施できる。
【0021】
【発明の効果】
以上詳述したように、請求項1の発明によれば、VSWR異常が発生したら、スイッチ手段の動作により増幅回路の入力部が解放されるので、増幅回路等の内部回路及びその前段に接続された機器をアンテナのVSWR異常から保護でき、送信アンテナの信頼性が向上する。
【0022】
請求項2の発明によれば、請求項1の効果に加えて、VSWR異常発生時に増幅回路の電源が止まるので、消費電力を最小限に抑えることができる。
また、請求項3の発明によれば、請求項1又は2の効果に加えて、スイッチ手段は、増幅回路の入力部を開放操作した際に開放された信号伝送路を終端するので、増幅回路前段に接続された機器の特性を劣化させることがない。
【0023】
請求項4の発明によれば、請求項1乃至3の何れかの効果に加えて、自動レベル制御回路がVSWRを判定する演算手段を兼用するので、自動レベル制御回路を備えた送信アンテナにあっては別途演算手段を設ける必要がない。
また、請求項5の発明によれば、請求項4の効果に加えて、VSWR異常が発生した際に、増幅回路入力部のアッテネート量が最大になるので、仮にスイッチ手段の解放動作が不十分であっても、増幅回路を確実に保護できる。
【0024】
請求項6の発明によれば、請求項1乃至5の何れかの効果に加えて、報知手段により一目で異常発生や動作停止の原因がVSWR異常であることが分かるし、その情報により送信アンテナの動作停止の原因を容易に知ることができ、装置の復旧操作等に役立つ。
また、請求項7の発明によれば、請求項1乃至6の何れかの効果に加えて、VSWR異常により送信が停止しても、一定時間後に復帰動作するので、VSWR異常が例えばメンテナンス作業による一時的なものであれば、送信アンテナは自動で送信動作を開始でき、利用者に対する迷惑を最小限に留めることができる。
【図面の簡単な説明】
【図1】本発明に係る送信アンテナの一例を示すブロック図である。
【図2】図1の送信アンテナを備えたギャップフィラー装置のブロック図である。
【図3】図1の制御部に備えられたALC回路のブロック図である。
【図4】ALC回路CPUの回路保護動作の流れを示すフローチャートである。
【符号の説明】
1・・増幅回路、2・・可変アッテネータ、4・・進行波検出回路、5・・反射波検出回路、6・・スイッチ手段としての高周波スイッチ、7・・制御部、8・・自動レベル制御回路、10・・アンテナ素子、18・・終端抵抗、19・・信号伝送路、21・・送信アンテナ、30・・演算手段としてのCPU、36・・回路保護信号出力部、37・・電源スイッチ、37a・・増幅回路制御出力部、39・・報知手段としてのLED、41・・報知手段としてのシリアル通信ポート。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmission antenna, and more particularly, to a technique for protecting a device connected to a transmission antenna when a VSWR of the transmission antenna is deteriorated.
[0002]
[Prior art]
2. Description of the Related Art Satellite broadcasting systems using satellites are widely used because they can provide broadcasting over a wide area without having to construct a large-scale infrastructure on the ground. However, when such a system is to be applied to broadcasting for mobiles, such a satellite broadcasting system uses a high frequency such as the S band (2.6 to 4 GHz). It has the property that radio waves become extremely weak in the shadows of the mountains and buildings. Therefore, such a satellite broadcasting system cannot be directly applied to a mobile object. Therefore, development is underway in which a satellite broadcasting system is applied to mobile objects by providing a gap filler device that locally re-radiates radio waves in areas where radio waves are weak.
The gap filler device includes a satellite receiving antenna and a transmitting antenna that locally radiates a signal received by the satellite receiving antenna (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-230718
[Problems to be solved by the invention]
However, the transmitting antenna device used in the gap filler device must have a radio field intensity that covers the area where satellite radio waves are blocked, but increase the intensity more than necessary so as not to affect surrounding radio wave facilities. Therefore, internal circuits such as an amplifier circuit and a gain adjustment circuit are built in and are controlled so that the output is always constant. As described above, since the transmission antenna has a complicated structure, there has been a problem that when an abnormality occurs in the antenna element or the like and the VSWR is deteriorated, the internal device breaks down.
For this reason, it is conceivable to provide an isolator between the amplifier circuit and the antenna element to protect the circuit device from the reflected power that increases when the VSWR deteriorates. However, a small transmission antenna is desired, and a relatively large transmission antenna is desired. Isolators requiring a volume were not suitable for the transmitting antenna of the gap filler device.
[0005]
In view of the above problems, an object of the present invention is to provide a transmitting antenna having a function of protecting an internal circuit against reflected power from an antenna element without providing an isolator.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is a transmission antenna provided with an amplifier circuit for amplifying a signal radiated from an antenna element, comprising: a traveling wave power detection unit and a reflected wave power detection unit; Calculating means for calculating a VSWR based on the wave power and the reflected wave power and comparing a preset threshold value with the VSWR calculation value to determine a VSWR abnormality; switch means for releasing an input section of the amplifier circuit; And a circuit protection function for releasing the input section of the amplifier circuit by operating the switch means when the arithmetic means determines that a VSWR abnormality has occurred.
[0007]
A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the arithmetic means turns off the power supply of the amplifier circuit when it is determined that the VSWR abnormality has occurred.
According to a third aspect of the present invention, in the first or second aspect, the switch means includes a terminating resistor, and a signal transmission path for sending a signal to the amplifying circuit at the same time as releasing the input portion of the amplifying circuit, is connected to the terminating resistor. It is characterized by doing.
[0008]
According to a fourth aspect of the present invention, in any one of the first to third aspects, a variable attenuator is provided at an input stage of the amplifier circuit, and the variable attenuator is controlled by an automatic level control circuit provided with a CPU, and the output of the amplifier circuit is controlled. , The arithmetic means for determining a VSWR abnormality is the CPU.
The invention of claim 5 is characterized in that, in the invention of claim 4, when the VSWR abnormality occurs, the CPU operates the amount of attenuation of the variable attenuator to maximize the amount of attenuation.
[0009]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, there is provided a notifying means for notifying that the operation of the amplifier circuit has been stopped when the switch means performs the releasing operation.
According to a seventh aspect of the present invention, in any one of the first to sixth aspects of the present invention, the arithmetic unit issues a return signal after a predetermined time elapses after determining that the VSWR abnormality has occurred, and switches the switch unit in accordance with the return signal. , The amplifier circuit performs a return operation.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of a transmission antenna according to the present invention, wherein 1 is an amplifier circuit for amplifying a signal, 2 is a variable attenuator for controlling the magnitude of an input signal of an amplifier circuit 1, 3 is a band-pass filter, 4 is a traveling-wave power detection circuit, 5 is a reflected-wave power detection circuit, 6 is a high-frequency switch as switch means for opening the input unit of the amplifier circuit 1, 7 is a control unit of a transmitting antenna, and this control unit 7 is an automatic control unit. A level control circuit (hereinafter, referred to as an ALC circuit) 8 (shown in FIG. 3) is provided, and the ALC circuit 8 has a circuit protection function described later.
[0011]
10 is an antenna element, 11 is a control unit power supply line for supplying power to the control unit, 12 is an amplifier circuit power line for supplying power to the amplifier circuit 1, 13 and 14 are attenuators, and 15a is a control line for the variable attenuator 2. , 15b denote control lines of the high-frequency switch 6, and the traveling wave power detection circuit 4 and the reflected wave power detection circuit 5 are connected via attenuators 13 and 14, respectively, to form a coupler 16, and are connected to an output signal line. ing.
Further, reference numeral 17 denotes a low-pass filter for separating a signal from a DC power supply, and reference numeral 18 denotes a terminating resistor of, for example, 50Ω, which is connected when the high-frequency switch 6 is operated and the input section of the amplifier circuit 1 is opened. It is provided to terminate the signal transmission line 19 and maintain the characteristics of the preceding circuit. Reference numerals 4a and 5a denote output lines of the traveling wave power detection circuit 4 and the reflected wave power detection circuit 5, respectively, which are both input to the ALC circuit 8.
[0012]
FIG. 2 is a block diagram of a gap filler device provided with the transmitting antenna, and 21 is the transmitting antenna. The transmitting antenna 21 has a distributor 23 connected to the input terminal 22, and is connected to the satellite receiving antenna 25 via the distributor 23 and the signal processor 24. Here, a gap filler device capable of connecting three transmitting antennas 21 to one satellite receiving antenna 25 is shown. Reference numeral 26 denotes communication means for notifying the operating state of the distributor 23, the signal processor 24, the transmitting antenna 21 and the like to a monitoring center located at a remote place.
[0013]
Next, the ALC circuit 8 will be described. The ALC circuit 8 provided in the control unit 7 is configured as shown in the block diagram of FIG. 3, reference numeral 30 denotes a CPU, 31 denotes a control data input unit, 32 denotes an A / D conversion circuit (ADC), and 33 denotes a multiplexer. The multiplexer 33 includes a traveling wave power detection circuit 4 and a reflected wave power detection circuit 5. Output lines 4a and 5a are connected. The multiplexer 33 sequentially selects the output signals and sends the detected values to the ADC 32, which performs A / D conversion and inputs data to the CPU 30.
Reference numeral 34 denotes a gain control signal output unit for controlling the variable attenuator 2, which is output to the control line 15a via a D / A conversion circuit (DAC) 35 and controls the variable attenuator 2. Reference numeral 36 denotes a circuit protection signal output unit, which is connected to the control line 15b to control the high frequency switch 6, and 37a denotes an amplifier circuit control output unit, which controls the power switch 37 of the amplifier circuit 1.
[0014]
Further, 39 is an LED for displaying the state of the transmission antenna 21, 40 is an operation unit for performing operations such as output level setting and flash memory initialization, and 41 is connected to a personal computer or the like to perform program writing and circuit protection functions. This is a serial communication port used to display the operation status.
Reference numeral 42 denotes a flash memory for storing various parameters; 43, a program flash memory for storing a CPU program; and 44, an SRAM used during execution of the program.
[0015]
The ALC circuit 8 configured as described above attenuates the variable attenuator 2 based on the data detected by the traveling wave power detection circuit 4 so that the traveling wave power, that is, the output of the radiated radio wave from the antenna element 10 falls within a predetermined range. In addition to controlling the amount, a circuit protection operation is performed according to the flowchart shown in FIG.
Hereinafter, the flow of the circuit protection operation will be described with reference to FIG. First, initialization processing is performed in S1, serial communication, setting of various registers such as the ADC 32 and the DAC 35, clearing of memory, and the like are performed, and the amount of attenuation of the variable attenuator 2 and the high frequency switch 6 are transmitted from the antenna element 10 to transmit radio waves. Set to standard state. Then, the process proceeds to S2, where monitoring data such as power data of the traveling wave and the reflected wave is obtained, the VSWR is calculated from the monitoring data obtained in S3, and the calculated value is compared with a preset threshold value. For example, if the threshold value is set to 6, if it is less than 6, it is determined that it is normal, if it is 6 or more, it is determined that it is an abnormal value. If it is normal, it proceeds to S12, and if it indicates an abnormal value, it proceeds to S4.
[0016]
In S12, the VSWR abnormality detection number counter is set to an initial set value, and in S13, the antenna abnormality continuation time number counter is reset. Then, in S14, information such as no abnormality is output to the serial communication port, and the process returns to S2 to continue the VSWR abnormality detection operation.
In S4, the counting of the abnormal continuation time is started or continued, and in S5, it is determined whether the continuation time has reached a specified value. If the specified value is reached, the process proceeds to S6, and if not, the process proceeds to S14 to output information indicating that an abnormality has occurred to the serial communication port 41, and returns to S2 to continue monitoring.
The VSWR abnormality detection number counter is a counter for automatically restarting the amplifier circuit up to a set number of times even if a VSWR abnormality occurs, and is set in advance together with a VSWR abnormality determination threshold and the like.
[0017]
In S6, a signal is output from the circuit protection signal output unit 36, the high frequency switch 6 is turned on, the input of the amplifier circuit 1 is opened, and the signal transmission line 19 is terminated. Further, a signal is transmitted from the gain control signal output unit 34, and the amount of attenuation of the variable attenuator 2 is maximized, that is, the amount of attenuation is maximized. Subsequently, the power supply of the amplifier circuit 1 is turned off in S7, and information of the amplifier circuit off is output to the serial communication port 41 in S8.
Next, in S9, the VSWR abnormality detection counter is decremented. For example, if the number counter is 4, which is the initial setting, it is set to 3, and the process proceeds to S10. In S10, the count value of the counter is determined. If the count value is not 0, the process proceeds to S15, waits for 10 seconds, returns to S1, performs the initialization process, and performs the restart operation of the amplifier circuit. If it is 0, the process proceeds to S11, in which the LED 39 blinks or the like to perform a notification operation of the occurrence of the VSWR abnormality, and the VSWR abnormality detection operation ends without performing the return operation of the amplifier circuit 1.
[0018]
As described above, when the VSWR abnormality occurs, the input section of the amplifier circuit is released by the operation of the high-frequency switch serving as the switch means, so that the internal circuit such as the amplifier circuit and devices such as the distributor connected to the preceding stage thereof are connected to the antenna. VSWR abnormality, and the reliability of the transmitting antenna is improved. Further, since the power supply of the amplifier circuit is stopped at the same time, power consumption can be minimized.
Further, since the switch terminates the signal transmission path opened when the input section of the amplifier circuit is opened, the characteristics of the device connected to the preceding stage of the amplifier circuit are not deteriorated.
Further, in the above embodiment, the automatic level control circuit also serves as the calculating means for determining the VSWR. As described above, the transmitting antenna having the automatic level control circuit does not require any additional operation means, and when the VSWR abnormality occurs, the attenuation amount of the amplifier circuit input section is maximized. Even if the release operation of the switch is insufficient or the isolation of the switch means is insufficient, the amplifier circuit can be reliably protected.
[0019]
In addition, by providing an LED as a notification means, it is possible to recognize at a glance that the cause of the occurrence of the abnormality or the operation stop is due to the VSWR abnormality, and information is output from the serial communication port. The cause can be easily known, which is useful for the recovery operation of the device.
Then, even if the transmission is stopped due to the VSWR abnormality, the transmission operation returns after a certain time (here, after 10 seconds). Therefore, if the VSWR abnormality is temporary due to, for example, maintenance work, the transmission antenna automatically performs the transmission operation. It can be started and the trouble for the user can be minimized. Further, if the gap filler device having the transmission antenna of the present invention is provided with the communication means as described above, the occurrence of the VSWR abnormality can be reported to a monitoring center located at a remote place, and the transmission antenna can be directly investigated. The transmission antenna can be managed in a remote place without any need.
[0020]
In the above embodiment, the recovery operation is performed 10 seconds after the occurrence of the VSWR abnormality, but may be set according to the use environment of the transmitting antenna. Further, the number of times of occurrence of the abnormality is counted, and the setting is made so that the recovery operation is not performed when the abnormality is determined four times, but this setting may be canceled.
Further, the transmission antenna used for the gap filler device having the automatic level control circuit has been described, but the present invention is not limited to the gap filler device, and can be widely applied to a transmission antenna provided with an amplification circuit. Further, the present invention can be implemented by providing, for example, a dedicated microcomputer as an arithmetic means without an automatic level control circuit.
[0021]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, when a VSWR abnormality occurs, the input section of the amplifier circuit is released by the operation of the switch means, so that the input section is connected to the internal circuit such as the amplifier circuit and the preceding stage. Device can be protected from the VSWR abnormality of the antenna, and the reliability of the transmitting antenna is improved.
[0022]
According to the invention of claim 2, in addition to the effect of claim 1, the power supply of the amplifier circuit is stopped when the VSWR abnormality occurs, so that the power consumption can be minimized.
According to the invention of claim 3, in addition to the effect of claim 1 or 2, the switch means terminates the signal transmission line opened when the input section of the amplifier circuit is opened, so that the amplifier circuit is terminated. It does not degrade the characteristics of the equipment connected in the previous stage.
[0023]
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3, the automatic level control circuit also serves as the calculating means for determining the VSWR. In this case, there is no need to provide a separate operation means.
According to the fifth aspect of the invention, in addition to the effect of the fourth aspect, when the VSWR abnormality occurs, the amount of attenuation of the input portion of the amplifier circuit becomes maximum, so that the release operation of the switch means is insufficient. However, the amplifier circuit can be reliably protected.
[0024]
According to the invention of claim 6, in addition to the effect of any one of claims 1 to 5, it is possible to recognize at a glance that the cause of the occurrence of the abnormality or the operation stop is the VSWR abnormality by the notifying means, and the information indicates the transmitting antenna. The cause of the operation stoppage can be easily known, which is useful for the operation of restoring the apparatus.
According to the invention of claim 7, in addition to the effect of any one of claims 1 to 6, even if the transmission is stopped due to the VSWR abnormality, the return operation is performed after a predetermined time, so that the VSWR abnormality is caused by, for example, maintenance work. If it is temporary, the transmitting antenna can automatically start the transmitting operation, and the trouble for the user can be minimized.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an example of a transmission antenna according to the present invention.
FIG. 2 is a block diagram of a gap filler device including the transmission antenna of FIG. 1;
FIG. 3 is a block diagram of an ALC circuit provided in the control unit of FIG. 1;
FIG. 4 is a flowchart showing a flow of a circuit protection operation of the ALC circuit CPU.
[Explanation of symbols]
1 ············································· Automatic control Circuits, 10 antenna elements, 18 terminating resistors, 19 signal transmission paths, 21 transmission antennas, 30 CPU as arithmetic means, 36 circuit protection signal output section, 37 power switch 37a... Amplifier circuit control output unit, 39... LED as notification means, 41... Serial communication port as notification means.

Claims (7)

アンテナ素子から放射する信号を増幅する増幅回路を備えた送信アンテナであって、進行波電力検出手段及び反射波電力検出手段と、検出した進行波電力及び反射波電力を基にVSWRを演算すると共に予め設定した閾値と前記VSWR演算値とを比較してVSWR異常を判定する演算手段と、前記増幅回路の入力部を解放するスイッチ手段と、を有し、
前記演算手段がVSWR異常発生と判定したら、前記スイッチ手段を動作させて、前記増幅回路の入力部を解放する回路保護機能を備えたことを特徴とする送信アンテナ。
A transmitting antenna having an amplifier circuit for amplifying a signal radiated from an antenna element, comprising: a traveling wave power detecting unit and a reflected wave power detecting unit; and calculating a VSWR based on the detected traveling wave power and reflected wave power. Calculating means for determining a VSWR abnormality by comparing a preset threshold value with the VSWR calculation value; and switch means for releasing an input portion of the amplifier circuit;
A transmitting antenna, comprising: a circuit protection function that, when the arithmetic means determines that a VSWR abnormality has occurred, activates the switch means to release an input section of the amplifier circuit.
演算手段は、VSWR異常発生と判断したら、増幅回路の電源を止める請求項1記載の送信アンテナ。2. The transmitting antenna according to claim 1, wherein the calculating means turns off the power supply of the amplifier circuit when determining that the VSWR abnormality has occurred. スイッチ手段は終端抵抗を備え、増幅回路の入力部を解放すると同時に増幅回路に信号を送る信号伝送路を前記終端抵抗に接続する請求項1又は2記載の送信アンテナ。3. The transmitting antenna according to claim 1, wherein the switch means includes a terminating resistor, and connects a signal transmission line for transmitting a signal to the amplifying circuit at the same time as releasing the input portion of the amplifying circuit to the terminating resistor. 増幅回路の入力段に可変アッテネータを備え、該可変アッテネータをCPUを備えた自動レベル制御回路が制御して増幅回路の出力を一定に保持する送信アンテナにあっては、VSWR異常を判定する演算手段が前記CPUである請求項1乃至3の何れかに記載の送信アンテナ。In a transmitting antenna having a variable attenuator at an input stage of an amplifier circuit and controlling the variable attenuator by an automatic level control circuit having a CPU to keep the output of the amplifier circuit constant, a calculating means for determining VSWR abnormality The transmitting antenna according to claim 1, wherein the transmitting antenna is the CPU. VSWR異常が発生したら、CPUが可変アッテネータのアッテネート量を操作して減衰量を最大にする請求項4に記載の送信アンテナ。5. The transmitting antenna according to claim 4, wherein when a VSWR abnormality occurs, the CPU operates the amount of attenuation of the variable attenuator to maximize the amount of attenuation. スイッチ手段が解放動作したら、増幅回路が動作停止したことを報知する報知手段を有する請求項1乃至5の何れかに記載の送信アンテナ。The transmitting antenna according to any one of claims 1 to 5, further comprising a notifying means for notifying that the operation of the amplifier circuit has been stopped when the switch means performs a releasing operation. 演算手段は、VSWR異常発生の判断後、予め定めた所定の時間経過後に復帰信号を発し、該復帰信号によりスイッチ手段、増幅回路は復帰動作する請求項1乃至6の何れかに記載の送信アンテナ。The transmitting antenna according to any one of claims 1 to 6, wherein the arithmetic unit issues a return signal after a predetermined time elapses after the occurrence of the VSWR abnormality is determined, and the switch unit and the amplifier circuit perform a return operation by the return signal. .
JP2002364276A 2002-12-12 2002-12-16 Transmit antenna Expired - Fee Related JP4149252B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002364276A JP4149252B2 (en) 2002-12-16 2002-12-16 Transmit antenna
KR1020030039045A KR100963398B1 (en) 2002-12-12 2003-06-17 Plane antena element and transmission antena

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364276A JP4149252B2 (en) 2002-12-16 2002-12-16 Transmit antenna

Publications (2)

Publication Number Publication Date
JP2004200800A true JP2004200800A (en) 2004-07-15
JP4149252B2 JP4149252B2 (en) 2008-09-10

Family

ID=32762184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364276A Expired - Fee Related JP4149252B2 (en) 2002-12-12 2002-12-16 Transmit antenna

Country Status (1)

Country Link
JP (1) JP4149252B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104018A (en) * 2005-09-30 2007-04-19 Nippon Hoso Kyokai <Nhk> Transmitter and program
JP2007184661A (en) * 2005-12-29 2007-07-19 Maspro Denkoh Corp Gap filler system and branching device
JP2014176011A (en) * 2013-03-12 2014-09-22 Nec Access Technica Ltd Communication device and communication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104018A (en) * 2005-09-30 2007-04-19 Nippon Hoso Kyokai <Nhk> Transmitter and program
JP4634902B2 (en) * 2005-09-30 2011-02-16 日本放送協会 Transmitting apparatus and program
JP2007184661A (en) * 2005-12-29 2007-07-19 Maspro Denkoh Corp Gap filler system and branching device
JP2014176011A (en) * 2013-03-12 2014-09-22 Nec Access Technica Ltd Communication device and communication method

Also Published As

Publication number Publication date
JP4149252B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US20060035600A1 (en) RF front-end apparatus in a TDD wireless communication system
US7127220B2 (en) Apparatus and method to monitor and control power
US10728776B2 (en) Systems and methods for emergency operation of a wireless communication system
JP4634902B2 (en) Transmitting apparatus and program
CN112367107B (en) Method and system for autonomously processing satellite measurement and control equipment fault on satellite
CN112886988A (en) Radio frequency system, radio frequency circuit detection method and device and electronic equipment
CN113258952A (en) Radio frequency circuit, path detection method and electronic equipment
JP2004200800A (en) Transmission antenna
EP2658153B1 (en) Self-diagnosis circuit
JP2008118428A (en) Radio base station device
CA2754076C (en) Quad-band pcb antenna
KR100726232B1 (en) Rf front-end apparatus in tdd wireless communication system
RU2570839C2 (en) Radiofrequency circuit installed onboard satellite comprising thermal control system based on alarm signal generated by reflection of power
JP2007053625A (en) Broadcasting wave retransmission system
JP6507758B2 (en) Communication module and communication control method
EP0632289B1 (en) Search and rescue radar transponder
US20230246601A1 (en) Protection circuit for acoustic filter and power amplifier stage
CN110446247B (en) Signal control circuit, method and terminal equipment
CN114204954A (en) Wireless communication device, control method for wireless communication device, and electronic apparatus
JP2007006195A (en) Communication device
KR200346331Y1 (en) Lna reduncancy system of tower top lna
KR19990070544A (en) Transmission and reception status monitoring device of base station for wireless subscriber network
JPH08149020A (en) Sending power control circuit
JP2005039550A (en) Gap filler
JPH1155157A (en) Antenna multicoupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees