JP2004200082A - Mass spectrometry device and its adjustment method - Google Patents

Mass spectrometry device and its adjustment method Download PDF

Info

Publication number
JP2004200082A
JP2004200082A JP2002368847A JP2002368847A JP2004200082A JP 2004200082 A JP2004200082 A JP 2004200082A JP 2002368847 A JP2002368847 A JP 2002368847A JP 2002368847 A JP2002368847 A JP 2002368847A JP 2004200082 A JP2004200082 A JP 2004200082A
Authority
JP
Japan
Prior art keywords
frequency
mass
circuit
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002368847A
Other languages
Japanese (ja)
Other versions
JP3946133B2 (en
Inventor
Hiroyuki Shimada
博之 嶋田
Masayuki Sugiyama
正行 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2002368847A priority Critical patent/JP3946133B2/en
Publication of JP2004200082A publication Critical patent/JP2004200082A/en
Application granted granted Critical
Publication of JP3946133B2 publication Critical patent/JP3946133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mass spectrometry device capable of easily matching an impedance which can be automated with simple construction , and to provide an adjustment method thereof. <P>SOLUTION: The mass spectrometry device is composed of a multipole electrode and its driving power circuit, and the driving power circuit is constructed of an oscillation circuit for oscillating a high frequency signal of a prescribed frequency, a high frequency transformer, a high frequency transformer driving circuit for supplying a high frequency current to the primary coil of the high frequency transformer by amplifying the high frequency signal, and a DC power source for superimposing a positive and a negative DC voltage to each of two secondary coils connected to the multipole electrode. On the mass spectrometry device, equipped with a mass filter making the ion with optional mass charge ratio pass according to the size of high frequency voltage impressed on the multipole electrode, and its adjustment method, a frequency variable mechanism of high frequency current is provided, and impedance is matched by changing the frequency in a prescribed range, and mass spectrometric analysis is carried out basing on the frequency at that time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多重極電極の質量フィルタを備えた質量分析装置及びその調整方法に係り、特に、容易にインピーダンス整合を精度良くとることができ、しかも簡易な構成でその自動化を可能とする質量分析装置に関する。
【0002】
【従来の技術】
質量フィルタを備えた質量分析装置の構造及び計測原理を最も一般的に用いられている四重極型質量分析装置を例に挙げて説明する。
図2は4重極質量分析装置の構造を示す模式図であり、図3は4重極電極に印加する高周波電圧の駆動電源回路の一例を示す概略回路図である。
【0003】
質量分析装置21は、図2に示すように、排気装置26を備えた真空室22の内部に配置されるイオン源(イオン発生部)23、4重極電極(分析部)24、及び検出器(検出部)25から構成され、原子や分子はイオン源23でイオン化され、4重極電極に印加する高周波電圧により所定の質量電荷比M(=質量m/電荷z)を有するイオンのみが電極内部を通過し、検出器25でその量が電荷量として定量される。
【0004】
分析部24は、4本の金属製の電極ロッドが平行に配置された4重極電極7と、相対する2組の電極ロッドの各組にそれぞれ(U+Vcosωt)及び−(U+Vcosωt)を印加する駆動電源回路とからなる四重極質量フィルタ(QMS)で構成される。 ここで、Uは直流電圧、Vは周波数fの高周波のピーク電圧である。即ち、駆動電源回路は所定の周波数の高周波信号を発振させる発振回路1と、高周波トランス3と、高周波信号を増幅して高周波トランス3の1次巻線に高周波電流を供給する高周波トランス駆動回路2と、4重極電極7に接続された2つの2次巻線のそれぞれに正負の直流電圧を重畳させる直流電源5,6とからなり、2つの2次巻線間には、インピーダンス整合をとるための可変コンデンサ8が取り付けられている(特開平10−69880)。なお、4はコンデンサである。
【0005】
この駆動電源回路により、(U+Vcosωt)及び−(U+Vcosωt)を4重極電極7に印加すると、電極内に直角双曲線電界が形成され、ある特定の質量電荷比M(=m/z)を有するイオンだけが電極ロッドの中心軸近傍を通過して検出器に到達することができ、それ以外の質量電荷比を持つイオンは発散し検出器に到達することはない。
【0006】
ここで、U/Vを一定とすると、検出される質量電荷比Mと高周波との間には(1)式が成立する。周波数fを固定し(通常1〜数MHz)、高周波電圧の振幅(peak to peak値)Vを掃引することにより、質量電荷比の小さなイオンから大きなイオンまで定量分析することが可能となる。
M = V/(κfr ) ・・・・・(1)
ここで、
M:質量電荷比(=m/z)
κ:固定値
:電極ロッド内接円の半径cm
である。
【0007】
【発明が解決しようとする課題】
以上の質量フィルタは、メンテナンスを行うと、電極のインピーダンスがずれてしまうため、電力ロスが大きくなって掃引できる質量電荷比範囲が狭くなったり、また高精度の定量分析ができなくなる。そこで、メンテナンス後や、新規質量フィルタに交換した後は、可変コンデンサ8の容量Cvを調整してインピーダンス整合をとる必要がある。即ち、(2)式が成立するように容量Cvを調節する。
f=1/(2π×(Lt(Cq+Cv)) 1/2) ・・・・・ (2)
ここで、
Cq:四重極電極7の静電容量、
Cv:可変コンデンサ8の静電容量、
Lt:高周波トランス3の2次側インダクタンス
である。
【0008】
しかしながら、この調整作業は、整合点に近づくにつれ容量のわずかな変化で電流値が大きくずれてしまうため、熟練を要しかつ時間がかかるという問題がある。また、可変コンデンサ8は高耐圧空気可変コンデンサを用いるため、駆動電源回路は大型で、高価なものとなる。さらに、自動制御には機械的に容量を変化させるアクチュエータ等が必要となり、制御機構が複雑、大型化するという問題があった。
【0009】
本発明は、上記の課題を解決するためになされたものであり、インピーダンスの整合を容易に行うことが可能で、しかもその自動化を簡単な構成で実現できる質量分析装置及びその調整方法を提供することを目的とする。即ち、熟練者でなくとも簡単かつ高精度にインピーダンス整合がとれる調整方法及び小型で低価格な調整機構を実現することにより、常に安定した高精度の質量分析を行うことが可能な小型軽量、低コスト化の質量分析装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の質量分析装置は、多重極電極及びその駆動電源回路とからなる質量フィルタであって、該駆動電源回路を、所定の周波数の高周波信号を発振させる発振回路と、高周波トランスと、前記高周波信号を増幅して前記高周波トランスの1次巻線に高周波電流を供給する高周波トランス駆動回路と、多重極電極と接続された2つの2次巻線のそれぞれに正負の直流電圧を重畳させる直流電源とで構成し、前記多重極電極に印加する高周波電圧の大きさによって任意の質量電荷比のイオンを通過させる質量フィルタを備えた質量分析装置において、前記高周波電流の周波数可変機構を設け、所定の範囲で周波数を変化させて前記多重極電極のインピーダンス整合をとり、そのときの周波数で質量分析する構成としたことを特徴とする。
可変コンデンサの容量を変化させる代わりに、高周波信号の周波数を変化させて整合をとる構成とすることにより、インピーダンス整合を極めて容易かつ再現性よく行うことが可能となる。
【0011】
前記周波数可変機構は、2つの高周波信号の位相を比較し、その差に応じた電圧又は電流を出力する位相比較器と、該位相比較器の出力から高周波成分をカットするループフィルタと、該フィルタの出力電圧に応じた周波数を有する高周波信号を出力する電圧制御発振器と、可変分周器と、からなり、前記発振回路の出力を前記位相比較器の第1入力に接続し、前記電圧制御発振器の出力を前記可変分周器を介して前記位相比較器の第2入力にフィードバックするとともに前記高周波トランス駆動回路に入力するように配線するのが好ましく、汎用のIC等を用いて周波数可変機構を実現することができ、小型及び低価格化が可能となる。
【0012】
さらに、制御回路及び前記高周波トランス駆動回路の出力電流をA/D変換する変換器を設け、該変換器の出力に応じて前記制御回路が前記可変分周器へ分周比を変化させる信号を送る構成とし、前記変換器の出力が最小となるまで前記可変分周器の分周比を変化させる構成とするのがより好ましく、これにより、インピーダンス整合の全自動化を実現することができ、例えば、質量フィルタを交換したときのみならず定常的に調整することにより、常に高精度の質量分析をより安定して行うことが可能となる。
また、前記発振回路と前記第1入力との間に、分周器を配置するのが好ましい。分周器を配置することにより、周波数の変化幅(分解能)をより小さくすることができ、一層高精度のインピーダンス整合を行うことができる。
【0013】
本発明において、前記制御回路は、任意のイオンに対する質量電荷比の真の値Mと周波数fとの関係を予め記憶したメモリを有し、整合後の周波数ftを用いて求められる質量電荷比の値Mと前記真の値M0との差ΔMを演算し、質量電荷比の基準軸をΔMで補正する構成としたことを特徴とする。即ち、整合をとる操作を行った後、自動的に質量電荷比の基準軸の補正がなされ、正確なデータを表示等することができる。
【0014】
本発明の質量分析装置の調整方法は、多重極電極とその駆動電源回路とからなる質量フィルタであって、該駆動電源回路を所定の周波数の高周波信号を発振させる発振回路と、高周波トランスと、前記高周波信号を増幅して前記高周波トランスの1次巻線に高周波電流を流す高周波トランス駆動回路と、多重極電極と接続された2つの2次巻線のそれぞれに正負の直流電圧を重畳させる電源とで構成し、前記多重極電極に印加させる高周波電圧の大きさにより任意の質量電荷比のイオンを通過させる質量フィルタを、備えた質量分析装置において、前記高周波トランス駆動回路の出力電流をモニタしながら、該出力電流が最小となるように前記高周波信号の周波数を変化させることにより、多重極電極のインピ−ダンス整合をとることを特徴とする。
【0015】
さらには、前記発振回路の出力を、2つの高周波信号の位相を比較しその差に応じた電圧又は電流を出力する位相比較器の第1入力に接続し、該位相比較器の出力を、高周波成分をカットするループフィルタを介して、入力電圧の大きさに応じた周波数の高周波信号を出力する電圧制御発振器に接続し、該電圧制御発振器の出力を可変分周器を介して前記位相比較器の第2入力にフィードバックするとともに前記高周波トランス駆動回路に入力させ、前記高周波トランス駆動回路の出力電流をモニタしながら前記可変分周器の分周比を徐々に増加又は減少させることにより所定の範囲で周波数を変化させて、前記出力電流が最小となる時点を求め、この時点をインピーダンス整合点とすることを特徴とする。
なお、本発明は、4重極、6重極、8重極、または16重極の多重電極を有する質量分析装置に応用することができる。
【0016】
【発明の実施の形態】
次に、本発明の実施の形態を図1に基づいて説明する。
図1は、本発明の4重極質量フィルタの一構成例を示すブロック図であり、4重極電極7とその駆動電源回路とから構成される。
本実施形態の4重極電極の駆動電源回路は、図1に示すように、4重極電極に印加される高周波電圧の周波数を変化させて整合をとる構成としたものであり、発振回路1と高周波トランス駆動回路2との間にインピーダンス自動調整回路10が配置されている。このインピーダンス自動調整回路10は、高周波トランスを流れる高周波電流の周波数を変化させる周波数可変機構20とインピーダンス整合の成否を判断し周波数可変機構20をコントロールする制御部とから構成される。
【0017】
周波数可変機構20は、固定分周器17、2つの高周波信号の位相を比較し、その差に応じた電圧又は電流を出力する位相比較器11、該位相比較器の出力から高周波成分をカットするループフィルタ12、及び電圧制御発振(VCO)回路13とから構成される。VCO回路の出力は可変分周器16を介して位相比較器11の第2入力に連結され、出力が位相比較器にフィードバックされる構成としているため、所定の周波数の高周波信号が安定してVCO回路13から出力される。
このような回路構成とすることにより、発振回路1の発振周波数fは固定分周器(分周比L)でf/Lとなり、可変分周器の分周比をNとすると、VCO回路13の出力周波数はf・N/Lとなる。従って、例えば、可変分周器16の分周比を1ずつ増加させると、VCO回路13の出力周波数はf/Lずつ増加することになり、掃引すべき周波数範囲に対応した範囲で分周比を変化させればよい。また、分周比の大きな固定分周器を用いることにより、周波数変化幅を小さくすることができるため、より高精度に整合をとることができる。
【0018】
一方、制御部は、高周波トランス駆動回路の出力電流をA/D変換する変換器14と、A/D変換されたデータにより、インピーダンス整合の成否を判断すると共に、その判断結果に基づき可変分周器16の分周比を変化させる制御回路15から構成される。
【0019】
次に、図1の質量フィルタについてインピーダンスの整合を調整する手順を説明する。
図1の質量フィルタの構成では、インピーダンスの整合がとれると高周波トランス駆動回路2の出力電流は最小となることから、この出力電流をモニタしながら周波数を一定の幅で増加又は減少させ、出力電流が最小値となる周波数を求めるように調整すればよい。具体的には、次のようにして行う。
【0020】
まず、周波数の掃引範囲に対応して、可変分周器16の分周比範囲を設定し、制御回路15をONする。発振回路1から発振した周波数fは固定分周器(分周比L)17でf/Lとなり、可変分周器16の分周比をNとすると、VCO回路13の出力周波数はf・N/Lとなる。このとき、高周波トランス駆動回路2の出力電流は変換器14でA/D変換され、制御回路15のメモリに格納される。制御回路15は分周比変化信号を可変分周器16に送り、分周比を(N+1)に変化させる。これにより、VCO回路13の出力周波数はf・(N+1)/Lとなり、f/L増加する。このときの高周波トランス駆動回路の出力電流はA/D変換されて制御回路15に出力される。制御回路15は、例えばメモリに格納されているデータと新たに送られてきたデータとを比較し、その大きさが小さくなっていればメモリの内容を更新すると共に、可変分周器16に分周比変化信号を送る。これにより、可変分周器の分周比は(N+2)となり、VCO回路13の出力周波数はf・(N+2)/Lとなる。
以上の操作をA/D変換器14の出力が最小になるまで繰り返し行う。即ち、分周比を変化させた前後でA/D変換器の出力が増加するまで行い、増加した時点の周波数又は変化分(f/L)を引いた周波数がインピーダンス整合をとれる周波数ftとなる。このようにして自動的にインピーダンスの整合点を検出することができる。
【0021】
この調整以降は、整合がとれた周波数ftの高周波電流が高周波トランス3、多重電極へ供給されて質量分析が行なわれることになる。従って、電力ロスがなく安定した高精度の質量分析を行うことが可能となるが、装置出荷時とは異なる周波数が用いられるため、(1)式に示した関係から分かるように、質量電荷比Mは真の値Mからずれることになる。
このずれを修正するために、次の操作が行われる。整合した周波数ftで、例えば、14 の質量電荷比の値Mtを求め、周波数fと真の質量電荷比の値Mとの関係から、真の値Mとの差ΔM(=Mt−M)を計算して、質量電荷比の基準軸をこのΔMで補正する。これにより、真の質量電荷比が示されることになる。これを自動的に行うには、インピーダンスの自動整合を行った後、続けて質量電荷比の基準軸をCPUで自動的に演算補正すれば良く、インピーダンス調整後、意識することなく常に正確な出力を表示させることができる。
【0022】
以上の実施形態では、発振回路と位相比較器との間に、固定分周器を配置し、1ステップの周波数増加分を小さくし高精度のインピーダンス整合をとる構成としたが、この分周器は場合によっては省略することも可能である。さらに、固定分周器の代わりに可変分周器を用いても良いことは言うまでもない。
また、位相比較器、ループフィルタ及びVCO回路からなるフィードバックループとしては、PLL回路として市販されている汎用ICを用いることができる。また、ループフィルタとしては、例えばラグ型LPF、ラグ・リード型LPF等のRCフィルタが用いられる。
【0023】
なお、以上は4重極電極を用いた例について述べてきたが、直流電圧と交流電圧を重畳して印加する構成のものであれば、6重極、8重極及び16重極の多重極電極を用いた質量フィルタにも同様に適用することができる。また、これら質量フィルタは、四重極型質量分析装置(QMS)を複数組み合わせるタンデム型質量分析装置(MS/MS)、試料成分をあらかじめ分離したうえで質量分析するガスクロマトグラフ質量分析装置(GC/MS),別のクロマトグラフィー手段をもつ液体クロマトグラフ質量分析装置(LC/MS)、あるいは誘導プラズマ質量分析装置(ICP−MS)や二次イオン質量分析装置(SIMS)等に好適に応用することができる。
【0024】
【発明の効果】
以上の説明で明らかなように、本発明によれば、従来のような大型で高価な可変コンデンサを使用する場合とは異なり、例えば汎用PLLーICを用い周波数を変化させて整合をとる構成とすることにより、簡単な構成でインピーダンス整合の自動化が可能となり、さらに質量分析装置の自動調整を行なうことが可能となる。その結果として、小型軽量化、低価格化及び省エネルギー化を実現可能な質量分析装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の質量フィルタの一構成例を示す概略回路図である。
【図2】四重極型質量分析装置の概略構成図である。
【図3】質量フィルタの概略回路図である。
【符号の説明】
1 発振回路、
2 高周波トランス駆動回路、
3 高周波トランス、
4 コンデンサ、
5 負極性直流電源、
6 正極性直流電源、
7 四重極ロッド、
8 可変コンデンサ、
10 インピーダンス自動整合機構、
11 位相比較器、
12 ループフィルタ、
13 VCO(電圧制御発振器)回路、
14 A/D変換器、
15 制御回路(CPU)、
16 可変分周器、
17 分周器、
20 周波数可変機構、
21 4重極質量分析装置、
22 真空室、
23 イオン源、
24 分析部、
25 検出器、
26 排気装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mass spectrometer provided with a multipole electrode mass filter and a method for adjusting the mass spectrometer, and particularly to a mass spectrometer which can easily achieve accurate impedance matching with high accuracy and can be automated with a simple configuration. Equipment related.
[0002]
[Prior art]
The structure and measurement principle of a mass spectrometer equipped with a mass filter will be described using a quadrupole mass spectrometer, which is most commonly used, as an example.
FIG. 2 is a schematic diagram showing a structure of a quadrupole mass spectrometer, and FIG. 3 is a schematic circuit diagram showing an example of a driving power supply circuit for a high-frequency voltage applied to a quadrupole electrode.
[0003]
As shown in FIG. 2, the mass spectrometer 21 includes an ion source (ion generation unit) 23, a quadrupole electrode (analysis unit) 24, and a detector arranged inside a vacuum chamber 22 provided with an exhaust device 26. (Detection unit) 25, atoms and molecules are ionized by the ion source 23, and only ions having a predetermined mass-to-charge ratio M (= mass m / charge z) are applied to the electrodes by the high-frequency voltage applied to the quadrupole electrode. After passing through the inside, the amount is quantified by the detector 25 as a charge amount.
[0004]
The analysis unit 24 includes (U + Vcosωt) and − (U + Vcosωt) for the quadrupole electrode 7 in which four metal electrode rods are arranged in parallel, and for each pair of two opposing electrode rods. And a driving power supply circuit for applying a voltage. Here, U is a DC voltage, and V is a high frequency peak voltage having a frequency f. That is, the driving power supply circuit includes an oscillation circuit 1 for oscillating a high-frequency signal of a predetermined frequency, a high-frequency transformer 3, and a high-frequency transformer driving circuit 2 for amplifying the high-frequency signal and supplying a high-frequency current to the primary winding of the high-frequency transformer 3. And DC power supplies 5 and 6 for superimposing positive and negative DC voltages on each of the two secondary windings connected to the quadrupole electrode 7. Impedance matching is established between the two secondary windings. (Refer to Japanese Patent Application Laid-Open No. H10-69880). 4 is a capacitor.
[0005]
When (U + Vcosωt) and − (U + Vcosωt) are applied to the quadrupole electrode 7 by this drive power supply circuit, a rectangular hyperbolic electric field is formed in the electrode, and a specific mass-to-charge ratio M (= m / z) ) Can pass through the vicinity of the center axis of the electrode rod and reach the detector, while ions having other mass-to-charge ratios diverge and do not reach the detector.
[0006]
Here, assuming that U / V is constant, Equation (1) is established between the detected mass-to-charge ratio M and the high frequency. By fixing the frequency f (usually 1 to several MHz) and sweeping the amplitude (peak to peak value) V of the high-frequency voltage, it is possible to quantitatively analyze ions having a small mass-to-charge ratio from large ions.
M = V / (κf 2 r 0 2 ) (1)
here,
M: mass-to-charge ratio (= m / z)
κ: fixed value r 0 : radius of the inscribed circle of the electrode rod cm
It is.
[0007]
[Problems to be solved by the invention]
In the above-described mass filter, the impedance of the electrode is shifted when the maintenance is performed, so that the power loss increases, the mass-to-charge ratio range that can be swept becomes narrow, and high-precision quantitative analysis cannot be performed. Therefore, after maintenance or replacement with a new mass filter, it is necessary to adjust the capacitance Cv of the variable capacitor 8 to achieve impedance matching. That is, the capacitance Cv is adjusted so that the expression (2) is satisfied.
f = 1 / (2π × (Lt (Cq + Cv)) 1/2 ) (2)
here,
Cq: capacitance of quadrupole electrode 7,
Cv: capacitance of variable capacitor 8,
Lt is a secondary inductance of the high frequency transformer 3.
[0008]
However, this adjustment operation has a problem that skill is required and time is required because a current value largely shifts due to a slight change in capacitance as approaching the matching point. In addition, since a high-withstand-pressure air variable capacitor is used as the variable capacitor 8, the drive power supply circuit is large and expensive. Further, automatic control requires an actuator or the like that mechanically changes the capacity, and has a problem that the control mechanism is complicated and large.
[0009]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides a mass spectrometer that can easily perform impedance matching and that can be automated with a simple configuration and a method of adjusting the mass spectrometer. The purpose is to: That is, by realizing an adjustment method and a small and inexpensive adjustment mechanism that can achieve impedance matching easily and with high accuracy even by a non-expert, it is possible to always perform stable high-precision mass analysis. It is an object of the present invention to provide a mass spectrometer with reduced cost.
[0010]
[Means for Solving the Problems]
A mass spectrometer according to the present invention is a mass filter including a multipole electrode and a driving power supply circuit, wherein the driving power supply circuit includes an oscillation circuit that oscillates a high-frequency signal of a predetermined frequency, a high-frequency transformer, and the high-frequency A high-frequency transformer drive circuit for amplifying a signal and supplying a high-frequency current to a primary winding of the high-frequency transformer, and a DC power supply for superimposing positive and negative DC voltages on each of two secondary windings connected to the multipole electrode In a mass spectrometer equipped with a mass filter that allows ions having an arbitrary mass-to-charge ratio to pass through according to the magnitude of the high-frequency voltage applied to the multipole electrode, a frequency variable mechanism for the high-frequency current is provided, The multipole electrode is impedance-matched by changing the frequency within a range, and mass analysis is performed at the frequency at that time.
By adopting a configuration in which the frequency of the high-frequency signal is changed instead of changing the capacitance of the variable capacitor to perform matching, impedance matching can be performed extremely easily and with good reproducibility.
[0011]
The frequency variable mechanism compares the phases of two high-frequency signals and outputs a voltage or current according to the difference, a loop filter that cuts high-frequency components from the output of the phase comparator, and the filter A voltage-controlled oscillator that outputs a high-frequency signal having a frequency corresponding to the output voltage of the voltage-controlled oscillator, and an output of the oscillation circuit connected to a first input of the phase comparator. Is preferably fed back to the second input of the phase comparator via the variable frequency divider, and wired so as to be input to the high-frequency transformer driving circuit. It can be realized, and the size and the price can be reduced.
[0012]
Further, a converter for A / D-converting an output current of the control circuit and the high-frequency transformer drive circuit is provided, and the control circuit sends a signal for changing a frequency division ratio to the variable frequency divider according to an output of the converter. It is more preferable to adopt a configuration in which the output is output from the converter and the frequency division ratio of the variable frequency divider is changed until the output is minimized.Thus, it is possible to realize fully automatic impedance matching. In addition, by performing the adjustment constantly, not only when the mass filter is replaced, it is possible to always perform high-accuracy mass analysis more stably.
It is preferable that a frequency divider is arranged between the oscillation circuit and the first input. By disposing the frequency divider, the width of change (resolution) of the frequency can be further reduced, and more accurate impedance matching can be performed.
[0013]
In the present invention, the control circuit has a memory in which the relationship between the true value M 0 of the mass-to-charge ratio with respect to any ion and the frequency f 0 is stored in advance, and the mass-to-charge ratio obtained using the frequency ft after the matching is obtained. The difference ΔM between the ratio value M and the true value M 0 is calculated, and the reference axis of the mass-to-charge ratio is corrected by ΔM. That is, after performing the matching operation, the reference axis of the mass-to-charge ratio is automatically corrected, and accurate data can be displayed.
[0014]
An adjustment method of the mass spectrometer of the present invention is a mass filter including a multipole electrode and a driving power supply circuit thereof, wherein the driving power supply circuit oscillates a high-frequency signal of a predetermined frequency, a high-frequency transformer, A high-frequency transformer drive circuit that amplifies the high-frequency signal and supplies a high-frequency current to a primary winding of the high-frequency transformer; and a power supply that superimposes positive and negative DC voltages on each of two secondary windings connected to the multipole electrode. In a mass spectrometer, comprising a mass filter that allows ions having an arbitrary mass-to-charge ratio to pass according to the magnitude of the high-frequency voltage applied to the multipole electrode, the output current of the high-frequency transformer drive circuit is monitored. The impedance of the multipole electrode is adjusted by changing the frequency of the high-frequency signal so that the output current is minimized. I do.
[0015]
Furthermore, the output of the oscillation circuit is connected to a first input of a phase comparator that compares the phases of two high-frequency signals and outputs a voltage or a current according to the difference, and outputs the output of the phase comparator to a high-frequency signal. Connected to a voltage-controlled oscillator that outputs a high-frequency signal having a frequency corresponding to the magnitude of the input voltage via a loop filter that cuts components, and outputs the output of the voltage-controlled oscillator via a variable frequency divider to the phase comparator Of the variable frequency divider while gradually increasing or decreasing the frequency division ratio while monitoring the output current of the high frequency transformer drive circuit. The time at which the output current is minimized is determined by changing the frequency in step (1), and this time is set as an impedance matching point.
The present invention can be applied to a mass spectrometer having a quadrupole, hexapole, octupole, or 16-pole multielectrode.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a block diagram showing a configuration example of a quadrupole mass filter according to the present invention, which is composed of a quadrupole electrode 7 and a driving power supply circuit thereof.
As shown in FIG. 1, the drive power supply circuit for the quadrupole electrode according to the present embodiment is configured to change the frequency of the high-frequency voltage applied to the quadrupole electrode to achieve matching. An automatic impedance adjusting circuit 10 is arranged between the high frequency transformer driving circuit 2 and the high frequency transformer driving circuit 2. The automatic impedance adjustment circuit 10 includes a frequency variable mechanism 20 that changes the frequency of a high-frequency current flowing through a high-frequency transformer and a control unit that determines whether impedance matching is successful or not and controls the frequency variable mechanism 20.
[0017]
The frequency variable mechanism 20 compares the phases of the fixed frequency divider 17 and the two high-frequency signals, outputs a voltage or current corresponding to the difference, and cuts high-frequency components from the output of the phase comparator. It comprises a loop filter 12 and a voltage controlled oscillation (VCO) circuit 13. The output of the VCO circuit is connected to the second input of the phase comparator 11 via the variable frequency divider 16, and the output is fed back to the phase comparator. Output from the circuit 13.
With such a circuit configuration, assuming that the oscillation frequency f of the oscillation circuit 1 is f / L in the fixed frequency divider (division ratio L) and the frequency division ratio of the variable frequency divider is N, the VCO circuit 13 Is f · N / L. Therefore, for example, if the frequency division ratio of the variable frequency divider 16 is increased by one, the output frequency of the VCO circuit 13 is increased by f / L, and the frequency division ratio is increased in a range corresponding to the frequency range to be swept. Can be changed. Further, by using a fixed frequency divider having a large frequency division ratio, the width of frequency change can be reduced, so that matching can be achieved with higher accuracy.
[0018]
On the other hand, the control unit determines whether impedance matching is successful or not based on the converter 14 for A / D converting the output current of the high frequency transformer drive circuit and the A / D converted data, and based on the determination result, the variable frequency division. And a control circuit 15 for changing the frequency division ratio of the circuit 16.
[0019]
Next, a procedure for adjusting impedance matching for the mass filter of FIG. 1 will be described.
In the configuration of the mass filter shown in FIG. 1, the output current of the high-frequency transformer drive circuit 2 is minimized when the impedance is matched. Therefore, while monitoring this output current, the frequency is increased or decreased with a certain width, and the output current is reduced. May be adjusted so as to obtain the frequency at which the minimum value is obtained. Specifically, this is performed as follows.
[0020]
First, the frequency division ratio range of the variable frequency divider 16 is set in accordance with the frequency sweep range, and the control circuit 15 is turned on. Assuming that the frequency f oscillated from the oscillation circuit 1 is f / L in the fixed frequency divider (division ratio L) 17 and the frequency division ratio of the variable frequency divider 16 is N, the output frequency of the VCO circuit 13 is f · N / L. At this time, the output current of the high frequency transformer driving circuit 2 is A / D converted by the converter 14 and stored in the memory of the control circuit 15. The control circuit 15 sends a frequency division ratio change signal to the variable frequency divider 16 to change the frequency division ratio to (N + 1). As a result, the output frequency of the VCO circuit 13 becomes f · (N + 1) / L, and increases by f / L. The output current of the high frequency transformer drive circuit at this time is A / D converted and output to the control circuit 15. The control circuit 15 compares, for example, the data stored in the memory with the newly sent data, and updates the content of the memory if the size of the data is smaller. Sends the ratio change signal. As a result, the frequency division ratio of the variable frequency divider becomes (N + 2), and the output frequency of the VCO circuit 13 becomes f · (N + 2) / L.
The above operation is repeated until the output of the A / D converter 14 becomes minimum. That is, until the output of the A / D converter increases before and after the frequency division ratio is changed, the frequency at the time of the increase or the frequency obtained by subtracting the change (f / L) becomes the frequency ft at which impedance matching can be achieved. . In this manner, the impedance matching point can be automatically detected.
[0021]
After this adjustment, the matched high-frequency current of the frequency ft is supplied to the high-frequency transformer 3 and the multiple electrodes, and mass analysis is performed. Accordingly, stable high-precision mass spectrometry can be performed without power loss. However, since a frequency different from that at the time of shipping the device is used, the mass-to-charge ratio can be understood from the relationship shown in Expression (1). M will be deviated from the true value M 0.
The following operation is performed to correct this shift. In matched frequency ft, for example, 14 N + calculated value Mt of mass-to-charge ratio of the difference from the relationship between the value M 0 of the frequency f 0 and the true mass-to-charge ratio, the true value M 0 ΔM (= Mt−M 0 ), and the reference axis of the mass-to-charge ratio is corrected by ΔM. This will give a true mass to charge ratio. In order to do this automatically, after performing automatic impedance matching, the reference axis of the mass-to-charge ratio can be automatically calculated and corrected automatically by the CPU. Can be displayed.
[0022]
In the above embodiment, the fixed frequency divider is disposed between the oscillation circuit and the phase comparator, and the frequency increase in one step is reduced to achieve high-precision impedance matching. May be omitted in some cases. Further, it goes without saying that a variable frequency divider may be used instead of the fixed frequency divider.
A general-purpose IC commercially available as a PLL circuit can be used as the feedback loop including the phase comparator, the loop filter, and the VCO circuit. As the loop filter, for example, an RC filter such as a lag-type LPF or a lag-lead-type LPF is used.
[0023]
In the above description, an example using a quadrupole electrode has been described. However, if a DC voltage and an AC voltage are superimposed and applied, a multipole of a hexapole, an octupole, and a 16-pole is used. The same can be applied to a mass filter using electrodes. These mass filters include a tandem mass spectrometer (MS / MS) that combines a plurality of quadrupole mass spectrometers (QMS), and a gas chromatograph mass spectrometer (GC / MS) that separates sample components in advance and performs mass analysis. MS), liquid chromatograph mass spectrometer (LC / MS) having another chromatography means, or induction plasma mass spectrometer (ICP-MS), secondary ion mass spectrometer (SIMS), etc. Can be.
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, unlike a conventional case where a large and expensive variable capacitor is used, for example, a general-purpose PLL-IC is used to change the frequency to achieve matching. By doing so, it is possible to automate impedance matching with a simple configuration and to perform automatic adjustment of the mass spectrometer. As a result, it is possible to provide a mass spectrometer capable of realizing reduction in size, weight, cost, and energy saving.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram illustrating a configuration example of a mass filter according to the present invention.
FIG. 2 is a schematic configuration diagram of a quadrupole mass spectrometer.
FIG. 3 is a schematic circuit diagram of a mass filter.
[Explanation of symbols]
1 oscillator circuit,
2 High frequency transformer drive circuit,
3 High-frequency transformer,
4 capacitors,
5 Negative DC power supply,
6 Positive DC power supply,
7 quadrupole rods,
8 Variable capacitors,
10 Impedance automatic matching mechanism,
11 phase comparator,
12 loop filter,
13 VCO (voltage controlled oscillator) circuit,
14 A / D converter,
15 control circuit (CPU),
16 variable frequency divider,
17 divider,
20 frequency variable mechanism,
21 quadrupole mass spectrometer,
22 vacuum chamber,
23 ion sources,
24 analysis part,
25 detectors,
26 Exhaust device.

Claims (9)

多重極電極及びその駆動電源回路とからなる質量フィルタであって、該駆動電源回路を、所定の周波数の高周波信号を発振させる発振回路と、高周波トランスと、前記高周波信号を増幅して前記高周波トランスの1次巻線に高周波電流を供給する高周波トランス駆動回路と、多重極電極と接続された2つの2次巻線のそれぞれに正負の直流電圧を重畳させる直流電源とで構成し、前記多重極電極に印加する高周波電圧の大きさによって任意の質量電荷比のイオンを通過させる質量フィルタを備えた質量分析装置において、
前記高周波電流の周波数可変機構を設け、所定の範囲で周波数を変化させて前記多重極電極のインピーダンス整合をとり、そのときの周波数で質量分析する構成としたことを特徴とする質量分析装置。
What is claimed is: 1. A mass filter comprising a multipole electrode and a driving power supply circuit, comprising: an oscillation circuit for oscillating a high-frequency signal having a predetermined frequency; a high-frequency transformer; and a high-frequency transformer for amplifying the high-frequency signal. A high-frequency transformer drive circuit for supplying a high-frequency current to the primary winding of the multi-pole electrode, and a DC power supply for superimposing positive and negative DC voltages on each of the two secondary windings connected to the multi-pole electrode. In a mass spectrometer equipped with a mass filter that allows ions of an arbitrary mass-to-charge ratio to pass according to the magnitude of the high-frequency voltage applied to the electrode,
A mass spectrometer, wherein a frequency variable mechanism for the high-frequency current is provided, the frequency is changed within a predetermined range, impedance matching of the multipole electrode is performed, and mass analysis is performed at the frequency at that time.
前記周波数可変機構は、2つの高周波信号の位相を比較し、その差に応じた電圧又は電流を出力する位相比較器と、該位相比較器の出力から高周波成分をカットするループフィルタと、該フィルタの出力電圧に応じた周波数を有する高周波信号を出力する電圧制御発振器と、可変分周器と、からなり、前記発振回路の出力を前記位相比較器の第1入力に接続し、前記電圧制御発振器の出力を前記可変分周器を介して前記位相比較器の第2入力にフィードバックするとともに前記高周波トランス駆動回路に入力するように配線したことを特徴とする請求項1に記載の質量分析装置。The frequency variable mechanism compares the phases of two high-frequency signals and outputs a voltage or current according to the difference, a loop filter that cuts high-frequency components from the output of the phase comparator, and the filter A voltage-controlled oscillator that outputs a high-frequency signal having a frequency corresponding to the output voltage of the voltage-controlled oscillator, wherein an output of the oscillation circuit is connected to a first input of the phase comparator, 2. The mass spectrometer according to claim 1, wherein an output of the mass analyzer is fed back to the second input of the phase comparator via the variable frequency divider and input to the high frequency transformer drive circuit. 制御回路及び前記高周波トランス駆動回路の出力電流をA/D変換する変換器を設け、該変換器の出力に応じて前記制御回路が前記可変分周器へ分周比を変化させる信号を送る構成とし、前記変換器の出力が最小となるまで前記可変分周器の分周比を変化させる構成としたことを特徴とする請求項2に記載の質量分析装置。A control circuit and a converter for A / D converting an output current of the high frequency transformer drive circuit are provided, and the control circuit sends a signal for changing a frequency division ratio to the variable frequency divider in accordance with an output of the converter. 3. The mass spectrometer according to claim 2, wherein the frequency division ratio of the variable frequency divider is changed until the output of the converter is minimized. 前記発振回路と前記位相比較器の第1入力との間に、分周器を配置したことを特徴とする請求項2又は3に記載の質量分析装置。4. The mass spectrometer according to claim 2, wherein a frequency divider is arranged between the oscillation circuit and a first input of the phase comparator. 前記制御回路は、任意のイオンに対する質量電荷比の真の値Mと周波数fとの関係を予め記憶したメモリを有し、整合後の周波数ftを用いて求められる質量電荷比の値Mと前記真の値M0との差ΔMを演算し、質量電荷比の基準軸をΔMで補正する構成としたことを特徴とする請求項3又は4に記載の質量分析装置。The control circuit has a memory in which the relationship between the true value M 0 of the mass-to-charge ratio for any ion and the frequency f 0 is stored in advance, and the value M of the mass-to-charge ratio obtained using the frequency ft after the matching is obtained. 5. The mass spectrometer according to claim 3, wherein a difference ΔM between the absolute value and the true value M 0 is calculated, and the reference axis of the mass-to-charge ratio is corrected by ΔM. 前記多重極電極は、4重極、6重極、8重極、又は16重極であることを特徴とする請求項1〜5のいずれか1項に記載の質量分析装置。The mass spectrometer according to any one of claims 1 to 5, wherein the multipole electrode is a quadrupole, a hexapole, an octupole, or a hexapole. 多重極電極とその駆動電源回路とからなる質量フィルタであって、該駆動電源回路を所定の周波数の高周波信号を発振させる発振回路と、高周波トランスと、前記高周波信号を増幅して前記高周波トランスの1次巻線に高周波電流を流す高周波トランス駆動回路と、多重極電極と接続された2つの2次巻線のそれぞれに正負の直流電圧を重畳させる電源とで構成し、前記多重極電極に印加させる高周波電圧の大きさにより任意の質量電荷比のイオンを通過させる質量フィルタを、備えた質量分析装置において、
前記高周波トランス駆動回路の出力電流をモニタしながら、該出力電流が最小となるように前記高周波信号の周波数を変化させることにより、多重極電極のインピ−ダンス整合をとることを特徴とする質量分析装置の調整方法。
A mass filter comprising a multipole electrode and a driving power supply circuit thereof, wherein the driving power supply circuit oscillates a high-frequency signal of a predetermined frequency, a high-frequency transformer, and a high-frequency transformer that amplifies the high-frequency signal. A high-frequency transformer drive circuit for supplying a high-frequency current to the primary winding, and a power supply for superimposing positive and negative DC voltages on each of the two secondary windings connected to the multipole electrode. A mass filter that passes ions of an arbitrary mass-to-charge ratio depending on the magnitude of the high-frequency voltage to be applied,
Mass spectrometry, wherein, while monitoring the output current of the high-frequency transformer drive circuit, the frequency of the high-frequency signal is changed so that the output current is minimized, thereby achieving impedance matching of the multipole electrode. How to adjust the device.
前記発振回路の出力を、2つの高周波信号の位相を比較しその差に応じた電圧又は電流を出力する位相比較器の第1入力に接続し、該位相比較器の出力を、高周波成分をカットするループフィルタを介して、入力電圧の大きさに応じた周波数の高周波信号を出力する電圧制御発振器に接続し、該電圧制御発振器の出力を可変分周器を介して前記位相比較器の第2入力にフィードバックするとともに前記高周波トランス駆動回路に入力させ、前記高周波トランス駆動回路の出力電流をモニタしながら前記可変分周器の分周比を徐々に増加又は減少させることにより所定の範囲で周波数を変化させて、前記出力電流が最小となる時点を求め、この時点をインピーダンス整合点とすることを特徴とする請求項7に記載の質量分析装置の調整方法。The output of the oscillation circuit is connected to a first input of a phase comparator that compares the phases of two high-frequency signals and outputs a voltage or a current according to the difference, and cuts the output of the phase comparator to cut high-frequency components Connected to a voltage-controlled oscillator that outputs a high-frequency signal having a frequency corresponding to the magnitude of the input voltage through a loop filter, and outputs the output of the voltage-controlled oscillator to the second of the phase comparator via a variable frequency divider. The frequency is fed back to the input and input to the high-frequency transformer driving circuit, and the output current of the high-frequency transformer driving circuit is monitored, and while gradually increasing or decreasing the dividing ratio of the variable frequency divider, the frequency in a predetermined range is increased. The method for adjusting a mass spectrometer according to claim 7, wherein a time point at which the output current is minimized is obtained by changing the time point, and this time point is set as an impedance matching point. 任意のイオンに対し、整合した後の周波数で求められる質量電荷比の値Mと真の値M0との差を求め、この差ΔMで質量電荷比の基準軸を補正することを特徴とする請求項7〜8のいずれか1項に記載の質量分析装置の調整方法。For any ion, it obtains a difference between the value M and the true value M 0 of the mass-to-charge ratio to be determined at a frequency after the alignment, and correcting the reference axis of the mass-to-charge ratio in the difference ΔM A method for adjusting the mass spectrometer according to any one of claims 7 to 8.
JP2002368847A 2002-12-19 2002-12-19 Mass spectrometer and adjustment method thereof. Expired - Fee Related JP3946133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368847A JP3946133B2 (en) 2002-12-19 2002-12-19 Mass spectrometer and adjustment method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368847A JP3946133B2 (en) 2002-12-19 2002-12-19 Mass spectrometer and adjustment method thereof.

Publications (2)

Publication Number Publication Date
JP2004200082A true JP2004200082A (en) 2004-07-15
JP3946133B2 JP3946133B2 (en) 2007-07-18

Family

ID=32765302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368847A Expired - Fee Related JP3946133B2 (en) 2002-12-19 2002-12-19 Mass spectrometer and adjustment method thereof.

Country Status (1)

Country Link
JP (1) JP3946133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212424A (en) * 2009-03-10 2010-09-24 Tokyo Electron Ltd Shower head and plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212424A (en) * 2009-03-10 2010-09-24 Tokyo Electron Ltd Shower head and plasma processing apparatus

Also Published As

Publication number Publication date
JP3946133B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
CN210245449U (en) System for generating high voltage radio frequency signals using electronically tuned resonators
US10438784B2 (en) High frequency voltage supply control method for multipole or monopole analysers
US8716659B2 (en) Quadrupole mass spectrometer including voltage variable DC and amplitude variable AC for selected ion monitoring / scan alternate measurement
US8445844B2 (en) Quadrupole mass spectrometer
RU2461908C2 (en) High-frequency generator for ionic and electronic sources
TWI821157B (en) Apparatus and method for detecting ions
EP2674963B1 (en) Quadrupole type mass spectrometer
US20120286585A1 (en) High-frequency (hf) voltage supply system and method for supplying a multipole mass spectrometer with the hf ac voltage used to generate a multipole field
US6870159B2 (en) Ion trap device and its tuning method
JP5778053B2 (en) Mass spectrometer and method for adjusting mass spectrometer
JP5970274B2 (en) Mass spectrometer
JP3946133B2 (en) Mass spectrometer and adjustment method thereof.
JP4506285B2 (en) Ion trap apparatus and method for adjusting the apparatus
JP4305832B2 (en) Multipole mass spectrometer
JP2002175774A (en) Mass filter driving system
JP2000077025A (en) Quadrupole mass spectrometer
JP5293562B2 (en) Ion trap mass spectrometer
GB2527614A (en) High frequency voltage supply control method for multipole or monopole analysers
JPH10112282A (en) Quadrupole mass spectrometer
CN117059469A (en) Self-excitation type radio frequency power supply for multipole rod ion transmission
WO2022158430A1 (en) Mass spectrometry device and method for controlling same
WO2023026201A2 (en) System and method of driving radio frequency for multipole ion processing device
JP2023506273A (en) Method and apparatus for multiple transition monitoring
JPH04106858A (en) Quadrupole mass spectrometer
JP2004164923A (en) Ion guide power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3946133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees