JP2004198954A - Active controller - Google Patents

Active controller Download PDF

Info

Publication number
JP2004198954A
JP2004198954A JP2002370180A JP2002370180A JP2004198954A JP 2004198954 A JP2004198954 A JP 2004198954A JP 2002370180 A JP2002370180 A JP 2002370180A JP 2002370180 A JP2002370180 A JP 2002370180A JP 2004198954 A JP2004198954 A JP 2004198954A
Authority
JP
Japan
Prior art keywords
vibration
piezoelectric element
component
circuit
sharpness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002370180A
Other languages
Japanese (ja)
Inventor
Susumu Fujiwara
奨 藤原
Daisuke Sakai
大輔 酒井
Hiroshi Ando
宏 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002370180A priority Critical patent/JP2004198954A/en
Publication of JP2004198954A publication Critical patent/JP2004198954A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pipe Accessories (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an active controller capable of securely reducing the noise or vibration propagated into a propagation path or a duct having the closed space of the propagation path. <P>SOLUTION: The active controller is equipped with a vibration body which vibrates on receiving noise in the propagation path and also vibrates when receiving vibration of a vibration generation source, an input part which inputs vibration components of the vibration body, a negative impedance circuit which generates an attenuation signal reducing the sharpness of a peak component among the vibration components according to the vibration components inputted to the input part, and an output part which outputs the attenuation signal generated by the negative impedance circuit to the vibration body and reduces the sharpness of the peak component of the vibration of the vibration body. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、伝搬経路内または伝搬経路の閉空間を有する管路内の騒音又は振動発生源の振動成分のうち、特にピーク成分の先鋭度を低減させる能動制御装置に関するものである。
【0002】
【従来の技術】
図7は、従来の能動的制御による騒音除去装置の構成図を示す。
図7において、1は排気ダクト、2はセンサーマイク、3は適応フィルタ、4はスピーカー、5はエラーマイクロホン、6はLMS(Least Mean Square)演算部、9は制御部、Eはエラーレベルである。
【0003】
上記のように構成された騒音除去装置の動作について説明する。
前記排気ダクト1内を伝搬する排気音等の騒音に対して、前記エラーマイクロホン5から入力されるエラーレベルEに基づいて、前記制御部9がLMS演算部6と適応フィルタ3で、前記排気ダクト1内を伝搬する騒音の音響信号とは逆の位相特性を有する消音信号を作り出し、前記スピーカー4から前記逆位相信号に基づく消音信号の放射音を再生させることで、前記排気ダクト1内に伝搬する騒音を除去する(例えば特許文献1)。
【0004】
【特許文献1】
特開2001−282254号公報
【0005】
【発明が解決しようとする課題】
上記従来の騒音除去装置においては、前記制御部9、適応フィルタ3、LMS演算部6は、逆相の位相成分を持つ消音信号を作り出す為に、ディジタル信号処理を行う回路及びディジタル信号処理を行う為の専用のソフトウエア命令で構成する必要が有り、そのために、逆位相の消音信号を作り出す回路や命令を出すソフトウエアは複雑なシステム構成となり、システム構成のボリュームが巨大化してしまい、装置全体が複雑化するとともにコストの高騰を招いてしまうという問題があった。
【0006】
また、元の騒音を検出するマイクロホンや、逆位相の消音信号を再生するスピーカー等のデバイスや、ディジタル信号処理部で創生した逆位相の信号成分を忠実に再現するための高忠実度再生ができるスピーカー等が必要であり、例えば広い場所を低減する場合には、特にスピーカー等のアクチュエータを多く設置する必要が有り、装置全体が複雑化するとともにコストの高騰を招いてしまうという問題があった。
【0007】
本発明は上記のような問題点を解決するためになされたもので、簡単な装置構成で伝搬経路内または伝搬経路の閉空間を有する管路内へ伝搬する騒音又は振動を確実に低減することのできる能動制御装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る能動制御装置は、伝搬経路内の騒音を受けて振動し、又は振動発生源の振動を受けて振動する振動体と、前記振動体の振動成分を入力する入力部と、前記入力部に入力された前記振動成分を基に、該振動成分のうちピーク成分の先鋭度を低減させる減衰信号を創生させる負性インピーダンス回路と、前記負性インピーダンス回路で創生された減衰信号を前記振動体に出力し、前記振動体の振動のうちピーク成分の先鋭度を低減させる出力部とを備えるようにした。
【0009】
【発明の実施の形態】
実施の形態1.
図1は、本発明の実施の形態1における能動制御装置の一例を示す構成図であり、図2は、図1における圧電素子22及び負性インピーダンス回路24の構成図である。尚、図1、図2において、同一符号は同一又は相当部分を示す。
また、図2において、一部実施の形態2での符号を付記している。
図1において、20は伝搬経路の例えば閉空間を有する任意の寸法の管路、21は前記管路20内の任意の位置に設置された騒音発生源としての例えばモータである。22は任意の厚みt(図示せず)を持ち、振動体としての例えばポリフッ化ビニリデンなどの高分子ポリマーの圧電素子で、一対の電極43で挟み構成され、前記管路20内の軸線方向に対して垂直面を成す方向に(風の流れと対向するように)、前記モータ21の風下側の前記管路20内の任意の位置に固定治具23により保持される。尚、前記一対の電極43で挟み構成された圧電素子22は、図3の圧電素子22部分の正面図に示すように、前記管路20内で発生する流体成分の透過を容易にさせる任意の開口寸法(d)からなる複数の開口部30を有する。この開口寸法(d)と前記圧電素子の厚みtの調整で、開口部30を透過する流体成分の高域周波数帯を遮断する高域遮断フィルター構成を成しており、透過する周波数を制限している。
【0010】
前記一対の電極43で挟み構成された圧電素子22においては、前記モータ21からの管路20内への騒音に伴う振動を受けて振動する振動体としての圧電素子22の振動周波数成分を前記一対の電極43の一方の電極43で検出し、検出された振動周波数成分を基に、後述する負性インピーダンス回路24で創生される前記振動周波数成分のうちピーク周波数成分の先鋭度を低減するための減衰信号を、もう一方の電極43で前記振動体の圧電素子22に出力する。
【0011】
24は負性インピーダンス回路であり、前記図2に示すように、例えば抵抗R2と増幅器OP1を直列接続し、前記増幅器OP1の入出力端間に跨って可変抵抗R1及び可変コンデンサC1を並列接続した第1の回路41と、抵抗R4と増幅器OP2を直列接続し、前記増幅器OP2の入出力端間に跨って可変抵抗R3及び可変コンデンサC2を並列接続した第2の回路42で構成される。
25は前記図2に示すように、前記圧電素子22を挟む一対の電極43の一方の電極43と前記負性インピーダンス回路24の回路入力部とを接続する信号線、26は前記一対の電極43のもう一方の電極43と前記負性インピーダンス回路24の回路出力部とを接続する信号線である。
【0012】
上記のように構成された能動制御装置の動作について説明する。
前記管路20内の任意の位置に設けた前記モータ21は、管路20の外からの空気を吸い込み、後部から吸い込んだ空気の排出と同時に、モータ21自身で発生する固有の騒音及び振動に伴う固定伝搬音を管路20内に放出する。
前記管路20内の風の流れと対向するように、前記モータ21の風下側に前記固定冶具23により保持された振動体としての前記圧電素子22は、前記モータ21から放出された風+騒音が要因となる振動を起こす。この圧電素子22で発生した振動は、当該圧電素子22の振動によって発生する固定伝搬音の振動周波数成分を誘引する。
【0013】
前記圧電素子22の一方の電極43では、前記圧電素子22の振動によって発生する固定伝搬音の振動周波数成分を検出し、前記信号線25を介して前記負性インピーダンス回路24の回路入力部に振動周波数成分を伝送する。この伝送された振動周波数成分を基に、前記負性インピーダンス回路24では、該振動周波数成分におけるピーク周波数成分の先鋭度を低減するための逆周波数成分の減衰信号を創生させて、この減衰信号を負性インピーダンス回路24の回路出力部より信号線26を介して前記圧電素子22のもう一方の電極43に伝送する。そして、該もう一方の電極43から伝送された減衰信号を前記圧電素子22に出力して、圧電素子22の見かけ上の剛性を上げて、つまり圧電素子22を見かけ上硬くして、振動周波数成分のうちピーク周波数成分の先鋭度を低減させ、管路20内の騒音の音圧レベルを下げる。
【0014】
ここで、前記負性インピーダンス回路24の動作の概要について説明する。
まず、前記圧電素子22の一方の電極43で検出される固定伝搬音の振動周波数成分からピーク周波数成分が得られる。該ピーク周波数成分を機械系回路(共振回路)モデルとして表すと図4のようになる。図4に示すように、ピーク周波数は、抵抗成分Rxとコンデンサ成分Cx及びコイル成分Lxで成り立っている。この抵抗成分Rx、コンデンサ成分Cx、コイル成分Lxを調整することで、ピーク周波数成分のピークの度合い(先鋭度Q)を減衰させるが、その減衰させるための手段、つまり前述の前記負性インピーダンス回路24の第1の回路及び第2の回路で、ピーク周波数成分の先鋭度Qを減衰させるための逆周波数成分の減衰信号を創生させる。
【0015】
まず、前述の圧電素子22の一方の電極43で検出される振動周波数成分から、ピーク周波数成分のピーク周波数(f1)が検知できるので、該ピーク周波数(f1)を用いて、前記第1の回路41のC1の値を下記(1)式を用いて計算し、得られた前記C1を、前記図4の共振回路のコンデンサ成分Cxとする。
C1=1/(2×π×R2×f1) (1)
ここで、f1はピーク周波数、R2は既知の抵抗である。
そして、上記(1)で求められたC1の値となるように、当該コンデンサC1を調整する。
次に、可変抵抗R1の調整で前記抵抗成分Rxを模擬するが、この抵抗成分Rxは下記(2)式によって求まる。
Rx=1/(2×π×(f1)1/2) (2)
ここで、f1はピーク周波数である。
そして、前記既知の抵抗R2と可変抵抗R1の合成抵抗の値が、上記(2)式で求まる抵抗成分Rxの値になるように前記可変抵抗R1を調整する。
【0016】
次に、前記第1の回路41の増幅器OP1は反転増幅器として作用させ、前記C1とR1の定数を備えもつ前記反転増幅器を通すことで、前記ピーク周波数成分の先鋭度Qを減衰させるための逆周波数成分の減衰信号が創生される。この創生された逆周波数成分の減衰信号を回路出力部から信号線26を介して前記圧電素子22のもう一方の電極43に伝送する。そして、前記もう一方の電極43から伝送された減衰信号を前記圧電素子22に出力して、前述したように、圧電素子22の見かけ上の剛性を上げて、つまり圧電素子22を見かけ上硬くして、振動周波数成分のうちピーク周波数成分の先鋭度を低減させ、管路20内の騒音の音圧レベルを下げる。
【0017】
尚、前記ピーク周波数成分のピーク周波数(f1)の先鋭度Qが小さい場合(Q=0.5以下)には、上述した前記第1の回路41の可変抵抗R1と可変コンデンサC1の調整だけで、前記ピーク周波数(f1)の先鋭度Qを減衰させるための減衰信号の創生が可能である。
【0018】
しかし、前記ピーク周波数成分のピーク周波数(f1)の先鋭度Qが大きい場合(Q=0.5以上)には、前記第1の回路41の可変抵抗R1と可変コンデンサC1の調整に加えて、前記第2の回路42の可変抵抗R3と可変コンデンサC2も調整して、前記コイル成分Lxを模擬することで、前記ピーク周波数(f1)の先鋭度Qを減衰させるための減衰信号の創生を行うことができる。
【0019】
前記コイル成分Lxは、前記ピーク周波数(f1)において、下記(3)式で表される。
f1=1/(2×π×(Lx×C2)1/2) (3)
ここで、C2は前記第1の回路41の上記(1)式で得られたC1の値になるように調整された値である。
上記(3)式からコイル成分Lxが求まり、前記コイル成分Lxを模擬することができる。このコイル成分を減衰させるための減衰信号を出力する際に、極端なピーク周波数の先鋭度の減衰による発振現象等が起こらないように、前記第1の回路41で得られた可変抵抗R1と既知の抵抗R2との合成抵抗の値に近づけるように可変抵抗R3を調整する。尚、前記増幅器OP2と直列接続された抵抗R4は、インピーダンスマッチング用の保護抵抗あり、基本的な回路構成の一例である。
【0020】
次に、第2の回路42の増幅器OP2も、前記第1の回路の増幅器OP1と同様に反転増幅器として作用させ、前記C2とR3の定数を備えもつ前記反転増幅器を通すことで、前記ピーク周波数成分の先鋭度Qを減衰させるための逆周波数成分の減衰信号が創生される。この創生された逆周波数成分の減衰信号を回路出力部から信号線26を介して前記圧電素子22のもう一方の電極43に伝送する。そして、前記もう一方の電極43から伝送された減衰信号を前記圧電素子22に出力して、前述同様に圧電素子22の見かけ上の剛性を上げて、つまり圧電素子22を見かけ上硬くして、振動周波数成分のうちピーク周波数成分の先鋭度を低減させ、管路20内の騒音の音圧レベルを下げる。
【0021】
尚、図2の前記第2の回路42に示すコンデンサC3は、前記負性インピーダンス回路24に入力された振動周波数成分の不要な周波数範囲をフィルタリングするものであり、高い周波数帯域をフィルタ処理するときに用いるものである。これにより、高い周波数帯域による位相特性の回り込みによる発振現象等を防ぐ役目をする。前記C3は、下記(4)式で決定する。
C3=1/(2×π×R4×fh) (4)
ここで、fhは遮断したい高域の周波数値である。
【0022】
図5に、前記負性インピーダンス回路24を用いてピーク周波数成分の低減対策を行った場合の特性を示す。尚、図5は、ピーク周波数が1つの場合に対応した対策結果の一例を示したものである。
図中、上側は管路20内を伝搬する騒音特性を表し、細線はピーク周波数成分の低減対策前の騒音特性を示し、太線は対策後の騒音特性を示す。
また、下側は管路20内を伝搬する騒音の周波数帯域のインピーダンス特性を表し、細線はピーク周波数成分の低減対策前の騒音のインピーダンス特性を示し、太線は対策後の騒音のインピーダンス特性を示す。
【0023】
図5に示すように、前記負性インピーダンス回路24による、管路20内の騒音に伴う振動周波数成分のうちピーク周波数成分を低減する減衰信号で騒音対策を施した場合、図中の前記インピーダンス特性に見られるように、ピーク周波数成分の例えばP1での先鋭度(Q)は非常に小さくなり、また、P1付近でのピーク周波数成分の低減対策前の前記騒音特性の音圧レベルの盛り上がりはなくなり、低くできることが分かる。
【0024】
尚、前記負性インピーダンス回路24の第1の回路及び第2の回路においては、少なくとも一方の回路による単体での動作、または、両者複合での動作を行うことで、騒音の振動周波数成分のうちピーク周波数成分の先鋭度を低減させるための減衰信号の創生を行うことができ、この減衰信号によって前記ピーク周波数成分の先鋭度を低減させ、管路20内の騒音の音圧レベルを下げる。
【0025】
以上のように、本実施の形態においては、一対の電極で挟み構成される振動体としての圧電素子を、伝搬経路の例えば管路内に設置された騒音発生源(例えばモータ等)の風下側に保持する。前記一対の電極の一方の電極で前記モータからの管路内への騒音に伴う振動を受けて振動する振動体としての圧電素子の振動周波数成分を検出し、この検出された振動周波数成分を基に、負性インピーダンス回路で、該振動周波数成分におけるピーク周波数成分の先鋭度を低減させるための逆周波数成分の減衰信号を創生させる。この減衰信号をもう一方の電極から圧電素子に出力して、圧電素子22の見かけ上の剛性を上げて、振動周波数成分のうちピーク周波数成分の先鋭度を低減させるようにしたので、従来のような複雑な計算方法による信号処理を行わずとも、簡単な装置構成で的確に管路内の騒音に大きく関与しているピーク成分の先鋭度を低減でき、モータから管路内に伝搬する騒音の音圧レベルを確実に低減することができる。
【0026】
尚、本実施の形態においては、モータ21を騒音源の一例として説明したが、モータに限定されるものではなく、本実施の形態による能動制御装置を騒音が問題になっている機器及び部品に対して適用することで、騒音源からの騒音を低減することができる。
【0027】
実施の形態2.
図6は、本発明の実施の形態2における能動制御装置の一例を示す構成図である。尚、図6において、上記実施の形態1の図1と同一または相当部分には同一符号を付し説明を省略する。また、図6に示す負性インピーダンス回路24の構成においては、上記実施の形態1の図2に示す構成と同様であるので、ここでの説明を省略する。また、本実施の形態の説明で図2を共用する部分は図2に符号を付記する。
図6において、32は振動体としての例えばポリフッ化ビニリデンなどの高分子ポリマーの圧電素子で、一対の電極53で挟み構成される。尚、本実施の形態における一対の電極53で挟み構成される圧電素子32の形状においては、上記実施の形態1の図3で示した開口部を有していないものである。
前記一対の電極53の一方の電極53側(図示せず)は、例えば前記モータ21の胴体などに直接貼付け固定され、前記モータ21からの振動を受けて振動する振動体としての前記圧電素子32の振動周波数成分を前記胴体側に貼付け固定した前記一方の電極53で検出し、前記信号線25を介して前記負性インピーダンス回路24に伝送する。この伝送された振動周波数成分を基に、前記負性インピーダンス回路24で創生される前記モータ21の振動周波数成分のうちピーク周波数成分の先鋭度を低減させるための減衰信号を、前記信号線26を介してもう一方の反胴体側の電極53で前記振動体の圧電素子32に出力する。
【0028】
本実施の形態においては、一対の電極53で挟み構成された振動体としての圧電素子32を前記モータ21の胴体などに直接貼付け固定して、前記モータ21からの振動を受けて振動する振動体としての圧電素子32の振動周波数成分のうちピーク周波数成分の先鋭度を低減させ、モータ21からの管路20内への振動を低減するものである。
【0029】
上記のように構成された能動制御装置の動作について説明する。
前記管路20内の任意の位置に設けた前記モータ21は、管路20の外からの空気を吸い込み、後部から吸い込んだ空気を排出すると同時に、モータ21自身の固有の振動を発生する。
この前記モータ21で発生した振動に伴って、該モータ21の胴体などに貼付け固定した前記圧電素子32で発生した振動は、当該圧電素子32の振動によって発生するモータ21の振動周波数成分を誘引する。
【0030】
前記圧電素子32の一対の電極53のモータ21の胴体側電極53では、前記圧電素子32の振動によって発生するモータ21の振動周波数成分を検出し、前記信号線25を介して前記負性インピーダンス回路24の回路入力部に伝送する。この伝送された振動周波数成分を基に、前記負性インピーダンス回路24では、該振動周波数成分のうちピーク周波数成分の先鋭度を低減させるための減衰信号を創生させて、この減衰信号を負性インピーダンス回路24の回路出力部より、前記信号線26を介して前記圧電素子32のもう一方の反胴体側電極53に伝送する。そして、該もう一方の反胴体側電極53から伝送された減衰信号を前記圧電素子32に出力して、上記実施の形態1同様に圧電素子32の見かけ上の剛性を上げて、つまり圧電素子32を見かけ上硬くして、振動周波数成分のうちピーク周波数成分の先鋭度を低減させ、前記モータ21から管路20内へ伝搬する振動を低減する。
【0031】
前記振動発生源としてのモータ21からの振動周波数成分のうちピーク周波数成分の先鋭度を低減させる減衰信号を創生させる前記負性インピーダンス回路24の動作については、上記実施の形態1で説明したものと同様であるので、ここでの説明を省略する。
【0032】
尚、前記負性インピーダンス回路24の第1の回路及び第2の回路においては、上記実施の形態1同様、少なくとも一方の回路による単体での動作、または、両者複合での動作を行うことで、振動による周波数成分のうちピーク周波数成分の先鋭度を低減させるための減衰信号の創生を行うことができ、この減衰信号によって前記ピーク周波数成分の先鋭度を低減させ、管路20内への振動を低減する。
【0033】
以上のように、本実施の形態においては、一対の電極で挟み構成された振動体としての圧電素子を伝搬経路の例えば管路内の振動発生源(例えばモータ等)に直接貼付け固定する。前記一対の電極の一方の電極で、前記圧電素子の振動によって誘引される前記モータからの振動周波数成分を検出し、この検出された振動周波数成分を基に、負性インピーダンス回路で該振動周波数成分におけるピーク周波数成分の先鋭度を低減させるための逆周波数成分の減衰信号を創生させる。この減衰信号をもう一方の電極から圧電素子に出力して、上記実施の形態1同様に圧電素子の見かけ上の剛性を上げて、振動周波数成分のうちピーク周波数成分の先鋭度を低減させるようにしたので、上記実施の形態1同様従来のような複雑な計算方法による信号処理を行わずとも、簡単な装置構成で的確にモータから管路内へ放出される振動に大きく関与しているピーク成分の先鋭度を低減でき、管路内への振動を確実に低減することができる。
【0034】
尚、本実施の形態においては、モータ21を振動源の一例として説明したが、モータに限定されるものではなく、上記実施の形態1同様に、本実施の形態による能動制御装置を振動が問題になっている機器及び部品に対して適用することで、振動源からの振動を低減することができる。
【0035】
【発明の効果】
この発明は以上説明したように、伝搬経路内の騒音を受けて振動し、又は振動発生源の振動を受けて振動する振動体と、前記振動体の振動成分を入力する入力部と、前記入力部に入力された前記振動成分を基に、該振動成分のうちピーク成分の先鋭度を低減させる減衰信号を創生させる負性インピーダンス回路と、前記負性インピーダンス回路で創生された減衰信号を前記振動体に出力し、前記振動体の振動のうちピーク成分の先鋭度を低減させる出力部とを備える簡単な装置構成としたので、従来のような複雑な計算方法による信号処理を行わずとも、伝搬経路内の騒音又は振動に大きく関与しているピーク成分の先鋭度を的確に低減でき、伝搬経路内に伝搬する騒音又は振動を確実に低減することのできる能動制御装置を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における能動制御装置の一例を示す構成図である。
【図2】この発明の実施の形態1に係る圧電素子及び負性インピーダンス回路の構成図である。
【図3】この発明の実施の形態1に係る圧電素子部を正面からみた図である。
【図4】この発明の実施の形態1に係る機械系回路(共振回路)モデルを表した図である。
【図5】この発明の実施の形態1に係るピーク周波数成分の低減対策結果の一例を示す騒音及びインピーダンス特性図である。
【図6】この発明の実施の形態2における能動制御装置の一例を示す構成図である。
【図7】従来の能動的制御による騒音除去装置の構成図である。
【符号の説明】
20 管路、 21 モータ、 22、32 圧電素子、 23 固定冶具、24 負性インピーダンス回路、 25 信号線、 26 信号線、 30 開口部、 41 第1の回路、 42 第2の回路、 43、53 一対の電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an active control device that reduces the sharpness of a peak component among noise components or vibration components of a vibration source in a propagation path or a pipe having a closed space of the propagation path.
[0002]
[Prior art]
FIG. 7 is a configuration diagram of a conventional active control noise elimination device.
7, 1 is an exhaust duct, 2 is a sensor microphone, 3 is an adaptive filter, 4 is a speaker, 5 is an error microphone, 6 is an LMS (Least Mean Square) calculation unit, 9 is a control unit, and E is an error level. .
[0003]
The operation of the noise removing device configured as described above will be described.
Based on the error level E input from the error microphone 5 for the noise such as the exhaust sound propagating in the exhaust duct 1, the control unit 9 uses the LMS calculation unit 6 and the adaptive filter 3 to control the exhaust duct. 1 generates a silencing signal having a phase characteristic opposite to that of the acoustic signal of the noise propagating in the exhaust duct 1, and reproduces the radiated sound of the silencing signal based on the anti-phase signal from the speaker 4, thereby transmitting the noise into the exhaust duct 1. (See, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-282254 A [0005]
[Problems to be solved by the invention]
In the above-described conventional noise elimination device, the control unit 9, the adaptive filter 3, and the LMS calculation unit 6 perform a digital signal processing circuit and a digital signal processing in order to generate a muffling signal having a phase component of an opposite phase. Therefore, it is necessary to configure it with dedicated software instructions, and therefore the circuit that generates the mute signal of the opposite phase and the software that issues the instructions have a complicated system configuration, the volume of the system configuration becomes huge, and the entire device However, there has been a problem that the method becomes complicated and the cost rises.
[0006]
In addition, devices such as a microphone that detects the original noise, a speaker that reproduces the silence signal of the opposite phase, and a high-fidelity reproduction that faithfully reproduces the opposite-phase signal component created by the digital signal processing unit are available. In order to reduce the size of a large area, for example, it is necessary to install a large number of actuators, such as speakers, and thus there is a problem that the overall apparatus becomes complicated and the cost increases. .
[0007]
The present invention has been made to solve the above problems, and it is an object of the present invention to reliably reduce noise or vibration propagating in a propagation path or a pipe having a closed space of the propagation path with a simple device configuration. It is an object of the present invention to obtain an active control device capable of performing the following.
[0008]
[Means for Solving the Problems]
An active control device according to the present invention includes: a vibrating body that vibrates in response to noise in a propagation path or vibrates in response to vibration of a vibration source; an input unit that inputs a vibration component of the vibrating body; A negative impedance circuit that creates an attenuation signal that reduces the sharpness of a peak component among the oscillation components based on the oscillation component input to the unit, and an attenuation signal created by the negative impedance circuit. An output unit that outputs to the vibrating body and reduces the sharpness of a peak component of the vibration of the vibrating body.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating an example of the active control device according to the first embodiment of the present invention, and FIG. 2 is a configuration diagram of the piezoelectric element 22 and the negative impedance circuit 24 in FIG. 1 and 2, the same reference numerals indicate the same or corresponding parts.
In FIG. 2, reference numerals in the second embodiment are partially added.
In FIG. 1, reference numeral 20 denotes a conduit of any size having, for example, a closed space in the propagation path, and reference numeral 21 denotes, for example, a motor as a noise source installed at an arbitrary position in the conduit 20. Reference numeral 22 denotes a piezoelectric element made of a polymer such as polyvinylidene fluoride as a vibrator and having an arbitrary thickness t (not shown). The piezoelectric element 22 is sandwiched between a pair of electrodes 43 in the axial direction in the pipe 20. The motor 21 is held by a fixing jig 23 at an arbitrary position in the pipeline 20 on the leeward side of the motor 21 in a direction forming a vertical plane (to oppose the flow of the wind). The piezoelectric element 22 sandwiched between the pair of electrodes 43 is an arbitrary element that facilitates the transmission of a fluid component generated in the conduit 20, as shown in the front view of the piezoelectric element 22 in FIG. It has a plurality of openings 30 having an opening dimension (d). By adjusting the opening size (d) and the thickness t of the piezoelectric element, a high-frequency cutoff filter configuration is provided to cut off the high-frequency band of the fluid component passing through the opening 30, thereby limiting the frequency transmitted. ing.
[0010]
In the piezoelectric element 22 sandwiched between the pair of electrodes 43, the vibration frequency component of the piezoelectric element 22 serving as a vibrating body that vibrates in response to vibration accompanying noise from the motor 21 into the pipeline 20 is used as the pair of electrodes. In order to reduce the sharpness of the peak frequency component among the vibration frequency components created by the negative impedance circuit 24 described later, based on the vibration frequency component detected by one of the electrodes 43 Is output from the other electrode 43 to the piezoelectric element 22 of the vibrating body.
[0011]
Reference numeral 24 denotes a negative impedance circuit, as shown in FIG. 2, for example, a resistor R2 and an amplifier OP1 are connected in series, and a variable resistor R1 and a variable capacitor C1 are connected in parallel across the input and output terminals of the amplifier OP1. It comprises a first circuit 41 and a second circuit 42 in which a resistor R4 and an amplifier OP2 are connected in series, and a variable resistor R3 and a variable capacitor C2 are connected in parallel across the input and output terminals of the amplifier OP2.
As shown in FIG. 2, reference numeral 25 denotes a signal line connecting one electrode 43 of the pair of electrodes 43 sandwiching the piezoelectric element 22 to a circuit input portion of the negative impedance circuit 24, and reference numeral 26 denotes a pair of the electrodes 43. And a signal line for connecting the other electrode 43 to the circuit output section of the negative impedance circuit 24.
[0012]
The operation of the active control device configured as described above will be described.
The motor 21 provided at an arbitrary position in the pipeline 20 sucks air from outside the pipeline 20 and simultaneously discharges the air sucked from the rear portion and reduces the inherent noise and vibration generated by the motor 21 itself. The accompanying fixed propagation sound is emitted into the pipeline 20.
The piezoelectric element 22 as a vibrating body held by the fixing jig 23 on the leeward side of the motor 21 so as to oppose the flow of the wind in the pipeline 20, the wind + noise emitted from the motor 21. Causes vibration. The vibration generated by the piezoelectric element 22 induces a vibration frequency component of the fixed propagation sound generated by the vibration of the piezoelectric element 22.
[0013]
The one electrode 43 of the piezoelectric element 22 detects a vibration frequency component of the fixed propagation sound generated by the vibration of the piezoelectric element 22, and vibrates the circuit input section of the negative impedance circuit 24 via the signal line 25. Transmit frequency components. Based on the transmitted vibration frequency component, the negative impedance circuit 24 creates an attenuation signal of an inverse frequency component for reducing the sharpness of the peak frequency component in the oscillation frequency component, and generates the attenuation signal. From the circuit output portion of the negative impedance circuit 24 to the other electrode 43 of the piezoelectric element 22 via the signal line 26. Then, the damping signal transmitted from the other electrode 43 is output to the piezoelectric element 22 to increase the apparent rigidity of the piezoelectric element 22, that is, to increase the apparent rigidity of the piezoelectric element 22 to generate the vibration frequency component. Among them, the sharpness of the peak frequency component is reduced, and the sound pressure level of the noise in the pipeline 20 is reduced.
[0014]
Here, an outline of the operation of the negative impedance circuit 24 will be described.
First, a peak frequency component is obtained from a vibration frequency component of the fixed propagation sound detected by one electrode 43 of the piezoelectric element 22. FIG. 4 shows the peak frequency component as a mechanical system (resonant circuit) model. As shown in FIG. 4, the peak frequency is composed of a resistance component Rx, a capacitor component Cx, and a coil component Lx. By adjusting the resistance component Rx, the capacitor component Cx, and the coil component Lx, the peak degree (sharpness Q) of the peak frequency component is attenuated. The first and second circuits generate an attenuated signal of an inverse frequency component for attenuating the sharpness Q of the peak frequency component.
[0015]
First, since the peak frequency (f1) of the peak frequency component can be detected from the vibration frequency component detected by the one electrode 43 of the piezoelectric element 22, the first circuit is used by using the peak frequency (f1). The value of C1 of 41 is calculated using the following equation (1), and the obtained C1 is used as the capacitor component Cx of the resonance circuit of FIG.
C1 = 1 / (2 × π × R2 × f1) (1)
Here, f1 is a peak frequency, and R2 is a known resistance.
Then, the capacitor C1 is adjusted so as to have the value of C1 obtained in the above (1).
Next, the resistance component Rx is simulated by adjusting the variable resistor R1, and this resistance component Rx is obtained by the following equation (2).
Rx = 1 / (2 × π × (f1) 1/2 ) (2)
Here, f1 is a peak frequency.
Then, the variable resistor R1 is adjusted such that the value of the combined resistance of the known resistor R2 and the variable resistor R1 becomes the value of the resistance component Rx determined by the above equation (2).
[0016]
Next, the amplifier OP1 of the first circuit 41 is operated as an inverting amplifier, and is passed through the inverting amplifier having the constants of C1 and R1 so as to attenuate the sharpness Q of the peak frequency component. An attenuated signal of the frequency component is created. The generated attenuated signal of the inverse frequency component is transmitted from the circuit output unit to the other electrode 43 of the piezoelectric element 22 via the signal line 26. Then, the attenuation signal transmitted from the other electrode 43 is output to the piezoelectric element 22 to increase the apparent rigidity of the piezoelectric element 22 as described above, that is, to increase the apparent rigidity of the piezoelectric element 22. Thus, the sharpness of the peak frequency component among the vibration frequency components is reduced, and the sound pressure level of the noise in the pipeline 20 is reduced.
[0017]
When the sharpness Q of the peak frequency (f1) of the peak frequency component is small (Q = 0.5 or less), only the adjustment of the variable resistor R1 and the variable capacitor C1 of the first circuit 41 is performed. It is possible to create an attenuation signal for attenuating the sharpness Q of the peak frequency (f1).
[0018]
However, when the sharpness Q of the peak frequency (f1) of the peak frequency component is large (Q = 0.5 or more), in addition to the adjustment of the variable resistor R1 and the variable capacitor C1 of the first circuit 41, By adjusting the variable resistor R3 and the variable capacitor C2 of the second circuit 42 to simulate the coil component Lx, it is possible to generate an attenuation signal for attenuating the sharpness Q of the peak frequency (f1). It can be carried out.
[0019]
The coil component Lx is represented by the following equation (3) at the peak frequency (f1).
f1 = 1 / (2 × π × (Lx × C2) 1/2 ) (3)
Here, C2 is a value adjusted to be the value of C1 of the first circuit 41 obtained by the above equation (1).
The coil component Lx is obtained from the above equation (3), and the coil component Lx can be simulated. When outputting an attenuation signal for attenuating the coil component, the variable resistor R1 obtained by the first circuit 41 and the variable resistor R1 are known so as not to cause an oscillation phenomenon or the like due to the sharp peak frequency attenuation. The variable resistor R3 is adjusted so as to approach the value of the combined resistance with the resistor R2. The resistor R4 connected in series with the amplifier OP2 is a protection resistor for impedance matching and is an example of a basic circuit configuration.
[0020]
Next, the amplifier OP2 of the second circuit 42 also functions as an inverting amplifier similarly to the amplifier OP1 of the first circuit, and passes through the inverting amplifier having the constants of C2 and R3 to thereby obtain the peak frequency. An attenuated signal of an inverse frequency component for attenuating the sharpness Q of the component is created. The generated attenuated signal of the inverse frequency component is transmitted from the circuit output unit to the other electrode 43 of the piezoelectric element 22 via the signal line 26. Then, the attenuation signal transmitted from the other electrode 43 is output to the piezoelectric element 22 to increase the apparent rigidity of the piezoelectric element 22 as described above, that is, to make the piezoelectric element 22 apparently hard, The sharpness of the peak frequency component among the vibration frequency components is reduced, and the sound pressure level of the noise in the pipeline 20 is reduced.
[0021]
The capacitor C3 shown in the second circuit 42 in FIG. 2 filters an unnecessary frequency range of the vibration frequency component input to the negative impedance circuit 24, and is used for filtering a high frequency band. It is used for. This serves to prevent an oscillation phenomenon or the like due to a wraparound of the phase characteristic due to a high frequency band. C3 is determined by the following equation (4).
C3 = 1 / (2 × π × R4 × fh) (4)
Here, fh is a high-frequency value to be cut off.
[0022]
FIG. 5 shows the characteristics when the negative impedance circuit 24 is used to reduce the peak frequency component. FIG. 5 shows an example of a countermeasure result corresponding to a case where there is one peak frequency.
In the figure, the upper side represents the noise characteristic propagating in the pipeline 20, the thin line represents the noise characteristic before the measure for reducing the peak frequency component, and the thick line represents the noise characteristic after the measure.
The lower side shows the impedance characteristic of the frequency band of the noise propagating in the pipeline 20, the thin line shows the impedance characteristic of the noise before the measure for reducing the peak frequency component, and the thick line shows the impedance characteristic of the noise after the measure. .
[0023]
As shown in FIG. 5, when the negative impedance circuit 24 performs a noise countermeasure with an attenuation signal that reduces a peak frequency component among vibration frequency components associated with noise in the pipeline 20, the impedance characteristic shown in FIG. As can be seen from FIG. 3, the sharpness (Q) of the peak frequency component at, for example, P1 is very small, and the sound pressure level of the noise characteristic before the reduction measure of the peak frequency component near P1 does not rise. It can be seen that it can be lowered.
[0024]
In the first circuit and the second circuit of the negative impedance circuit 24, the operation of at least one of the circuits alone or the operation of a combination of the two is performed, so that the An attenuated signal for reducing the sharpness of the peak frequency component can be created. With this attenuated signal, the sharpness of the peak frequency component is reduced, and the sound pressure level of the noise in the pipeline 20 is reduced.
[0025]
As described above, in the present embodiment, a piezoelectric element as a vibrating body sandwiched between a pair of electrodes is placed on a leeward side of a noise generation source (for example, a motor or the like) installed in a propagation path, for example, in a pipe. To hold. One of the pair of electrodes detects a vibration frequency component of a piezoelectric element as a vibrating body that vibrates in response to vibration accompanying noise from the motor into the pipeline, and determines the vibration frequency component based on the detected vibration frequency component. Then, an attenuated signal of the inverse frequency component for reducing the sharpness of the peak frequency component in the vibration frequency component is created by the negative impedance circuit. This damping signal is output from the other electrode to the piezoelectric element to increase the apparent rigidity of the piezoelectric element 22 and reduce the sharpness of the peak frequency component among the vibration frequency components. Even without performing signal processing by complicated calculation methods, the sharpness of the peak component that greatly contributes to the noise in the pipeline can be accurately reduced with a simple device configuration, and the noise transmitted from the motor into the pipeline can be reduced. The sound pressure level can be reliably reduced.
[0026]
In the present embodiment, the motor 21 has been described as an example of a noise source. However, the present invention is not limited to the motor, and the active control device according to the present embodiment may be applied to equipment and components in which noise is a problem. By applying to the above, noise from a noise source can be reduced.
[0027]
Embodiment 2 FIG.
FIG. 6 is a configuration diagram illustrating an example of the active control device according to the second embodiment of the present invention. In FIG. 6, the same or corresponding parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Further, the configuration of the negative impedance circuit 24 shown in FIG. 6 is the same as the configuration shown in FIG. 2 of the first embodiment, and the description thereof will be omitted. In the description of the present embodiment, parts that share FIG. 2 are denoted by reference numerals in FIG.
In FIG. 6, reference numeral 32 denotes a piezoelectric element made of a high molecular polymer such as polyvinylidene fluoride as a vibrator, which is sandwiched between a pair of electrodes 53. It should be noted that the shape of the piezoelectric element 32 sandwiched between the pair of electrodes 53 in the present embodiment does not have the opening shown in FIG. 3 of the first embodiment.
One electrode 53 side (not shown) of the pair of electrodes 53 is directly attached and fixed to, for example, a body of the motor 21 and the piezoelectric element 32 as a vibrating body that vibrates in response to vibration from the motor 21. Is detected by the one electrode 53 attached and fixed to the body side, and transmitted to the negative impedance circuit 24 via the signal line 25. Based on the transmitted vibration frequency component, an attenuation signal for reducing the sharpness of the peak frequency component among the vibration frequency components of the motor 21 created by the negative impedance circuit 24 is transmitted to the signal line 26. Is output to the piezoelectric element 32 of the vibrating body by the electrode 53 on the other side of the body via the other.
[0028]
In the present embodiment, a piezoelectric element 32 serving as a vibrating body sandwiched between a pair of electrodes 53 is directly attached and fixed to the body of the motor 21 or the like, and vibrates when receiving vibration from the motor 21. The sharpness of the peak frequency component among the vibration frequency components of the piezoelectric element 32 is reduced, and the vibration from the motor 21 into the pipeline 20 is reduced.
[0029]
The operation of the active control device configured as described above will be described.
The motor 21 provided at an arbitrary position in the pipe 20 sucks air from outside the pipe 20 and discharges the air sucked from the rear, and at the same time, generates a unique vibration of the motor 21 itself.
Along with the vibration generated by the motor 21, the vibration generated by the piezoelectric element 32 attached and fixed to the body of the motor 21 induces a vibration frequency component of the motor 21 generated by the vibration of the piezoelectric element 32. .
[0030]
The body-side electrode 53 of the motor 21 of the pair of electrodes 53 of the piezoelectric element 32 detects a vibration frequency component of the motor 21 generated by the vibration of the piezoelectric element 32, and detects the negative impedance circuit via the signal line 25. 24 to the circuit input section. Based on the transmitted vibration frequency component, the negative impedance circuit 24 creates an attenuation signal for reducing the sharpness of the peak frequency component among the oscillation frequency components, and converts the attenuation signal into a negative signal. The signal is transmitted from the circuit output portion of the impedance circuit 24 to the other non-fuselage-side electrode 53 of the piezoelectric element 32 via the signal line 26. Then, an attenuation signal transmitted from the other anti-fuselage-side electrode 53 is output to the piezoelectric element 32, and the apparent rigidity of the piezoelectric element 32 is increased as in the first embodiment. To reduce the sharpness of the peak frequency component among the vibration frequency components, and reduce the vibration propagating from the motor 21 into the pipeline 20.
[0031]
The operation of the negative impedance circuit 24 for generating an attenuation signal for reducing the sharpness of the peak frequency component among the vibration frequency components from the motor 21 as the vibration source is described in the first embodiment. The description is omitted here.
[0032]
In addition, in the first circuit and the second circuit of the negative impedance circuit 24, as in the first embodiment, at least one of the circuits operates alone or performs a combined operation. An attenuation signal for reducing the sharpness of the peak frequency component among the frequency components due to the vibration can be created. With this attenuation signal, the sharpness of the peak frequency component can be reduced and the vibration into the pipeline 20 can be reduced. To reduce.
[0033]
As described above, in the present embodiment, a piezoelectric element as a vibrating body sandwiched between a pair of electrodes is directly attached and fixed to a vibration source (for example, a motor or the like) in a propagation path, for example, in a pipeline. One of the pair of electrodes detects a vibration frequency component from the motor induced by the vibration of the piezoelectric element, and based on the detected vibration frequency component, detects the vibration frequency component in a negative impedance circuit. , An attenuated signal of the inverse frequency component for reducing the sharpness of the peak frequency component at. This damping signal is output from the other electrode to the piezoelectric element so that the apparent rigidity of the piezoelectric element is increased and the sharpness of the peak frequency component among the vibration frequency components is reduced as in the first embodiment. Therefore, as in the first embodiment, the peak component which greatly contributes to the vibration emitted from the motor into the pipe line accurately with a simple device configuration without performing the signal processing by the complicated calculation method as in the related art as in the first embodiment. Sharpness can be reduced, and vibration into the pipeline can be reliably reduced.
[0034]
In the present embodiment, the motor 21 has been described as an example of a vibration source. However, the present invention is not limited to the motor, and the vibration of the active control device according to the present embodiment is a problem similarly to the first embodiment. By applying the present invention to the devices and components described above, the vibration from the vibration source can be reduced.
[0035]
【The invention's effect】
As described above, the present invention provides a vibrating body that vibrates in response to noise in a propagation path or vibrates in response to vibration of a vibration source, an input unit that inputs a vibration component of the vibrating body, A negative impedance circuit that creates an attenuation signal that reduces the sharpness of a peak component among the oscillation components based on the oscillation component input to the unit, and an attenuation signal created by the negative impedance circuit. An output unit that outputs to the vibrating body and includes an output unit that reduces the sharpness of the peak component of the vibration of the vibrating body, so that signal processing by a complicated calculation method as in the related art is not performed. Therefore, it is possible to obtain an active control device capable of accurately reducing the sharpness of a peak component largely involved in noise or vibration in a propagation path and reliably reducing noise or vibration propagating in the propagation path. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of an active control device according to Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a piezoelectric element and a negative impedance circuit according to Embodiment 1 of the present invention.
FIG. 3 is a front view of the piezoelectric element according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a mechanical circuit (resonant circuit) model according to the first embodiment of the present invention;
FIG. 5 is a noise and impedance characteristic diagram showing an example of a result of a measure for reducing a peak frequency component according to the first embodiment of the present invention.
FIG. 6 is a configuration diagram illustrating an example of an active control device according to a second embodiment of the present invention.
FIG. 7 is a configuration diagram of a conventional active control noise removal device.
[Explanation of symbols]
Reference Signs List 20 conduit, 21 motor, 22, 32 piezoelectric element, 23 fixing jig, 24 negative impedance circuit, 25 signal line, 26 signal line, 30 opening, 41 first circuit, 42 second circuit, 43, 53 A pair of electrodes.

Claims (7)

伝搬経路内の騒音を受けて振動し、又は振動発生源の振動を受けて振動する振動体と、前記振動体の振動成分を入力する入力部と、前記入力部に入力された前記振動成分を基に、該振動成分のうちピーク成分の先鋭度を低減させる減衰信号を創生させる負性インピーダンス回路と、前記負性インピーダンス回路で創生された減衰信号を前記振動体に出力し、前記振動体の振動のうちピーク成分の先鋭度を低減させる出力部とを備えたことを特徴とする能動制御装置。A vibrating body that vibrates in response to noise in the propagation path or vibrates in response to vibration of a vibration source, an input unit that inputs a vibration component of the vibrating body, and the vibration component that is input to the input unit. A negative impedance circuit that generates an attenuation signal that reduces the sharpness of the peak component of the vibration component; anda damping signal that is generated by the negative impedance circuit to the vibration body, An active control device comprising: an output unit configured to reduce the sharpness of a peak component of body vibration. 前記振動体を圧電素子としたことを特徴とする請求項1記載の能動制御装置。2. The active control device according to claim 1, wherein the vibrator is a piezoelectric element. 前記伝搬経路は閉空間を有する管路であり、前記圧電素子は前記管路内に配置され、前記圧電素子は前記管路内の流体成分を透過させる任意寸法の複数の開口部を設けたことを特徴とする請求項2記載の能動制御装置。The propagation path is a conduit having a closed space, the piezoelectric element is disposed in the conduit, and the piezoelectric element is provided with a plurality of openings of arbitrary dimensions that allow a fluid component in the conduit to pass therethrough. 3. The active control device according to claim 2, wherein: 前記圧電素子の開口部の開口率及び圧電素子の厚みの調整で、前記開口部を透過する流体成分の高域周波数帯を遮断する高域遮断フィルターを構成することを特徴とする請求項3記載の能動制御装置。4. A high-frequency cutoff filter that blocks a high-frequency band of a fluid component passing through the opening by adjusting the aperture ratio of the opening of the piezoelectric element and the thickness of the piezoelectric element. Active control device. 前記圧電素子を振動発生源に直接固着したことを特徴とする請求項2記載の能動制御装置。3. The active control device according to claim 2, wherein the piezoelectric element is directly fixed to a vibration source. 前記負性インピーダンス回路は、抵抗と増幅器を直列接続するとともに、前記増幅器の入出力端間に可変抵抗及び可変コンデンサを並列接続した回路構成を有し、前記可変抵抗及び可変コンデンサを調整してピーク成分の先鋭度を低減させる減衰信号を創生させることを特徴とする請求項1記載の能動制御装置。The negative impedance circuit has a circuit configuration in which a resistor and an amplifier are connected in series, and a variable resistor and a variable capacitor are connected in parallel between the input and output terminals of the amplifier. 2. The active control device according to claim 1, wherein an attenuation signal for reducing the sharpness of the component is created. 前記負性インピーダンス回路は、抵抗と増幅器を直列接続するとともに、前記増幅器の入出力端間に可変抵抗及び可変コンデンサを並列接続した第1の回路と、抵抗と増幅器を直列接続するとともに、前記増幅器の入出力端間に可変抵抗及び可変コンデンサを並列接続した第2の回路で構成され、前記第1の回路の可変抵抗及び可変コンデンサ、又は前記第2の回路の可変抵抗及び可変コンデンサの少なくとも一方を調整してピーク成分の先鋭度を低減させる減衰信号を創生させることを特徴とする請求項1記載の能動制御装置。The negative impedance circuit includes a resistor and an amplifier connected in series, a first circuit in which a variable resistor and a variable capacitor are connected in parallel between input and output terminals of the amplifier, and a resistor and an amplifier connected in series. And a second circuit in which a variable resistor and a variable capacitor are connected in parallel between the input and output terminals of at least one of the variable resistor and the variable capacitor of the first circuit, or the variable resistor and the variable capacitor of the second circuit. 2. The active control device according to claim 1, wherein the attenuation is adjusted by adjusting the threshold value so as to reduce the sharpness of the peak component.
JP2002370180A 2002-12-20 2002-12-20 Active controller Pending JP2004198954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370180A JP2004198954A (en) 2002-12-20 2002-12-20 Active controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370180A JP2004198954A (en) 2002-12-20 2002-12-20 Active controller

Publications (1)

Publication Number Publication Date
JP2004198954A true JP2004198954A (en) 2004-07-15

Family

ID=32766180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370180A Pending JP2004198954A (en) 2002-12-20 2002-12-20 Active controller

Country Status (1)

Country Link
JP (1) JP2004198954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131854A (en) * 2017-06-28 2019-01-04 重庆邮电大学 Low noise unmanned plane and its method for noise reduction control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131854A (en) * 2017-06-28 2019-01-04 重庆邮电大学 Low noise unmanned plane and its method for noise reduction control

Similar Documents

Publication Publication Date Title
EP0340974A2 (en) Active acoustic attenuation system with differential filtering
EP3763132B1 (en) Method and system of varying mechanical vibrations at a microphone
JP2007180896A (en) Voice signal processor and voice signal processing method
JPH06202669A (en) Active sound eliminating device
EP0817166B1 (en) Noise control device
JP2004198954A (en) Active controller
JP5546795B2 (en) Target wave reduction device
JPH0234422A (en) Noise reduction device of air conditioner
JP3421146B2 (en) Sound field control method and device
JP2010276773A5 (en)
CN108495237A (en) A kind of amplitude gain control method of loudspeaker tonequality equilibrium
JPH07210179A (en) Active noise eliminator
JPH0353698A (en) Active silencer
JP2620050B2 (en) Active noise control system speaker device
TWI768821B (en) A noise control system, a noise control device and a method thereof
JP2008139367A (en) Active oscillating noise control device
JPH08190389A (en) Muffling sound wavee generating device
JP2791510B2 (en) Active silencer
WO2022138237A1 (en) Sound provision device and sound provision method
JP3316259B2 (en) Active silencer
KR101283105B1 (en) Apparatus for controlling active noise and method thereof
JP3461513B2 (en) Active silencer
JP3275449B2 (en) Active noise control device and active vibration control device
JP2024056430A (en) Acoustic control device and acoustic control method
EP4356369A1 (en) Active sound-cancellation system for an open fluid-duct

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080409

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001