JP2007053625A - Broadcasting wave retransmission system - Google Patents

Broadcasting wave retransmission system Download PDF

Info

Publication number
JP2007053625A
JP2007053625A JP2005237739A JP2005237739A JP2007053625A JP 2007053625 A JP2007053625 A JP 2007053625A JP 2005237739 A JP2005237739 A JP 2005237739A JP 2005237739 A JP2005237739 A JP 2005237739A JP 2007053625 A JP2007053625 A JP 2007053625A
Authority
JP
Japan
Prior art keywords
unit
signal
transmission
power supply
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005237739A
Other languages
Japanese (ja)
Other versions
JP4440187B2 (en
Inventor
Yoshihiro Harada
義弘 原田
Yusuke Okada
裕介 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP2005237739A priority Critical patent/JP4440187B2/en
Publication of JP2007053625A publication Critical patent/JP2007053625A/en
Application granted granted Critical
Publication of JP4440187B2 publication Critical patent/JP4440187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

<P>PROBLEM TO BE SOLVED: To supply power to an amplifier for amplifying transmission signals by a line different from a transmission line for the transmission signals, and monitor malfunctioning of the power supply of the amplifier with a monitor provided on the transmission line for the transmission signals, in a broadcasting wave retransmission system for receiving a broadcasting wave from a broadcasting station and retransmitting it. <P>SOLUTION: A power supply 14 for supplying power to the amplifier 12 is formed with another body different from a distribution monitor 6, and power is supplied from the supply 14 to the amplifier 12 by using a power line for exclusive use different from a coaxial cable for transmitting the transmission signals. The supply 14 is provided with an overcurrent detection circuit 78, an overcurrent latch circuit 79, a resistor R1, and a transistor Tr1; and stops supplying power to the amplifier 12 when an overcurrent flows in the amplifier 12. Moreover, when an overcurrent is detected on the side of the supply 14, a distribution monitor 6 is also notified to that effect by lowering the level of a power control signal supplied from the monitor 6, and the monitor 6 is allowed to notify a system manager or the like to that effect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放送局からの放送電波を受信すると共に、その受信信号から再送信用の送信信号を生成し、その送信信号を増幅して送信アンテナに出力することで、放送電波を所望地域に再送信する放送電波再送信システムに関する。   The present invention receives a broadcast radio wave from a broadcast station, generates a retransmission reliable transmission signal from the received signal, amplifies the transmission signal, and outputs it to a transmission antenna, thereby retransmitting the broadcast radio wave to a desired area. The present invention relates to a broadcast radio wave retransmission system for transmission.

従来より、人工衛星を利用した移動体用のデジタル放送(モバイル放送)が実用化されているが、このモバイル放送では、人工衛星からの放送電波が届かない場所(ビル陰地域、地下街、トンネル内等)でも、放送電波を受信できるように、その放送電波を再送信することが行われている。   Conventionally, digital broadcasting (mobile broadcasting) for mobile objects using artificial satellites has been put into practical use. However, in this mobile broadcasting, the place where broadcasting radio waves from satellites do not reach (in the shadow area of buildings, underground malls, tunnels) However, the broadcast radio wave is retransmitted so that the broadcast radio wave can be received.

そして、こうした放送電波の再送信システム(所謂ギャップフィラー)は、通常、図4に例示するように、人工衛星から送信された放送電波を直接受信するための受信アンテナ82と、この受信アンテナからの受信信号を信号処理(ダウンコンバート等)して再送信用の送信信号を生成する信号処理部84と、この信号処理部84にて生成された送信信号を送信アンテナ90から再送信するための複数(図では3つ)の送信部88と、信号処理部84にて生成された送信信号を分配(図では3分配)して各送信部88に出力する分配監視部86とから構成されている(例えば、特許文献1等参照。)。   Such a broadcast radio wave re-transmission system (so-called gap filler) normally has a receiving antenna 82 for directly receiving a broadcast radio wave transmitted from an artificial satellite, as illustrated in FIG. A signal processing unit 84 that generates a retransmission-reliable transmission signal by performing signal processing (down-conversion or the like) on the received signal, and a plurality (for re-transmission of the transmission signal generated by the signal processing unit 84 from the transmission antenna 90 The transmission unit 88 includes three transmission units 88 and a distribution monitoring unit 86 that distributes the transmission signals generated by the signal processing unit 84 (three distributions in the drawing) and outputs the distribution signals to the transmission units 88 ( For example, see Patent Document 1).

また、この種の再送信システムにおいて、送信部88には、分配監視部86から出力された送信信号を所定の送信レベルまで増幅する増幅部92が設けられる。そして、この増幅部92は、内部温度や送信信号の信号レベルを検出して、その検出結果を増幅部の動作状態を表す監視信号として分配監視部86側に送信するよう構成され、分配監視部86は、その監視信号に基づき各送信部88の増幅部92の動作状態を各々監視し、異常発生時には、その旨をシステム管理者に速やかに通知するよう構成される。   In this type of retransmission system, the transmission unit 88 is provided with an amplification unit 92 that amplifies the transmission signal output from the distribution monitoring unit 86 to a predetermined transmission level. The amplifying unit 92 is configured to detect the internal temperature and the signal level of the transmission signal, and transmit the detection result to the distribution monitoring unit 86 side as a monitoring signal indicating the operation state of the amplifying unit. 86 is configured to monitor the operating state of the amplifying unit 92 of each transmitting unit 88 based on the monitoring signal, and to promptly notify the system administrator when an abnormality occurs.

また、分配監視部86には、増幅部92に電源供給を行うための電源回路が内蔵されており、分配監視部86は、この電源回路から各送信部88の増幅部92に流れ込む電流を監視して、その電流が過電流判定値よりも高くなると、増幅部92側の電源に異常が生じたと判定して、増幅部92への電源供給を遮断する。
特開2004−200805号公報
The distribution monitoring unit 86 has a built-in power supply circuit for supplying power to the amplification unit 92, and the distribution monitoring unit 86 monitors the current flowing from the power supply circuit into the amplification unit 92 of each transmission unit 88. When the current becomes higher than the overcurrent determination value, it is determined that an abnormality has occurred in the power supply on the amplification unit 92 side, and the power supply to the amplification unit 92 is cut off.
JP 2004-200805 A

ところで、上記のような放送電波再送信システムでは、送信部88からの送信電力を、従来の1Wクラスから十数Wクラスのハイパワーにすることが要望されている。そして、この要望に応えるために、増幅部92をハイパワーのものに変更すると、分配監視部86から増幅部92に供給される電流が増加するため、分配監視部86と増幅部92とを接続する同軸ケーブルの長さ等によって増幅部92に供給される電源電圧が変動し易くなるとか、増幅部92側で送信信号と電源電圧(直流信号成分)とを分離することができなくなる、といった問題が発生する。また、同軸ケーブルに大電流が流れることから、ケーブルを太くする必要があるとか、ケーブルが発熱するという問題もある。   By the way, in the broadcast radio wave re-transmission system as described above, it is desired that the transmission power from the transmission unit 88 is changed from a conventional 1W class to a high power of several tens of W classes. In order to meet this demand, if the amplifying unit 92 is changed to a high power type, the current supplied from the distribution monitoring unit 86 to the amplifying unit 92 increases, so the distribution monitoring unit 86 and the amplifying unit 92 are connected. The power supply voltage supplied to the amplifying unit 92 is likely to fluctuate depending on the length of the coaxial cable to be transmitted, or the transmission signal and the power supply voltage (DC signal component) cannot be separated on the amplifying unit 92 side. Will occur. In addition, since a large current flows through the coaxial cable, there is a problem that the cable needs to be thick or the cable generates heat.

一方、こうした問題を解決するためには、各送信部88毎に、増幅部92に直接電源供給を行う電源部を設けることが考えられるが、単に各増幅部92に専用の電源部を設けただけでは、分配監視部86側で増幅部92の電源異常を監視することができなくなってしまう。   On the other hand, in order to solve such a problem, it is conceivable to provide a power supply unit that directly supplies power to the amplification unit 92 for each transmission unit 88. However, a dedicated power supply unit is simply provided for each amplification unit 92. With this alone, it becomes impossible to monitor the power supply abnormality of the amplification unit 92 on the distribution monitoring unit 86 side.

本発明は、こうした問題に鑑みなされたもので、放送局からの放送電波を受信して、その電波が直接届かない地域に再送信する放送電波再送信システムにおいて、送信信号を増幅する増幅部には送信信号とは異なる経路で電源供給を行い、しかも、増幅部の電源異常は、送信信号の伝送経路上に設けられた監視部にて監視できるようにすることを目的とする。   The present invention has been made in view of these problems. In a broadcast radio wave retransmission system that receives a broadcast radio wave from a broadcast station and retransmits it to an area where the radio wave does not reach directly, an amplification unit that amplifies a transmission signal is provided. An object of the present invention is to supply power through a path different from that of the transmission signal, and to make it possible to monitor a power supply abnormality of the amplification section by a monitoring section provided on the transmission path of the transmission signal.

かかる目的を達成するためになされた請求項1に記載の発明は、
放送局から送信された放送電波を受信する受信アンテナと、
該受信アンテナからの受信信号を信号処理して再送信用の送信信号を生成する信号処理部と、
該信号処理部にて生成された送信信号に対応した放送電波を周囲に再送信する送信アンテナと、
前記信号処理部にて生成された送信信号を所定の送信レベルまで増幅して前記送信アンテナに出力すると共に、自身の動作状態を表す監視信号を前記信号処理部側に出力する増幅部と、
前記信号処理部から前記増幅部に至る送信信号の伝送経路上に設けられ、該伝送経路を介して前記増幅部側から送信されてくる監視信号に基づき、当該システムが正常動作しているか否かを監視し、該監視結果を報知する監視部と、
を備えた放送電波再送信システムであって、
前記増幅部に電源供給を行う電源部を前記監視部とは別体で構成すると共に、
該電源部には、当該電源部から前記増幅部に流れる増幅部の動作電流の異常を検出して、その旨を表す異常信号を前記増幅部に出力する電流異常検出手段を設け、
前記増幅部には、該電流異常検出手段から出力された異常信号を前記伝送経路側にバイパスさせて、前記監視部に前記異常信号を伝送する異常信号伝送手段を設け、
前記監視部には、前記伝送経路を介して前記増幅部側より入力される異常信号に基づき前記増幅部の電流異常を監視する電流異常監視手段を設けたことを特徴とする。
The invention according to claim 1, which has been made to achieve the object,
A receiving antenna for receiving broadcast radio waves transmitted from a broadcasting station;
A signal processing unit that performs signal processing on a reception signal from the reception antenna to generate a transmission signal of retransmission reliability;
A transmission antenna for retransmitting broadcast radio waves corresponding to the transmission signal generated by the signal processing unit to the surroundings;
An amplification unit that amplifies the transmission signal generated by the signal processing unit to a predetermined transmission level and outputs the amplified signal to the transmission antenna, and outputs a monitoring signal representing its own operation state to the signal processing unit;
Whether the system is operating normally based on a monitoring signal provided on the transmission path of the transmission signal from the signal processing section to the amplification section and transmitted from the amplification section side via the transmission path And monitoring part for notifying the monitoring result,
A broadcast radio wave retransmission system comprising:
A power supply unit that supplies power to the amplification unit is configured separately from the monitoring unit, and
The power supply unit is provided with current abnormality detection means for detecting an abnormality in the operating current of the amplification unit flowing from the power supply unit to the amplification unit and outputting an abnormality signal indicating the fact to the amplification unit,
The amplification unit is provided with an abnormal signal transmission unit that bypasses the abnormal signal output from the current abnormality detection unit to the transmission path side and transmits the abnormal signal to the monitoring unit,
The monitoring unit is provided with current abnormality monitoring means for monitoring a current abnormality of the amplification unit based on an abnormality signal input from the amplification unit side via the transmission path.

また、請求項2に記載の発明は、請求項1に記載の放送電波再送信システムにおいて、
前記監視部の電流異常監視手段は、前記電源部に対して前記増幅部への給電指令を行うための電源制御信号を、前記伝送経路を介して前記増幅部側に送信すると共に、該電源制御信号の出力レベルの変化から前記増幅部の電流異常を検知するよう構成され、
前記増幅部の異常信号伝送手段は、前記監視部から伝送されてきた電源制御信号を前記電源部側にそのまま通過させるよう構成され、
前記電源部は、前記増幅部を介して電源制御信号を受けると、前記増幅部への電源供給を開始し、該電源部の電流異常検出手段は、前記増幅部の動作電流の異常を検出すると、該電源制御信号の信号レベルを変化させることにより、前記監視部に対して異常信号を送信するよう構成されていることを特徴とする。
The invention according to claim 2 is the broadcast radio wave retransmission system according to claim 1,
The current abnormality monitoring means of the monitoring unit transmits a power control signal for instructing the power supply unit to supply power to the amplifying unit to the amplifying unit side via the transmission path, and the power control Configured to detect a current abnormality of the amplification unit from a change in the output level of the signal,
The abnormal signal transmission means of the amplifying unit is configured to pass the power control signal transmitted from the monitoring unit as it is to the power source unit side,
When the power supply unit receives a power supply control signal via the amplification unit, the power supply unit starts supplying power to the amplification unit, and the current abnormality detection unit of the power supply unit detects an abnormality in the operating current of the amplification unit. Further, the present invention is characterized in that an abnormal signal is transmitted to the monitoring unit by changing the signal level of the power control signal.

また次に、請求項3に記載の発明は、請求項1又は請求項2に記載の放送電波再送信システムにおいて、
前記送信アンテナは、前記放送電波を再送信すべき地域毎に複数設置されると共に、前記増幅部及び前記電源部は、各送信アンテナ毎に設けられており、
前記監視部は、前記信号処理部にて生成された送信信号を、前記各増幅部毎に分配して出力するよう構成され、
前記監視部に設けられた電流異常監視手段は、当該監視部と各増幅部とを接続する伝送経路を介して入力される監視信号及び異常信号に基づき、各増幅部毎に動作状態を監視することを特徴とする。
Next, the invention according to claim 3 is the broadcast radio wave retransmission system according to claim 1 or 2,
A plurality of the transmission antennas are installed for each area where the broadcast radio waves should be retransmitted, and the amplification unit and the power supply unit are provided for each transmission antenna,
The monitoring unit is configured to distribute and output the transmission signal generated by the signal processing unit for each amplification unit,
The current abnormality monitoring means provided in the monitoring unit monitors an operation state for each amplification unit based on a monitoring signal and an abnormality signal input via a transmission path connecting the monitoring unit and each amplification unit. It is characterized by that.

請求項1に記載の放送電波再送信システムによれば、増幅部に電源供給を行う電源部が監視部とは別体で構成されており、電源部から増幅部には、送信信号の伝送経路とは異なる専用の電源線を使って電源供給がなされることから、増幅部のハイパワー化に伴い電源部から増幅部に流れる電源電流が増大しても、監視部と増幅部とを接続する伝送経路の長さに増幅部に供給される電源電圧が大きく変動するようなことはなく、しかも、増幅部側では送信信号と電源電圧とを分離する必要がないため、増幅部への電源供給を効率よく行うことができる。また、送信信号の伝送経路には、増幅部への給電用の電流を流さないので、伝送経路を太くする等、伝送経路の発熱防止対策を行う必要もない。   According to the broadcast radio wave retransmission system according to claim 1, the power supply unit that supplies power to the amplification unit is configured separately from the monitoring unit, and the transmission path of the transmission signal is transmitted from the power supply unit to the amplification unit. Since the power is supplied using a dedicated power line different from the power supply, the monitoring unit and the amplifying unit are connected even if the power supply current flowing from the power source unit to the amplifying unit increases as the power of the amplifying unit increases. The power supply voltage supplied to the amplifier does not vary greatly depending on the length of the transmission path, and it is not necessary to separate the transmission signal and the power supply voltage on the amplifier side. Can be performed efficiently. In addition, since a current for feeding power to the amplifier is not supplied to the transmission path of the transmission signal, it is not necessary to take measures to prevent heat generation of the transmission path, such as thickening the transmission path.

また、請求項1に記載の放送電波再送信システムによれば、電源部には、増幅部の動作電流の異常を検出して、その旨を表す異常信号を増幅部に出力する電流異常検出手段が設けられ、増幅部には、その異常信号を伝送経路側にバイパスさせることによって監視部に異常信号を伝送する異常信号伝送手段が設けられ、監視部には、その伝送経路を介して増幅部側より入力される異常信号に基づき増幅部の電流異常を監視する電流異常監視手段が設けられていることから、増幅部の電源異常については、送信信号の伝送経路上に設けられた監視部にて監視できるようになる。   According to the broadcast radio wave re-transmission system according to claim 1, the current abnormality detecting means for detecting an abnormality in the operating current of the amplifying unit and outputting an abnormal signal indicating the abnormality to the amplifying unit. The amplifying unit is provided with abnormal signal transmission means for transmitting the abnormal signal to the monitoring unit by bypassing the abnormal signal to the transmission path side, and the monitoring unit is connected to the amplifying unit via the transmission path. Current abnormality monitoring means for monitoring the current abnormality of the amplifying unit based on the abnormality signal input from the side is provided, so that the power supply abnormality of the amplifying unit is detected in the monitoring unit provided on the transmission path of the transmission signal Can be monitored.

よって監視部では、増幅部の温度や出力レベルといった増幅部自体の動作状態だけでなく、増幅部の電源状態についても監視できることになり、異常発生時には、システム管理者等にその旨を速やかに報知することが可能となる。   Therefore, the monitoring unit can monitor not only the operation state of the amplification unit itself, such as the temperature and output level of the amplification unit, but also the power supply state of the amplification unit, and promptly informs the system administrator etc. when an abnormality occurs. It becomes possible to do.

次に、請求項2に記載の放送電波再送信システムによれば、監視部の電流異常監視手段が電源制御信号を増幅部に送信し、増幅部の異常信号伝送手段がその電源制御信号を電源部にそのまま通過させる。そして、電源部側では、その電源制御信号を受けると増幅部への電源供給を開始し、電流異常検出手段が、増幅部の動作電流の異常を検出すると、電源制御信号の信号レベルを変化させることにより、監視部に対して異常信号を送信し、暗視部の電流異常監視手段は、電源制御信号の出力レベルの変化から増幅部の電流異常を検知する。   Next, according to the broadcast radio wave retransmission system according to claim 2, the current abnormality monitoring means of the monitoring unit transmits the power control signal to the amplification unit, and the abnormality signal transmission unit of the amplification unit supplies the power control signal to the power supply. Pass through the part as it is. When the power supply unit receives the power supply control signal, it starts supplying power to the amplification unit. When the current abnormality detection unit detects an abnormality in the operation current of the amplification unit, the signal level of the power supply control signal is changed. Thus, the abnormal signal is transmitted to the monitoring unit, and the current abnormality monitoring means of the night vision unit detects the current abnormality of the amplification unit from the change in the output level of the power control signal.

従って、この請求項2に記載の放送電波再送信システムによれば、電源部は、少なくとも、監視部と増幅部と電源部とが互いに接続されて、監視部が起動される迄の間は、増幅部への電源供給を停止することになり、電源部(延いては増幅部)の動作を監視部側で制御することが可能となる。   Therefore, according to the broadcast radio wave retransmission system according to claim 2, the power supply unit is at least until the monitoring unit, the amplification unit, and the power supply unit are connected to each other and the monitoring unit is activated. The power supply to the amplification unit is stopped, and the operation of the power supply unit (and thus the amplification unit) can be controlled on the monitoring unit side.

また、電源部は、この制御に用いられる電源制御信号の信号レベルを変化させることによって、監視部に、増幅部の電流異常を通知することから、電源部に、異常信号発生用の信号生成手段を別途設ける必要がなく、電源部の構成を簡素化することができる。   Further, since the power supply unit notifies the monitoring unit of the current abnormality of the amplification unit by changing the signal level of the power supply control signal used for this control, the signal generation unit for generating an abnormal signal is sent to the power supply unit. It is not necessary to provide a separate power supply, and the configuration of the power supply unit can be simplified.

一方、請求項3に記載の放送電波再送信システムによれば、送信アンテナと増幅部と電源部とからなる再送信用の送信部が複数備えられており、監視部は、信号処理部にて生成された送信信号を各増幅部毎に分配して出力する。   On the other hand, the broadcast radio wave retransmission system according to claim 3 is provided with a plurality of retransmission credit transmission units including a transmission antenna, an amplification unit, and a power supply unit, and the monitoring unit is generated by the signal processing unit. The transmitted signal is distributed to each amplification unit and output.

このため、このシステムによれば、例えば、送信アンテナに指向特性を有するアンテナを用いた場合であっても、その送信アンテナからの電波の放射方向が送信点を中心として周囲に分散するように複数の送信アンテナを放射状に配置することによって、所望地域に放送電波を再送信することができる。また、例えば、放送電波を再送信すべき地域に複数の送信アンテナを分散して配置することで、その地域内に効率よく放送電波を配信することもできる。   For this reason, according to this system, for example, even when an antenna having directivity characteristics is used as a transmission antenna, a plurality of radio wave radiation directions from the transmission antenna are distributed around the transmission point. By arranging the transmitting antennas radially, it is possible to retransmit the broadcast radio wave to a desired area. In addition, for example, by arranging a plurality of transmission antennas in an area where the broadcast radio wave should be retransmitted, the broadcast radio wave can be efficiently distributed in the area.

そして、請求項3に記載の放送電波再送信システムにおいて、監視部に設けられた電流異常監視手段は、当該監視部と各増幅部とを接続する伝送経路を介して入力される監視信号及び異常信号に基づき、各増幅部毎に動作状態を監視することから、複数の増幅部の何れかに異常が生じた場合には、システム管理者等に対して、単に異常発生を通知することができるだけでなく、異常が生じた増幅部を識別可能に通知することが可能となる。   In the broadcast radio wave re-transmission system according to claim 3, the current abnormality monitoring means provided in the monitoring unit includes a monitoring signal and an abnormality input via a transmission path connecting the monitoring unit and each amplification unit. Since the operation state is monitored for each amplification unit based on the signal, when an abnormality occurs in any of the plurality of amplification units, it is possible to simply notify the system administrator or the like of the occurrence of the abnormality. Instead, it is possible to notify the amplification unit in which the abnormality has occurred in an identifiable manner.

以下に、本発明の実施形態を図面と共に説明する。
図1は、本発明が適用された放送電波再送信システム(以下、単に再送信システムという)の構成を表すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a broadcast radio wave retransmission system (hereinafter simply referred to as a retransmission system) to which the present invention is applied.

本実施形態の再送信システムは、人工衛星から2.6GHz帯と12GHz帯の2種類の周波数帯を使って配信されるモバイル放送用の放送電波の内、12GHz帯の放送電波を受信アンテナ2で受信し、その受信信号を、信号処理部4にて2.6GHz帯の送信信号に周波数変換し、その送信信号を、人工衛星からの放送電波を直接受信できない地域に設置された送信部8内の送信アンテナ10から送信させることで、その地域内にモバイル放送用の放送電波を再送信するためのもの(所謂ギャップフィラー装置)である。   The re-transmission system of this embodiment uses a receiving antenna 2 to transmit a 12 GHz band broadcast radio wave among mobile radio broadcast waves distributed from an artificial satellite using two types of frequency bands of 2.6 GHz band and 12 GHz band. The received signal is frequency-converted to a 2.6 GHz band transmission signal by the signal processing unit 4, and the transmission signal is transmitted to the transmission unit 8 installed in an area where the broadcast radio wave from the artificial satellite cannot be directly received. This is a device for retransmitting broadcasting radio waves for mobile broadcasting in the area by transmitting from the transmitting antenna 10 (so-called gap filler device).

そして、図1に示すように、本実施形態の再送信システムには、図4に示した従来のものと同様、対象となる地域全域に放送電波を再送信できるように複数(図では3つ)の送信部8が設けられており、各送信部8には、信号処理部4からの送信信号を各送信部8に分配する分配監視部6を介して、送信信号が入力される。   As shown in FIG. 1, the re-transmission system of the present embodiment includes a plurality of (three in the figure) so that broadcast radio waves can be re-transmitted throughout the target area, as in the conventional system shown in FIG. ) Transmission units 8 are provided, and the transmission signals are input to the transmission units 8 via the distribution monitoring units 6 that distribute the transmission signals from the signal processing unit 4 to the transmission units 8.

また、各送信部8には、放送電波再送信用の送信アンテナ10に加えて、分配監視部6からの送信信号を増幅して送信アンテナ10に入力する増幅部12と、この増幅部12に電源供給を行う電源部14とが備えられている。   Each transmission unit 8 includes an amplification unit 12 that amplifies the transmission signal from the distribution monitoring unit 6 and inputs the transmission signal to the transmission antenna 10 in addition to the transmission antenna 10 for broadcasting radio wave retransmission, and a power source for the amplification unit 12. And a power supply unit 14 for supplying power.

なお、受信アンテナ2、信号処理部4、分配監視部6、及び、各送信部8内の増幅部12は、受信信号や送信信号の伝送経路としての同軸ケーブルを介して、順に接続されており、送信部8内の増幅部12と電源部14とは、専用の電源線を介して、互いに接続されている。   The reception antenna 2, the signal processing unit 4, the distribution monitoring unit 6, and the amplification unit 12 in each transmission unit 8 are sequentially connected via a coaxial cable as a transmission path for the reception signal and transmission signal. The amplifying unit 12 and the power supply unit 14 in the transmission unit 8 are connected to each other via a dedicated power supply line.

次に、図2は、増幅部12の構成を表すブロック図である。
図2に示すように、増幅部12には、同軸ケーブルを介して分配監視部6及び送信アンテナ10に接続される入力端子Tsi及び出力端子Tsoと、電源線を介して電源部14に接続される電源端子Tpiとが備えられている。
Next, FIG. 2 is a block diagram showing the configuration of the amplifying unit 12.
As shown in FIG. 2, the amplifying unit 12 is connected to the distribution monitoring unit 6 and the transmission antenna 10 via a coaxial cable, and to the power supply unit 14 via a power line. Power supply terminal Tpi.

そして、分配監視部6から入力端子Tsiに入力された送信信号は、信号分離避雷回路20、入力検波回路21、RFスイッチ22、及び、利得調整回路(GC)23を介して、前後2段の増幅回路24、25に入力され、この増幅回路24、25にて所定の送信レベルまで増幅される。また、増幅後の送信信号は、アイソレータ26、方向性結合器27、バンドパスフィルタ(BPF)28を介して、出力端子Tsoまで伝送され、出力端子Tsoから送信アンテナ10に出力される。   The transmission signal input from the distribution monitoring unit 6 to the input terminal Tsi is passed through the signal separation lightning protection circuit 20, the input detection circuit 21, the RF switch 22, and the gain adjustment circuit (GC) 23 in two stages before and after. The signals are input to the amplifier circuits 24 and 25, and are amplified to a predetermined transmission level by the amplifier circuits 24 and 25. The amplified transmission signal is transmitted to the output terminal Tso via the isolator 26, the directional coupler 27, and the band pass filter (BPF) 28, and is output from the output terminal Tso to the transmission antenna 10.

ここで、入力検波回路21は、送信信号の一部を検波することで送信信号の信号レベルを検出するためのものであり、その検出結果(検波信号)は、増幅制御回路30に入力される。また、RFスイッチ22は、入力検波回路21から利得調整回路(GC)23に至る伝送経路上で受信信号を遮断するか通過させるかを切り換えるためのものであり、増幅制御回路30によりオン/オフされる。   Here, the input detection circuit 21 detects a signal level of the transmission signal by detecting a part of the transmission signal, and the detection result (detection signal) is input to the amplification control circuit 30. . The RF switch 22 is for switching whether the received signal is cut off or passed on the transmission path from the input detection circuit 21 to the gain adjustment circuit (GC) 23, and is turned on / off by the amplification control circuit 30. Is done.

またアイソレータ26は、送信アンテナ10からバンドパスフィルタ(BPF)28を介して入力される反射波等による入力信号が増幅回路25の出力側に入力されて、増幅回路25や増幅回路24が故障するのを防止するためのものであり、方向性結合器27は、アイソレータ26を通過した送信信号の一部を進行波として抽出すると共に、バンドパスフィルタ(BPF)28を介して送信アンテナ10から入力される入力信号の一部を反射波として抽出するためのものである。   In the isolator 26, an input signal by a reflected wave or the like input from the transmission antenna 10 via the band pass filter (BPF) 28 is input to the output side of the amplifier circuit 25, and the amplifier circuit 25 and the amplifier circuit 24 break down. The directional coupler 27 extracts a part of the transmission signal that has passed through the isolator 26 as a traveling wave and inputs it from the transmission antenna 10 via a bandpass filter (BPF) 28. This is for extracting a part of the input signal to be reflected as a reflected wave.

そして、この方向性結合器27にて抽出された進行波及び反射波は、それぞれ、これら各信号の信号レベルを検出する進行波検出回路31及び反射波検出回路32に入力される。そして、これら各検出回路31、32で検出された進行波及び反射波の信号レベルは、それぞれ、増幅制御回路30に入力される。   Then, the traveling wave and the reflected wave extracted by the directional coupler 27 are input to the traveling wave detection circuit 31 and the reflected wave detection circuit 32 that detect the signal levels of these signals, respectively. The signal levels of the traveling wave and the reflected wave detected by the detection circuits 31 and 32 are input to the amplification control circuit 30, respectively.

また次に、信号分離避雷回路20は、落雷等によって分配監視部6側から入力されるサージ電圧を吸収するための避雷回路(サージアブソーバ)と、分配監視部6からの送信信号(2.6GHz帯)を入力検波回路21側に通過させると共に、増幅制御回路30から出力される一定周波数の監視信号(本実施形態では、6.5MHz及び10.7MHzの信号)を入力端子Tsi側に通過させ、更に、分配監視部6から入力される後述の電源制御信号(本実施形態では、DC12V)を電源端子Tpi側に通過させるフィルタ回路と、から構成されている。   Next, the signal separation lightning protection circuit 20 includes a lightning protection circuit (surge absorber) for absorbing a surge voltage input from the distribution monitoring unit 6 due to a lightning strike and the like, and a transmission signal (2.6 GHz) from the distribution monitoring unit 6. Band) to the input detection circuit 21 side, and a constant frequency monitoring signal (6.5 MHz and 10.7 MHz signals in the present embodiment) output from the amplification control circuit 30 to the input terminal Tsi side. In addition, the power supply control signal is configured by a filter circuit that allows a power control signal (DC 12 V in the present embodiment), which will be described later, input from the distribution monitoring unit 6 to pass to the power supply terminal Tpi side.

次に、電源端子Tpiには、電源部14から電源電圧の供給を受けるための端子に加えて、分配監視部6から入力される電源制御信号を電源部14側にそのまま出力するための端子が備えられており、分配監視部6から入力端子Tsiに入力された電源制御信号は、信号分離避雷回路20及び電源端子Tpiを介してそのまま電源部14に伝送される。なお、本実施形態では、信号分離避雷回路20が、本発明の異常信号伝送手段に相当する。   Next, in addition to the terminal for receiving the supply of the power supply voltage from the power supply unit 14, the power supply terminal Tpi has a terminal for outputting the power control signal input from the distribution monitoring unit 6 to the power supply unit 14 as it is. The power supply control signal input from the distribution monitoring unit 6 to the input terminal Tsi is directly transmitted to the power supply unit 14 via the signal separation lightning protection circuit 20 and the power supply terminal Tpi. In the present embodiment, the signal separation lightning protection circuit 20 corresponds to the abnormal signal transmission means of the present invention.

また、電源部14から電源線を介して電源端子Tpiに入力される電源電圧は、増幅制御回路30に供給されると共に、DCスイッチ33を介して出力段の増幅回路25に供給され、更に、DCスイッチ33及びDCスイッチ34を介して、入力段の増幅回路24に供給される。   The power supply voltage input from the power supply unit 14 to the power supply terminal Tpi via the power supply line is supplied to the amplification control circuit 30 and is also supplied to the amplification circuit 25 at the output stage via the DC switch 33. The signal is supplied to the amplifier circuit 24 in the input stage via the DC switch 33 and the DC switch 34.

また、増幅制御回路30は、CPU、ROM、RAM等を中心とした周知のマイクロコンピュータにて構成されており、電源部14から電源端子Tpiを介して電源電圧が供給されることにより起動する。   The amplification control circuit 30 is composed of a well-known microcomputer centered on a CPU, ROM, RAM, and the like, and is activated when a power supply voltage is supplied from the power supply unit 14 via the power supply terminal Tpi.

そして、起動後は、入力検波回路21からの検波信号に基づき分配監視部6から送信信号が入力されたか否かを判定し、送信信号が入力されると、DCスイッチ33、DCスイッチ34を順にオンすることで、出力段の増幅回路25、入力段の増幅回路24を順に起動し、最後にRFスイッチ22をオンすることで、送信信号をこれら各増幅回路24、25に入力して、増幅後の送信信号を送信アンテナ10へ出力させる。   After activation, it is determined whether or not a transmission signal is input from the distribution monitoring unit 6 based on the detection signal from the input detection circuit 21. When the transmission signal is input, the DC switch 33 and the DC switch 34 are sequentially switched. By turning on, the output stage amplifier circuit 25 and the input stage amplifier circuit 24 are sequentially activated, and finally the RF switch 22 is turned on to input a transmission signal to each of the amplifier circuits 24 and 25 for amplification. The later transmission signal is output to the transmission antenna 10.

なお、増幅制御回路30は、分配監視部6から送信信号が入力されていないときには、これら各スイッチをオフすることで、入力信号の増幅動作を禁止し、増幅部12による不要な電力消費を防止する。   When the transmission signal is not input from the distribution monitoring unit 6, the amplification control circuit 30 prohibits the amplification operation of the input signal by turning off these switches and prevents unnecessary power consumption by the amplification unit 12. To do.

また、増幅制御回路30は、反射波検出回路32から入力される反射波の信号レベルを監視し、反射波信号レベルが設定レベルを超えたときにも、上記各スイッチをオフすることで、入力信号の増幅動作を禁止する。これは、送信アンテナ10との接続不良を未然に防止と共に、増幅回路25、24を反射波から保護するためである。   In addition, the amplification control circuit 30 monitors the signal level of the reflected wave input from the reflected wave detection circuit 32, and when the reflected wave signal level exceeds the set level, the amplification control circuit 30 turns off the switches to input the signal. Prohibits signal amplification. This is to prevent a connection failure with the transmitting antenna 10 and to protect the amplifier circuits 25 and 24 from reflected waves.

また次に、増幅部12には、増幅回路24、25付近の温度を検出する温度センサ35が設けられており、この温度センサ35による検出温度も、増幅制御回路30に入力される。   Next, the amplifying unit 12 is provided with a temperature sensor 35 that detects the temperature in the vicinity of the amplifier circuits 24 and 25, and the temperature detected by the temperature sensor 35 is also input to the amplification control circuit 30.

そして、増幅制御回路30は、送信信号を増幅して送信アンテナ10へ出力しているとき(つまり正常動作時)には、監視信号として、6.5MHzと10.7MHzの信号を信号分離避雷回路20に出力することで、これら各監視信号を、同軸ケーブルを介して分配監視部6に送信するよう構成されており、温度センサ35による検出温度が設定温度を超えると、10.7MHzの監視信号の出力を停止し、進行波検出回路31にて検出される進行波の信号レベル(つまり送信アンテナ10への送信信号の出力レベル)が設定範囲から外れると、6.5MHzの監視信号の出力を停止することで、これらの異常状態を分配監視部6に通知する。   When the amplification control circuit 30 amplifies the transmission signal and outputs it to the transmission antenna 10 (that is, during normal operation), the signal separation lightning protection circuit uses 6.5 MHz and 10.7 MHz signals as monitoring signals. These monitoring signals are transmitted to the distribution monitoring unit 6 via a coaxial cable by being output to 20, and when the temperature detected by the temperature sensor 35 exceeds the set temperature, the monitoring signal of 10.7 MHz When the signal level of the traveling wave detected by the traveling wave detection circuit 31 (that is, the output level of the transmission signal to the transmission antenna 10) deviates from the set range, the monitoring signal output of 6.5 MHz is output. By stopping, the abnormal state is notified to the distribution monitoring unit 6.

なお、増幅部12には、動作状態の異常を報知するための異常ランプ(LED等)が設けられており、増幅制御回路30は、上記のように増幅回路24、25の過熱や出力レベルの異常を検出すると、異常ランプを点灯して、その旨を周囲に通知する。   The amplifying unit 12 is provided with an abnormal lamp (such as an LED) for notifying the abnormality of the operating state, and the amplification control circuit 30 is capable of overheating the output circuits 24 and 25 and the output level as described above. When an abnormality is detected, the abnormality lamp is turned on and a notification to that effect is sent to the surroundings.

次に、図3は、分配監視部6及び電源部14の構成を表すブロック図である。
図3に示すように、分配監視部6には、信号処理部4にて生成(ダウンコンバート)された送信信号を取り込むための入力端子Tinと、同軸ケーブルを介して3つの送信部8に送信信号を出力するための3つの出力端子Ta、Tb、Tcと、各増幅部12の動作状態や電源状態の監視結果を外部の報知装置等に出力するためのモニタ端子Tmと、商用電源のコンセントから交流電源を取り込むための電源プラグ52とが備えられている。
Next, FIG. 3 is a block diagram showing the configuration of the distribution monitoring unit 6 and the power supply unit 14.
As shown in FIG. 3, the distribution monitoring unit 6 transmits the transmission signal generated (down-converted) by the signal processing unit 4 to the three transmission units 8 via a coaxial cable and an input terminal Tin. Three output terminals Ta, Tb, and Tc for outputting signals, a monitor terminal Tm for outputting the monitoring results of the operation state and power state of each amplifier 12 to an external notification device, etc., and an outlet for commercial power And a power plug 52 for taking in an AC power source.

そして、入力端子Tinに入力された送信信号は、アイソレータ42を介して分配回路44に入力され、この分配回路44にて3分配される。また、その3分配された各送信信号は、それぞれ、信号分離回路46a、46b、46c、及び、DC重畳避雷回路48a、48b、48cを介して、出力端子Ta、Tb、Tcまで伝送され、出力端子Ta、Tb、Tcから、各送信部8内の増幅部12へと出力される。   The transmission signal input to the input terminal Tin is input to the distribution circuit 44 via the isolator 42 and is distributed into three by the distribution circuit 44. Each of the three distributed transmission signals is transmitted to the output terminals Ta, Tb, Tc via the signal separation circuits 46a, 46b, 46c and the DC superimposing lightning arresters 48a, 48b, 48c, respectively, and output. The signals are output from the terminals Ta, Tb, and Tc to the amplifying unit 12 in each transmitting unit 8.

ここで、信号分離回路46a〜46cは、同軸ケーブルを介して出力端子Ta〜Tcに接続された増幅部12から送信されてくる監視信号を送信信号から分離するためのものであり、信号分離回路46a〜46cにて分離された監視信号は、それぞれ、監視信号検出回路50a、50b、50cに入力される。そして、監視信号検出回路50a〜50cは、各送信部8内の増幅部12から送信されてくる監視信号を検出し、その検出結果を、マイクロコンピュータからなる監視制御回路40に入力する。   Here, the signal separation circuits 46a to 46c are for separating the monitoring signal transmitted from the amplifier 12 connected to the output terminals Ta to Tc via the coaxial cable from the transmission signal. The monitoring signals separated by 46a to 46c are input to the monitoring signal detection circuits 50a, 50b, and 50c, respectively. The monitoring signal detection circuits 50a to 50c detect the monitoring signal transmitted from the amplification unit 12 in each transmission unit 8, and input the detection result to the monitoring control circuit 40 formed of a microcomputer.

次に、電源プラグ52から入力される交流電圧は、過電流保護のためのヒューズ53及び避雷回路54を介して、電源回路56に入力される。電源回路56は、当該分配監視部6の動作用の電源電圧(直流12V)を生成するための安定化電源であり、その生成した電源電圧は、監視制御回路40等の内部回路に供給される。   Next, the AC voltage input from the power plug 52 is input to the power circuit 56 through the fuse 53 and the lightning arrester circuit 54 for overcurrent protection. The power supply circuit 56 is a stabilized power supply for generating a power supply voltage (DC 12V) for operation of the distribution monitoring unit 6, and the generated power supply voltage is supplied to an internal circuit such as the monitoring control circuit 40. .

また、電源回路56には、内部回路への給電用の端子に加えて、手動操作用のスイッチSWa、SWb、SWc及び過電流検出回路58a、58b、58cを介して、DC重畳避雷回路48a、48b、48cに、直流12Vを電源制御信号として供給するための端子が備えられている。   In addition to the power supply terminal for the internal circuit, the power supply circuit 56 includes a DC superimposed lightning protection circuit 48a, via manual operation switches SWa, SWb, SWc and overcurrent detection circuits 58a, 58b, 58c. 48b and 48c are provided with terminals for supplying DC 12V as a power control signal.

この結果、各DC重畳避雷回路48a〜48cから出力端子Ta〜Tcには、直流12Vの電源制御信号が重畳された送信信号が入力され、出力端子Ta〜Tcから各増幅部12には、この送信信号が送信されることになる。   As a result, a transmission signal on which a DC 12V power supply control signal is superimposed is input to the output terminals Ta to Tc from each of the DC superimposed lightning protection circuits 48a to 48c. A transmission signal is transmitted.

なお、過電流検出回路58a〜58cは、スイッチSWa〜SWcのオン時に電源回路56側より供給される直流電圧(12V)に比べて、DC重畳避雷回路48a〜48c側の電圧が設定レベル以上低い場合(例えば6V以下の場合)に、対応する増幅部12側で過電流が流れて、その旨が電源部14にて検出されたことを判定するためのものであり、その判定結果は、監視制御回路40に入力される。   In the overcurrent detection circuits 58a to 58c, the voltage on the DC superimposed lightning protection circuit 48a to 48c side is lower than the set level compared to the DC voltage (12V) supplied from the power supply circuit 56 side when the switches SWa to SWc are turned on. In this case (for example, 6V or less), it is for determining that an overcurrent flows on the corresponding amplification unit 12 side and that the power supply unit 14 has detected that effect. Input to the control circuit 40.

この結果、監視制御回路40は、監視信号検出回路50a〜50cから入力される監視信号の検出結果に基づき、当該分配監視部6に接続された増幅部12の過熱や出力レベルの異常を、各増幅部12毎に検知できると共に、過電流検出回路58a〜58cからの入力信号により、当該分配監視部6に接続された増幅部12の電源異常(過電流)を各増幅部12毎に検知できる。そして、監視制御回路40は、その検知結果(つまり、各増幅部12の正常/異常、異常内容等)を、モニタ端子Tmから外部の報知装置等に出力する。   As a result, the monitoring control circuit 40 detects overheating of the amplification unit 12 connected to the distribution monitoring unit 6 and abnormality in the output level based on the detection results of the monitoring signals input from the monitoring signal detection circuits 50a to 50c. It can be detected for each amplifying unit 12, and power supply abnormality (overcurrent) of the amplifying unit 12 connected to the distribution monitoring unit 6 can be detected for each amplifying unit 12 by input signals from the overcurrent detection circuits 58 a to 58 c. . Then, the monitoring control circuit 40 outputs the detection result (that is, the normality / abnormality, abnormality content, etc. of each amplifier 12) from the monitor terminal Tm to an external notification device or the like.

なお、本実施形態では、この過電流検出回路58a〜58cが、本発明の電流異常監視手段に相当する。
一方、電源部14には、増幅部12側の電源端子Tpiに対応して、増幅部12に電源電圧(本実施形態では直流12V)を供給するための端子と、分配監視部6から出力された電源制御信号をそのまま入力するための端子とを備えた給電端子Tpoが備えられている。また、電源部14には、商用電源のコンセントから交流電源を取り込むための電源プラグ62も備えられている。
In the present embodiment, the overcurrent detection circuits 58a to 58c correspond to the current abnormality monitoring means of the present invention.
On the other hand, the power supply unit 14 outputs a power supply voltage (DC 12V in the present embodiment) to the amplification unit 12 and the distribution monitoring unit 6 in correspondence with the power supply terminal Tpi on the amplification unit 12 side. A power supply terminal Tpo having a terminal for directly inputting the power control signal is provided. The power supply unit 14 is also provided with a power plug 62 for taking in AC power from a commercial power outlet.

そして、この電源プラグ62から入力される交流電圧は、手動操作用の電源スイッチSWp、過電流保護のためのヒューズ63、及び、避雷回路64を介して、電源回路66に入力される。電源回路66は、増幅部12を動作させるための電源電圧(直流12V)を生成するための大容量(例えば、電流12A)の安定化電源であり、その生成した電源電圧は、電源制御回路70及び避雷回路72、給電端子Tpoを介して、増幅部12に供給される。   The AC voltage input from the power plug 62 is input to the power circuit 66 through the power switch SWp for manual operation, the fuse 63 for overcurrent protection, and the lightning protection circuit 64. The power supply circuit 66 is a large-capacity (for example, current 12 A) stabilized power supply for generating a power supply voltage (DC 12 V) for operating the amplifier 12, and the generated power supply voltage is the power supply control circuit 70. And the lightning protection circuit 72 and the power supply terminal Tpo.

また、増幅部12側から給電端子Tpoに入力される電源制御信号は、避雷回路74を介して電源制御回路70に入力される。そして、電源制御回路70は、増幅部12から正規の電源制御信号(直流12V)が入力されるまでは、増幅部12への電源電圧(直流12V)の給電を停止し、増幅部12から電源制御信号が入力されると、増幅部12への電源電圧(直流12V)の給電を開始する。   A power control signal input from the amplifying unit 12 side to the power supply terminal Tpo is input to the power control circuit 70 via the lightning protection circuit 74. Then, the power supply control circuit 70 stops supplying the power supply voltage (DC 12 V) to the amplifier 12 until a normal power control signal (DC 12 V) is input from the amplifier 12. When the control signal is input, power supply of the power supply voltage (DC 12V) to the amplifying unit 12 is started.

なお、電源制御回路70から避雷回路72への電源電圧の出力経路には、LED等からなる表示ランプ73が接続されており、電源制御回路70が増幅部12への給電を開始すると、この表示ランプ73が点灯して、その旨を周囲に報知するようになっている。   Note that a display lamp 73 made of an LED or the like is connected to the output path of the power supply voltage from the power supply control circuit 70 to the lightning protection circuit 72, and when the power supply control circuit 70 starts supplying power to the amplifying unit 12, this display is performed. The lamp 73 is turned on to notify the surroundings to that effect.

また、当該電源部14には、電源回路66にて生成された増幅部駆動用の電源電圧(直流12V)から、電源制御回路70駆動用の直流定電圧(例えば直流5V)を生成する定電圧回路76と、電源制御回路70による増幅部12への給電時に、電源回路66から増幅部12側に流れる電流を検出して、その電流値が予め設定された上限値(過電流判定値)よりも大きいか否かを判定する過電流検出回路78と、この過電流検出回路78にて過電流が検出されると、その後、電源スイッチSWpがオフ/オンされて、当該電源部14が再起動されるまで、その状態を保持する過電流ラッチ回路79と、過電流ラッチ回路79から出力される過電流のラッチ信号によりオン状態となって、電源制御回路70への電源制御信号の入力経路を抵抗R1を介して接地するトランジスタTr1と、が備えられている。   In addition, the power supply unit 14 generates a constant DC voltage for driving the power supply control circuit 70 (for example, DC 5V) from the power supply voltage (DC 12V) for driving the amplifier generated by the power supply circuit 66. When power is supplied to the amplifier unit 12 by the circuit 76 and the power supply control circuit 70, a current flowing from the power supply circuit 66 to the amplifier unit 12 side is detected, and the current value is determined from a preset upper limit value (overcurrent determination value). When the overcurrent is detected by the overcurrent detection circuit 78 and the overcurrent detection circuit 78, the power switch SWp is turned off / on and the power supply unit 14 is restarted. Until it is turned on, and the overcurrent latch circuit 79 that holds that state and the overcurrent latch signal output from the overcurrent latch circuit 79 is turned on, and the input path of the power supply control signal to the power supply control circuit 70 Resistance R A transistor Tr1 is grounded via a are provided.

この結果、過電流検出回路78にて、増幅部12に過電流が流れたことが検出されると、その後、電源制御回路70への電源制御信号の入力経路は、抵抗R1及びトランジスタTr1を介して接地されることになり、その入力経路の電位は、分配監視部6側で給電/停止切替用のスイッチSWa(又はSWb又はSWc)がされていても、正規の電源制御信号(直流12V)に比べて極めて低い電位となる。   As a result, when the overcurrent detection circuit 78 detects that an overcurrent has flowed through the amplifier 12, the input path of the power supply control signal to the power supply control circuit 70 thereafter passes through the resistor R1 and the transistor Tr1. The potential of the input path is the normal power control signal (DC 12 V) even if the power supply / stop switching switch SWa (or SWb or SWc) is set on the distribution monitoring unit 6 side. Compared to, the potential is extremely low.

そして、このように、電源制御信号が正規の電圧よりも低くなると、電源制御回路70では、電源制御信号は入力されていないと判定して、増幅部12への給電を停止する。また、分配監視部6でも、この電源部14に対応した過電流検出回路58a〜58cにて、電源制御信号の電圧低下から増幅部12に過電流が流れたことが検出され、その旨を表す信号が、モニタ端子Tmから外部の報知装置に出力されて、増幅部12の電源異常がシステム管理者等に報知されることになる。   When the power supply control signal becomes lower than the normal voltage in this way, the power supply control circuit 70 determines that the power supply control signal is not input, and stops power supply to the amplifying unit 12. Also in the distribution monitoring unit 6, the overcurrent detection circuits 58 a to 58 c corresponding to the power supply unit 14 detect that the overcurrent has flowed to the amplification unit 12 due to the voltage drop of the power supply control signal, and this is indicated. A signal is output from the monitor terminal Tm to an external notification device, and the system manager or the like is notified of a power supply abnormality of the amplification unit 12.

なお、本実施形態では、過電流検出回路78、過電流ラッチ回路79、抵抗R1、及びトランジスタTr1が、本発明の電流異常検出手段に相当する。
以上説明したように、本実施形態の再送信システムによれば、増幅部12に電源供給を行う電源部14が分配監視部6とは別体で構成されており、電源部14から増幅部12には、送信信号伝送用の同軸ケーブルとは異なる専用の電源線を使って電源供給がなされることから、増幅部12のハイパワー化に伴い電源部14から増幅部12に流れる電源電流が数Aから十数Aに増大しても、増幅部12には電源電圧を安定して供給できることになり、しかも、増幅部12側では送信信号と電源電圧とを分離する必要がないため、増幅部12への電源供給を効率よく行うことができる。また、送信信号伝送用の同軸ケーブルには、増幅部12への給電用の電流を流さないので、同軸ケーブルを太くする等、同軸ケーブルの発熱防止対策を行う必要もない。
In the present embodiment, the overcurrent detection circuit 78, the overcurrent latch circuit 79, the resistor R1, and the transistor Tr1 correspond to the current abnormality detection means of the present invention.
As described above, according to the retransmission system of the present embodiment, the power supply unit 14 that supplies power to the amplification unit 12 is configured separately from the distribution monitoring unit 6, and the power supply unit 14 to the amplification unit 12. Since power is supplied using a dedicated power line different from the coaxial cable for transmission signal transmission, the number of power supply currents flowing from the power supply section 14 to the amplification section 12 as the amplification section 12 is increased in power is several. Even if A is increased from a dozen A, the power supply voltage can be stably supplied to the amplifying unit 12, and the amplifying unit 12 does not need to separate the transmission signal and the power supply voltage. 12 can be efficiently supplied with power. In addition, since a current for feeding power to the amplifying unit 12 does not flow through the coaxial cable for transmitting signal transmission, it is not necessary to take measures to prevent heat generation of the coaxial cable, such as thickening the coaxial cable.

また、本実施形態の再送信システムによれば、電源部14は、増幅部12に過電流が流れたときに、その旨を検出して、その後は、増幅部12への給電を停止するように構成されているため、増幅部12や電源部14を過電流から保護することができる。   Further, according to the re-transmission system of the present embodiment, the power supply unit 14 detects when an overcurrent flows through the amplifying unit 12, and thereafter stops power supply to the amplifying unit 12. Therefore, the amplification unit 12 and the power supply unit 14 can be protected from overcurrent.

また、電源部14側で増幅部12の電源異常(つまり過電流)を検出したときには、分配監視部6から供給される電源制御信号の信号レベルを低下させることで、分配監視部6にもその旨を通知し、分配監視部6側では、電源制御信号の信号レベルの低下から増幅部の電源異常を検知して、外部の報知装置等にその旨を報知することから、当該システムに何等かの異常が発生したときには、分配監視部6を介して、システム管理者等にその旨を速やかに報知することができる。   Further, when a power supply abnormality (that is, an overcurrent) of the amplification unit 12 is detected on the power supply unit 14 side, the signal level of the power supply control signal supplied from the distribution monitoring unit 6 is lowered so that the distribution monitoring unit 6 also Since the distribution monitoring unit 6 detects the power supply abnormality of the amplification unit from the decrease in the signal level of the power supply control signal and notifies the external notification device or the like to that effect. When such an abnormality occurs, it is possible to promptly notify the system administrator or the like via the distribution monitoring unit 6.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の態様を採ることができる。
例えば、上記実施形態では、モバイル放送の放送電波を再送信する再送信システムについて説明したが、本発明は、例えば、CSデジタル放送、BSデジタル放送、地上波デジタル放送等の放送電波を、その放送電波が届かない地域に再送信するシステムであっても、上記実施形態と同様に適用して、同様の効果を得ることができる。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various aspect can be taken.
For example, in the above-described embodiment, a re-transmission system that re-transmits broadcast radio waves of mobile broadcasts has been described. However, the present invention can be applied to broadcast radio waves such as CS digital broadcasts, BS digital broadcasts, and terrestrial digital broadcasts. Even in a system that retransmits to an area where radio waves do not reach, it can be applied in the same manner as in the above embodiment to obtain the same effect.

また、上記実施形態では、受信アンテナ2からの受信信号を周波数変換(ダウンコンバート)した送信信号を送信アンテナ10から再送信するものとして説明したが、受信アンテナ2からの受信信号をそのままの周波数で再送信するシステムであっても、本発明を適用して、同様の効果を得ることができる。   Moreover, although the said embodiment demonstrated as what retransmits the transmission signal which frequency-converted (down-converted) the received signal from the receiving antenna 2 from the transmitting antenna 10, the received signal from the receiving antenna 2 is made into the frequency as it is. Even in a re-transmission system, the same effect can be obtained by applying the present invention.

実施形態の放送電波再送信システムの構成を表すブロック図である。It is a block diagram showing the structure of the broadcast radio wave retransmission system of embodiment. 実施形態の増幅部の構成を表すブロック図である。It is a block diagram showing the structure of the amplification part of embodiment. 実施形態の分配監視部及び電源部の構成を表すブロック図である。It is a block diagram showing the structure of the distribution monitoring part and power supply part of embodiment. 従来の放送電波再送信システムの構成を表すブロック図である。It is a block diagram showing the structure of the conventional broadcast radio wave retransmission system.

符号の説明Explanation of symbols

2…受信アンテナ、4…信号処理部、6…分配監視部、8…送信部、10…送信アンテナ、12…増幅部、14…電源部、20…信号分離避雷回路、21…入力検波回路、22…RFスイッチ、24,25…増幅回路、26…アイソレータ、27…方向性結合器、30…増幅制御回路、31…進行波検出回路、32…反射波検出回路、33,34…DCスイッチ、35…温度センサ、40…監視制御回路、42…アイソレータ、44…分配回路、46a,46b,46c…信号分離回路、48a,48b,48c…DC重畳避雷回路、50a,50b,50c…監視信号検出回路、52…電源プラグ、53…ヒューズ、54…避雷回路、56…電源回路、SWa,SWb,SWc…スイッチ、58a,58b,58c…過電流検出回路、62…電源プラグ、SWp…電源スイッチ、63…ヒューズ、64…避雷回路、66…電源回路、70…電源制御回路、72,74…避雷回路、73…表示ランプ、76…定電圧回路、78…過電流検出回路、79…過電流ラッチ回路、82…受信アンテナ、84…信号処理部、86…分配監視部、88…送信部、90…送信アンテナ、92…増幅部、R1…抵抗、Tr1…トランジスタ。   DESCRIPTION OF SYMBOLS 2 ... Reception antenna, 4 ... Signal processing part, 6 ... Distribution monitoring part, 8 ... Transmission part, 10 ... Transmission antenna, 12 ... Amplification part, 14 ... Power supply part, 20 ... Signal separation lightning protection circuit, 21 ... Input detection circuit, DESCRIPTION OF SYMBOLS 22 ... RF switch, 24, 25 ... Amplifier circuit, 26 ... Isolator, 27 ... Directional coupler, 30 ... Amplification control circuit, 31 ... Traveling wave detection circuit, 32 ... Reflected wave detection circuit, 33, 34 ... DC switch, 35 ... temperature sensor, 40 ... monitoring control circuit, 42 ... isolator, 44 ... distribution circuit, 46a, 46b, 46c ... signal separation circuit, 48a, 48b, 48c ... DC superposed lightning protection circuit, 50a, 50b, 50c ... monitoring signal detection Circuit, 52 ... Power plug, 53 ... Fuse, 54 ... Lightning protection circuit, 56 ... Power supply circuit, SWa, SWb, SWc ... Switch, 58a, 58b, 58c ... Overcurrent detection circuit, 62 Power plug, SWp ... Power switch, 63 ... Fuse, 64 ... Lightning protection circuit, 66 ... Power supply circuit, 70 ... Power supply control circuit, 72, 74 ... Lightning protection circuit, 73 ... Display lamp, 76 ... Constant voltage circuit, 78 ... Overcurrent Detection circuit, 79 ... Overcurrent latch circuit, 82 ... Reception antenna, 84 ... Signal processing unit, 86 ... Distribution monitoring unit, 88 ... Transmission unit, 90 ... Transmission antenna, 92 ... Amplification unit, R1 ... Resistance, Tr1 ... Transistor.

Claims (3)

放送局から送信された放送電波を受信する受信アンテナと、
該受信アンテナからの受信信号を信号処理して再送信用の送信信号を生成する信号処理部と、
該信号処理部にて生成された送信信号に対応した放送電波を周囲に再送信する送信アンテナと、
前記信号処理部にて生成された送信信号を所定の送信レベルまで増幅して前記送信アンテナに出力すると共に、自身の動作状態を表す監視信号を前記信号処理部側に出力する増幅部と、
前記信号処理部から前記増幅部に至る送信信号の伝送経路上に設けられ、該伝送経路を介して前記増幅部側から送信されてくる監視信号に基づき、当該システムが正常動作しているか否かを監視し、該監視結果を報知する監視部と、
を備えた放送電波再送信システムであって、
前記増幅部に電源供給を行う電源部を前記監視部とは別体で構成すると共に、
該電源部には、当該電源部から前記増幅部に流れる増幅部の動作電流の異常を検出して、その旨を表す異常信号を前記増幅部に出力する電流異常検出手段を設け、
前記増幅部には、該電流異常検出手段から出力された異常信号を前記伝送経路側にバイパスさせて、前記監視部に前記異常信号を伝送する異常信号伝送手段を設け、
前記監視部には、前記伝送経路を介して前記増幅部側より入力される異常信号に基づき前記増幅部の電流異常を監視する電流異常監視手段を設けたことを特徴とする放送電波再送信システム。
A receiving antenna for receiving broadcast radio waves transmitted from a broadcasting station;
A signal processing unit that performs signal processing on a reception signal from the reception antenna to generate a transmission signal of retransmission reliability;
A transmission antenna for retransmitting broadcast radio waves corresponding to the transmission signal generated by the signal processing unit to the surroundings;
An amplification unit that amplifies the transmission signal generated by the signal processing unit to a predetermined transmission level and outputs the amplified signal to the transmission antenna, and outputs a monitoring signal representing its own operation state to the signal processing unit;
Whether the system is operating normally based on a monitoring signal provided on the transmission path of the transmission signal from the signal processing section to the amplification section and transmitted from the amplification section side via the transmission path And monitoring part for notifying the monitoring result,
A broadcast radio wave retransmission system comprising:
A power supply unit that supplies power to the amplification unit is configured separately from the monitoring unit, and
The power supply unit is provided with current abnormality detection means for detecting an abnormality in the operating current of the amplification unit flowing from the power supply unit to the amplification unit and outputting an abnormality signal indicating the fact to the amplification unit,
The amplification unit is provided with an abnormal signal transmission unit that bypasses the abnormal signal output from the current abnormality detection unit to the transmission path side and transmits the abnormal signal to the monitoring unit,
A broadcast radio wave retransmission system characterized in that the monitoring unit is provided with current abnormality monitoring means for monitoring a current abnormality of the amplification unit based on an abnormality signal input from the amplification unit side via the transmission path. .
前記監視部の電流異常監視手段は、前記電源部に対して前記増幅部への給電指令を行うための電源制御信号を、前記伝送経路を介して前記増幅部側に送信すると共に、該電源制御信号の出力レベルの変化から前記増幅部の電流異常を検知するよう構成され、
前記増幅部の異常信号伝送手段は、前記監視部から伝送されてきた電源制御信号を前記電源部側にそのまま通過させるよう構成され、
前記電源部は、前記増幅部を介して電源制御信号を受けると、前記増幅部への電源供給を開始し、該電源部の電流異常検出手段は、前記増幅部の動作電流の異常を検出すると、該電源制御信号の信号レベルを変化させることにより、前記監視部に対して異常信号を送信するよう構成されていることを特徴とする請求項1に記載の放送電波再送信システム。
The current abnormality monitoring means of the monitoring unit transmits a power control signal for instructing the power supply unit to supply power to the amplifying unit to the amplifying unit side via the transmission path, and the power control Configured to detect a current abnormality of the amplification unit from a change in the output level of the signal,
The abnormal signal transmission means of the amplifying unit is configured to pass the power control signal transmitted from the monitoring unit as it is to the power source unit side,
When the power supply unit receives a power supply control signal via the amplification unit, the power supply unit starts supplying power to the amplification unit, and the current abnormality detection unit of the power supply unit detects an abnormality in the operating current of the amplification unit. The broadcast radio wave retransmission system according to claim 1, wherein an abnormal signal is transmitted to the monitoring unit by changing a signal level of the power control signal.
前記送信アンテナは、前記放送電波を再送信すべき地域毎に複数設置されると共に、前記増幅部及び前記電源部は、各送信アンテナ毎に設けられており、
前記監視部は、前記信号処理部にて生成された送信信号を、前記各増幅部毎に分配して出力するよう構成され、
前記監視部に設けられた電流異常監視手段は、当該監視部と各増幅部とを接続する伝送経路を介して入力される監視信号及び異常信号に基づき、各増幅部毎に動作状態を監視することを特徴とする請求項1又は請求項2に記載の放送電波再送信システム。
A plurality of the transmission antennas are installed for each area where the broadcast radio waves should be retransmitted, and the amplification unit and the power supply unit are provided for each transmission antenna,
The monitoring unit is configured to distribute and output the transmission signal generated by the signal processing unit for each amplification unit,
The current abnormality monitoring means provided in the monitoring unit monitors an operation state for each amplification unit based on a monitoring signal and an abnormality signal input via a transmission path connecting the monitoring unit and each amplification unit. The broadcast radio wave re-transmission system according to claim 1 or 2.
JP2005237739A 2005-08-18 2005-08-18 Broadcast radio wave retransmission system Expired - Fee Related JP4440187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237739A JP4440187B2 (en) 2005-08-18 2005-08-18 Broadcast radio wave retransmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237739A JP4440187B2 (en) 2005-08-18 2005-08-18 Broadcast radio wave retransmission system

Publications (2)

Publication Number Publication Date
JP2007053625A true JP2007053625A (en) 2007-03-01
JP4440187B2 JP4440187B2 (en) 2010-03-24

Family

ID=37917763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237739A Expired - Fee Related JP4440187B2 (en) 2005-08-18 2005-08-18 Broadcast radio wave retransmission system

Country Status (1)

Country Link
JP (1) JP4440187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118163A (en) * 2007-11-06 2009-05-28 Hitachi Kokusai Electric Inc Radio transmitter
JP2011114437A (en) * 2009-11-25 2011-06-09 Dx Antenna Co Ltd Retransmission system
JP2014079147A (en) * 2012-09-24 2014-05-01 Dx Antenna Co Ltd Electric power supply and sdi signal transmission system including the same
JP2020028127A (en) * 2018-08-09 2020-02-20 日本アンテナ株式会社 In-building community device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118163A (en) * 2007-11-06 2009-05-28 Hitachi Kokusai Electric Inc Radio transmitter
JP2011114437A (en) * 2009-11-25 2011-06-09 Dx Antenna Co Ltd Retransmission system
JP2014079147A (en) * 2012-09-24 2014-05-01 Dx Antenna Co Ltd Electric power supply and sdi signal transmission system including the same
JP2020028127A (en) * 2018-08-09 2020-02-20 日本アンテナ株式会社 In-building community device
JP7086486B2 (en) 2018-08-09 2022-06-20 日本アンテナ株式会社 Common listening device in the building

Also Published As

Publication number Publication date
JP4440187B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US7697918B2 (en) Broadcast apparatus for closed space
JP4440187B2 (en) Broadcast radio wave retransmission system
JP2007143100A (en) Integrated antenna connection state detecting device and car navigation device
JP4603473B2 (en) Monitoring device and broadcast radio wave retransmission system
JP4634902B2 (en) Transmitting apparatus and program
CN112367107B (en) Method and system for autonomously processing satellite measurement and control equipment fault on satellite
US20070152675A1 (en) Diagnostic method for monitoring a plug-in connection
JP4763436B2 (en) Broadcast radio wave retransmission system and branching device
JP4838163B2 (en) Television broadcast retransmission system and transmission apparatus
JP2009246783A (en) Television broadcast retransmission system and monitoring apparatus
KR100428020B1 (en) A Real Time Monitoring System of Electric Train
JP2012023709A (en) Supervisory device of relay station
JP2007201855A (en) Apparatus for retransmitting digital broadcast
JP3667977B2 (en) Wireless device
JP4149252B2 (en) Transmit antenna
JP2007074427A (en) Optical receiver, and squelch operation method of optical receiver
JP2005354465A (en) Radio relay system for broadcasting station
JP2009124361A (en) Wireless communication system
JP4208104B2 (en) Security system terminal device
JP2008099128A (en) Power source separated booster
KR20050081944A (en) Short protection device
JP4628391B2 (en) Power supply method in amplification device
JP2007174807A (en) Remote controlled power supply control system
KR101336297B1 (en) Method for removing snow on antenna and apparatus thereof
JP2790476B2 (en) Lightning arrester failure detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees