JP2004198942A - Phase plate - Google Patents

Phase plate Download PDF

Info

Publication number
JP2004198942A
JP2004198942A JP2002370095A JP2002370095A JP2004198942A JP 2004198942 A JP2004198942 A JP 2004198942A JP 2002370095 A JP2002370095 A JP 2002370095A JP 2002370095 A JP2002370095 A JP 2002370095A JP 2004198942 A JP2004198942 A JP 2004198942A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase plate
thin film
light
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002370095A
Other languages
Japanese (ja)
Other versions
JP2004198942A5 (en
Inventor
Shinko Murakawa
真弘 村川
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002370095A priority Critical patent/JP2004198942A/en
Publication of JP2004198942A publication Critical patent/JP2004198942A/en
Publication of JP2004198942A5 publication Critical patent/JP2004198942A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily manufacturable phase plate functioning as a uniform quarter wavelength plate for light in a visible light region. <P>SOLUTION: This phase plate is provided with first and second organic thin film layers 1 and 2. The first organic thin film layer 1 has a retardation value of 1/2 wavelength to the light in the visible light region, and the second organic thin film layer 2 has a retardation value of 1/4 wavelength to the light in the visible region. The first and second organic thin film layers 1 and 2 are superposed to form the phase plate 101 so that optical axes of the first and second thin film layers 1, 2 cross each other with a prescribed angle. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は位相板に関し、特に可視域の光に対する位相差またはリタデーション値の波長分散を制御した位相板に関する。
【0002】
【従来の技術】
液晶ディスプレイ、液晶プロジェクタなどのように、可視域の光を用いる液晶表示装置などでは、波長が420nm前後の青色光から波長が650nm前後の赤色光までの波長帯域において、位相差の波長分散が小さい位相板が求められてきた。従来、この課題を解決するために、波長分散が大きい複屈折性材料と波長分散が小さい複屈折性材料とが、おのおのの進相軸を直交するように重ねられて、波長分散を打ち消す位相板が構成された。
【0003】
また、近年光源として波長が660nm前後(帯)の半導体レーザを用い情報の記録・再生を行う光記録媒体(以後、光記録媒体のことを「光ディスク」という)としてDVD用の光ディスクが普及している。さらに、記録情報量を増大させるため、光源として波長が405nm帯の半導体レーザを用いたHD用の光ディスクが提案されている。
【0004】
DVDおよびHDの光ディスクの記録・再生を効率よく行うためには、1/4波長のリタデーション値を有する位相板(1/4波長板)と偏光ビームスプリッタを用い、半導体レーザから出射された直線偏光の光が対物レンズにより光ディスクの情報記録面に集光される。
【0005】
直線偏光の光は集光後反射され、偏光ビームスプリッタと対物レンズとの間に配置された位相板を往復することで往路とは直交する直線偏光に変換され、偏光ビームスプリッタにより往路とは光路が変更されて光検出器で効率よく信号光が検出される光ヘッド装置とすることができる。
【0006】
このような効率をよくする目的を実現するために、波長が405nm帯と波長が660nm帯の光に対して1/4波長のリタデーション値を有する位相板が望まれていた。
【0007】
【特許文献1】
特開平11−149015号公報
【0008】
【発明が解決しようとする課題】
しかし、波長分散が大きい複屈折性材料と波長分散が小さい複屈折性材料を適切にかつ低コストで入手し、作製することは困難であった。
【0009】
本発明は、上記の課題を解決するためになされたものであり、波長400〜680nmの可視域の光に対して、均一な4分の1波長板として機能する位相板を提供するものである。
【0010】
【課題を解決するための手段】
本発明は、少なくとも1枚の透明基板に固定された、複屈折性を有する、第1の有機物薄膜層と第2の有機物薄膜層とを備えた位相板であり、第1の有機物薄膜層は可視域の光に対し1/2波長のリタデーション値を有し、第2の有機物薄膜層は可視域の光に対し1/4波長のリタデーション値を有し、かつ第1の有機物薄膜層の光軸と第2の有機物薄膜層の光軸とが交差するように第1および第2の有機物薄膜層が重ねられて、可視域の光に対し1/4波長のリタデーション値を有するように構成されていることを特徴とする位相板を提供する。
【0011】
【発明の実施の形態】
本発明は、少なくとも1枚の透明基板に固定された複屈折性を有する、第1の有機物薄膜層と第2の有機物薄膜層とを備えた位相板である。そして、第1の有機物薄膜層は可視域の光に対し1/2波長のリタデーション値を有し、第2の有機物薄膜層は可視域の光に対し1/4波長のリタデーション値を有する。さらに、第1の有機物薄膜層の光軸と第2の有機物薄膜層の光軸がそれぞれ交差するように第1および第2の有機物薄膜層が重ねられており、かつ可視域の光に対し1/4波長のリタデーション値を有するように位相板が構成されている。
【0012】
透明基板は1枚でもよいし、2枚でもよい。複屈折性を有する有機物薄膜層として高分子液晶層を用いることが、入手および作製の容易性の点で好ましい。したがって、以下において高分子液晶層を例にとり、光軸が遅相軸となっている場合について、本発明を図面を用いて説明する。
【0013】
本発明の位相板は、例えば図1に示すように、2枚の透明基板3と4の間に、2つの高分子液晶層1と2を挟んだ構成を有する。また、図1では、可視域の直線偏光が位相板101を透過して、その円偏光になって出射する様子も示している。
【0014】
高分子液晶を透明基板に積層する方法を図2を用いて説明する。透明基板13および14上に配向膜用の溶液を塗布し、おのおの所望の配向処理を施し配向膜15および16とした後、透明基板13の配向膜15に、複屈折性材料となる液晶モノマーの溶液を塗布する。一方、透明基板14の配向膜16に離型処理剤を塗布したのち、高分子液晶層11となる液晶モノマーの厚さを一様とするためのスペーサを散布する(図示せず)。
【0015】
このとき、高分子液晶層11となる液晶モノマーの厚さdは、高分子液晶の異常光屈折率と常光屈折率の差Δnとの積Δn・dが、位相板の設計中心波長の光に対して、ほぼ2分の1波長、またはほぼ4分の1波長に等しくなるように決められる。ここで設計中心波長は、本発明の位相板を設計および作製するときに用いる波長であり、使用する高分子液晶の屈折率分散の大きさ、および位相板としての所望の光学特性が得られるように、可視域の光の波長480〜580nmの間で適宜決められる。
【0016】
上述の2分の1波長および4分の1波長に対応する2種類の厚さは、おのおの図1の位相板101の高分子液晶層1と高分子液晶層2の厚さに相当する。つぎに、配向膜15の配向処理方向と配向膜16の配向処理方向が一致するように、透明基板13と14を重ねた後、光重合用の光源光を照射することで液晶モノマーを重合硬化させて高分子液晶層11とする。結果として、高分子液晶層11の層内では、液晶分子が一定の方向に配向する。
【0017】
次に、透明基板14を高分子液晶層11と配向膜16の界面から離型して、高分子液晶層11と透明基板13からなる高分子液晶積層基板を作製する。また、透明基板として、ガラス基板などの無機物材料からなり光学的に平坦な基板を用いることで、温度変化に対して良好な透過光の波面収差を維持できる。
【0018】
上述の方法で、高分子液晶層の厚さが異なる2種類の高分子液晶積層基板を作製し、おのおのの高分子液晶層の液晶分子配向方向、すなわち遅相軸が交差するように重ね、接着剤で固着することで、図1に示すような位相板101を形成する。図3は、位相板101の透明基板4の側からみた図で、S、Sはおのおの高分子液晶層1、2(図1)の液晶分子配向方向、すなわち遅相軸を示している。
【0019】
また、θ、θは、S、Sのx軸からの角度を示しており、反時計回りを正とする。ここで、θが75±3°でθが15±3°、またはθが−75±3°でθが−15±3°、またはθが15±3°でθが75±3°、またはθが−15±3°でθが−75±3°とすることが好ましい。さらに、2種類の高分子液晶層1、2のそれぞれの遅相軸のなす角度、|θ−θ|の値を60±3°にすることは、位相板101に、可視域の光であり、電場がx軸方向、またはy軸方向に振動する直線偏光が入射したとき、ほぼ円偏光となって出射するので好ましい。すなわち、位相板101は可視域の光に対して、均一なほぼ4分の1波長板として機能するので好ましい。
【0020】
図4は、設計中心波長が500nmの本発明の位相板101(曲線31)と、波長500nmの光に対する従来の4分の1波長板(曲線33)との位相差特性を示すグラフであり、おのおのの位相板を出射する偏光の楕円率を縦軸に、波長を横軸に示したグラフである。曲線31と曲線33とを比較すると、本発明の位相板101のほうが、可視域において波長分散がほとんど無いことがわかる。
【0021】
また、図4における曲線31は、位相板の2つの高分子液晶層の液晶分子配向方向が、図3における、(θ、θ)=(−75°、−15°)の場合で、曲線32は、位相板の2つの高分子液晶層の液晶分子配向方向が、(θ、θ)=(−74°、−15°)の場合を示しており、後者のほうが、可視域において、波長分散がより小さいことがわかる。すなわち、(θ、θ)の値を適切に調整することで、光学特性を容易に調整できることがわかる。
【0022】
さらに、θの角度を−74°より小さな値にすることにより、楕円率が1すなわち円偏光に相当する波長がHD用の光ヘッド装置の光源波長である405nmとDVD用の光ヘッド装置の光源波長である650nmに近づく。すなわち、HD用とDVD用の両方の波長域で1/4波長板となる。
【0023】
【実施例】
本実施例は図1に示した位相板101の具体例であり、図2を用いて、作製工程を説明する。ガラス製の透明基板13および14上に、配向膜用のポリイミドを塗布し硬化した後、ラビングによる配向処理を施して、配向膜15および16とした。次に、透明基板13上の配向膜15に複屈折性材料となる液晶モノマーの溶液を塗布した。
【0024】
一方、透明基板14上の配向膜16に撥水性の離型処理剤を塗布したのち、粒径が3.8μmのスペーサを散布した(図示せず)。次に、配向膜15の配向処理方向と配向膜16の配向処理方向とが一致するように、透明基板13と14とを重ねた後、光重合用の光源光を照射することで液晶モノマーを重合硬化させて高分子液晶層11を形成した。光重合硬化した高分子液晶の異常光屈折率と常光屈折率の差Δnは、0.065であった。
【0025】
したがって、高分子液晶層11のリタデーション値は250nmであり、波長500nmの光に対して、2分の1波長に相当する。次に、透明基板14を高分子液晶層11と配向膜16の界面において離型して、高分子液晶層11と透明基板13からなる高分子液晶積層基板を作製した。また、前述のスペーサの粒径を1.9μmに変更し、同様のプロセスで、高分子液晶層の厚さの異なる高分子液晶積層基板を作製した。このとき、高分子液晶層のリタデーション値は、125nmであり、波長500nmの光に対して、4分の1波長に相当する。
【0026】
上述のように作製した2つの高分子液晶積層基板を、おのおのの高分子液晶層の液晶分子配向方向すなわち、遅相軸のなす角度が59°となるように、おのおのの高分子液晶層を向かい合わせて、エポキシ系接着剤で固着して位相板101を作製した。
【0027】
図3に示した座標系において、位相板101を構成する高分子液晶層1の光軸Sとx軸のなす角度θを74°、高分子液晶層2の光軸Sとx軸のなす角度θを15°としたとき、x軸方向に偏光方向を有する(振動する)直線偏光を位相板101を入射して、出射する光の偏光状態を測定した。その結果、可視全域において、ほぼ円偏光の出射光を得ることができた。すなわち、本発明の位相板101は、可視域の光に対し、均一な4分の1波長板となっていることを確認できた。
【0028】
また、本発明の位相板101を図5に示す偏光変換光学系に使用した。偏光変換光学系とは、直線偏光の入射光を前提とする液晶表示装置を搭載した液晶プロジェクタなどに用いられ、白色光源から出射される可視域のランダム偏光を、偏波面が揃った直線偏光に変換する系であり、光源41、偏光ビームスプリッタ42、ミラー43、44、4分の1波長板45から構成される。本発明の位相板101を4分の1波長板45の代わりに用いた結果、光源から出射した可視域のランダム偏光が、一様に偏波面が揃った直線偏光に変換することができた。その結果、光源から出射する光を効率よく液晶表示素子に直線偏光として入射できたため、表示の明るさが向上した。
【0029】
次に、本発明の位相板101を図6に示す反射型液晶表示素子を用いた液晶プロジェクタに使用した。反射型液晶表示素子は、偏光ビームスプリッタ51、偏光子52、反射型液晶表示素子53、4分の1波長板54から構成されており、液晶表示素子53の液晶層への印加電圧を変えることで、偏光子52からの出射光量を調整できる。本発明の位相板101を4分の1波長板54の代わりに用いた結果、液晶表示素子53の液晶層への印加電圧に応じた偏光子52からの出射光量の変化は、可視域の光に対してほとんどなく一様な挙動を示した。その結果、表示色の均一性および再現性が向上した。
【0030】
【発明の効果】
本発明によると、高分子液晶を用いて厚さの異なる2つの高分子液晶層を形成し、2つの高分子液晶層をそれぞれの液晶分子配向方向である遅相軸が所定の角度で交差するように重ね合わせて、可視域の光に対し均一な4分の1波長板として機能する位相板を容易に作製できる。
【図面の簡単な説明】
【図1】本発明の位相板の構成の一例を示す断面図。
【図2】高分子液晶を透明基板に積層する方法を説明する断面図。
【図3】本発明の位相板を構成する2つの高分子液晶層の液晶分子配向方向を示す平面図。
【図4】本発明の位相板(4分の1波長板)と従来の4分の1波長板との位相差特性を示すグラフ。
【図5】本発明の位相板を使用した偏光変換光学系の概念図。
【図6】本発明の位相板を使用した反射型液晶プロジェクタの概念図。
【符号の説明】
101:位相板
1、2、11:高分子液晶層
3、4、13、14:透明基板
15、16:配向膜
41:白色光源
42、51:偏光ビームスプリッタ
43、44:ミラー
45、54:4分の1波長板
52:偏光子
53:反射型液晶表示素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase plate, and more particularly to a phase plate in which the phase difference or retardation value chromatic dispersion of visible light is controlled.
[0002]
[Prior art]
In a liquid crystal display device using visible light such as a liquid crystal display and a liquid crystal projector, the wavelength dispersion of the phase difference is small in the wavelength band from blue light having a wavelength of around 420 nm to red light having a wavelength of around 650 nm. A phase plate has been sought. Conventionally, in order to solve this problem, a phase plate in which a birefringent material having a large chromatic dispersion and a birefringent material having a small chromatic dispersion are overlapped so that their fast axes are orthogonal to each other to cancel the chromatic dispersion. Was configured.
[0003]
In recent years, DVD optical discs have become widespread as optical recording media (hereinafter referred to as “optical discs”) for recording / reproducing information using a semiconductor laser having a wavelength of about 660 nm (band) as a light source. Yes. Furthermore, in order to increase the amount of recorded information, an optical disc for HD using a semiconductor laser having a wavelength of 405 nm band as a light source has been proposed.
[0004]
For efficient recording and reproduction of DVD and HD optical discs, a linearly polarized light emitted from a semiconductor laser using a phase plate (1/4 wavelength plate) having a retardation value of 1/4 wavelength and a polarizing beam splitter is used. Is condensed on the information recording surface of the optical disc by the objective lens.
[0005]
Linearly polarized light is reflected after being condensed, and is converted into linearly polarized light orthogonal to the forward path by reciprocating a phase plate disposed between the polarizing beam splitter and the objective lens. Thus, an optical head device in which signal light is efficiently detected by the photodetector can be obtained.
[0006]
In order to realize the purpose of improving the efficiency, a phase plate having a retardation value of ¼ wavelength with respect to light having a wavelength of 405 nm band and a wavelength of 660 nm band has been desired.
[0007]
[Patent Document 1]
JP-A-11-149015 [0008]
[Problems to be solved by the invention]
However, it has been difficult to obtain and manufacture a birefringent material having a large wavelength dispersion and a birefringent material having a small wavelength dispersion appropriately and at low cost.
[0009]
The present invention has been made to solve the above-described problems, and provides a phase plate that functions as a uniform quarter-wave plate for visible light having a wavelength of 400 to 680 nm. .
[0010]
[Means for Solving the Problems]
The present invention is a phase plate having a birefringent first organic thin film layer and a second organic thin film layer fixed to at least one transparent substrate, and the first organic thin film layer comprises: The second organic thin film layer has a retardation value of ¼ wavelength with respect to visible light and the light of the first organic thin film layer has a retardation value of ½ wavelength with respect to visible light. The first and second organic thin film layers are overlapped so that the axis and the optical axis of the second organic thin film layer intersect with each other, and are configured to have a retardation value of ¼ wavelength with respect to light in the visible range. A phase plate is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a phase plate including a first organic thin film layer and a second organic thin film layer having birefringence fixed to at least one transparent substrate. The first organic thin film layer has a retardation value of ½ wavelength with respect to visible light, and the second organic thin film layer has a retardation value of ¼ wavelength with respect to visible light. Further, the first and second organic thin film layers are overlapped so that the optical axis of the first organic thin film layer and the optical axis of the second organic thin film layer intersect with each other, and 1 with respect to light in the visible range. The phase plate is configured to have a retardation value of / 4 wavelength.
[0012]
One or two transparent substrates may be used. Use of a polymer liquid crystal layer as the organic thin film layer having birefringence is preferable from the viewpoint of availability and production. Therefore, the present invention will be described below with reference to the drawings in the case where the polymer liquid crystal layer is taken as an example and the optical axis is a slow axis.
[0013]
The phase plate of the present invention has a configuration in which two polymer liquid crystal layers 1 and 2 are sandwiched between two transparent substrates 3 and 4, for example, as shown in FIG. Further, FIG. 1 also shows a state where linearly polarized light in the visible region is transmitted through the phase plate 101 and emitted as circularly polarized light.
[0014]
A method of laminating a polymer liquid crystal on a transparent substrate will be described with reference to FIG. After applying the alignment film solution onto the transparent substrates 13 and 14 and applying the desired alignment treatment to the alignment films 15 and 16, the alignment film 15 of the transparent substrate 13 is coated with a liquid crystal monomer that becomes a birefringent material. Apply the solution. On the other hand, after a release treatment agent is applied to the alignment film 16 of the transparent substrate 14, spacers for dispersing the thickness of the liquid crystal monomer that becomes the polymer liquid crystal layer 11 are dispersed (not shown).
[0015]
At this time, the thickness d of the liquid crystal monomer used as the polymer liquid crystal layer 11 is determined so that the product Δn · d of the abnormal light refractive index of the polymer liquid crystal and the difference Δn of the ordinary light refractive index is the light having the design center wavelength of the phase plate. On the other hand, it is determined to be approximately equal to a half wavelength or a quarter wavelength. Here, the design center wavelength is a wavelength used when designing and manufacturing the phase plate of the present invention, so that the refractive index dispersion of the polymer liquid crystal used and desired optical characteristics as the phase plate can be obtained. In addition, it is appropriately determined between wavelengths of 480 to 580 nm of visible light.
[0016]
The two types of thickness corresponding to the above-described half wavelength and quarter wavelength correspond to the thicknesses of the polymer liquid crystal layer 1 and the polymer liquid crystal layer 2 of the phase plate 101 in FIG. Next, after the transparent substrates 13 and 14 are stacked so that the alignment treatment direction of the alignment film 15 and the alignment treatment direction of the alignment film 16 coincide with each other, the light source light for photopolymerization is irradiated to polymerize and cure the liquid crystal monomer. Thus, the polymer liquid crystal layer 11 is obtained. As a result, the liquid crystal molecules are aligned in a certain direction within the polymer liquid crystal layer 11.
[0017]
Next, the transparent substrate 14 is released from the interface between the polymer liquid crystal layer 11 and the alignment film 16 to produce a polymer liquid crystal laminated substrate composed of the polymer liquid crystal layer 11 and the transparent substrate 13. Further, by using an optically flat substrate made of an inorganic material such as a glass substrate as the transparent substrate, it is possible to maintain a favorable wavefront aberration of transmitted light with respect to a temperature change.
[0018]
Using the above-mentioned method, two types of polymer liquid crystal laminated substrates having different polymer liquid crystal layer thicknesses are produced, and the liquid crystal molecule alignment directions of each polymer liquid crystal layer, that is, the slow axes are overlapped and bonded. By fixing with an agent, a phase plate 101 as shown in FIG. 1 is formed. FIG. 3 is a view of the phase plate 101 as viewed from the transparent substrate 4 side, and S 1 and S 2 indicate the liquid crystal molecular alignment directions of the polymer liquid crystal layers 1 and 2 (FIG. 1), that is, the slow axis. .
[0019]
Θ 1 and θ 2 indicate the angles of S 1 and S 2 from the x axis, and the counterclockwise direction is positive. Here, θ 1 is 75 ± 3 ° and θ 2 is 15 ± 3 °, or θ 1 is −75 ± 3 ° and θ 2 is −15 ± 3 °, or θ 1 is 15 ± 3 ° and θ 2 is It is preferable that 75 ± 3 ° or θ 1 be −15 ± 3 ° and θ 2 be −75 ± 3 °. Further, setting the value of | θ 1 −θ 2 | to 60 ± 3 ° between the slow axes of the two types of polymer liquid crystal layers 1 and 2 causes the phase plate 101 to emit light in the visible range. When linearly polarized light whose electric field vibrates in the x-axis direction or y-axis direction is incident, it is preferably emitted as substantially circularly polarized light. That is, the phase plate 101 is preferable because it functions as a uniform substantially quarter-wave plate for visible light.
[0020]
FIG. 4 is a graph showing the phase difference characteristics of the phase plate 101 of the present invention having a design center wavelength of 500 nm (curve 31) and the conventional quarter-wave plate (curve 33) for light having a wavelength of 500 nm. It is the graph which showed the ellipticity of the polarization | polarized-light emitted from each phase plate on the vertical axis | shaft, and showed the wavelength on the horizontal axis. Comparing the curve 31 and the curve 33, it can be seen that the phase plate 101 of the present invention has almost no wavelength dispersion in the visible region.
[0021]
Further, a curve 31 in FIG. 4 is a case where the liquid crystal molecule alignment directions of the two polymer liquid crystal layers of the phase plate are (θ 1 , θ 2 ) = (− 75 °, −15 °) in FIG. A curve 32 shows a case where the liquid crystal molecular alignment directions of the two polymer liquid crystal layers of the phase plate are (θ 1 , θ 2 ) = (− 74 °, −15 °), and the latter is in the visible region. It can be seen that the chromatic dispersion is smaller. That is, it can be seen that the optical characteristics can be easily adjusted by appropriately adjusting the values of (θ 1 , θ 2 ).
[0022]
Further, by making the angle of θ 1 smaller than −74 °, the ellipticity is 1, that is, the wavelength corresponding to circularly polarized light is 405 nm which is the light source wavelength of the optical head device for HD, and the optical head device for DVD is used. The light source wavelength approaches 650 nm. That is, it becomes a quarter wavelength plate in both the wavelength range for HD and DVD.
[0023]
【Example】
This embodiment is a specific example of the phase plate 101 shown in FIG. 1, and a manufacturing process will be described with reference to FIG. On the transparent substrates 13 and 14 made of glass, polyimide for alignment film was applied and cured, and then alignment treatment by rubbing was performed to obtain alignment films 15 and 16. Next, a liquid crystal monomer solution serving as a birefringent material was applied to the alignment film 15 on the transparent substrate 13.
[0024]
On the other hand, after applying a water repellent release agent to the alignment film 16 on the transparent substrate 14, spacers having a particle size of 3.8 μm were sprayed (not shown). Next, after the transparent substrates 13 and 14 are overlapped so that the alignment treatment direction of the alignment film 15 and the alignment treatment direction of the alignment film 16 coincide with each other, the light source light for photopolymerization is irradiated to obtain the liquid crystal monomer. The polymer liquid crystal layer 11 was formed by polymerization and curing. The difference Δn between the extraordinary refractive index and the ordinary refractive index of the polymer liquid crystal cured by photopolymerization was 0.065.
[0025]
Therefore, the retardation value of the polymer liquid crystal layer 11 is 250 nm, which corresponds to a half wavelength with respect to light having a wavelength of 500 nm. Next, the transparent substrate 14 was released at the interface between the polymer liquid crystal layer 11 and the alignment film 16 to produce a polymer liquid crystal laminated substrate composed of the polymer liquid crystal layer 11 and the transparent substrate 13. Also, polymer liquid crystal multilayer substrates having different polymer liquid crystal layer thicknesses were prepared in the same process by changing the particle size of the spacers to 1.9 μm. At this time, the retardation value of the polymer liquid crystal layer is 125 nm, which corresponds to a quarter wavelength with respect to light having a wavelength of 500 nm.
[0026]
The two polymer liquid crystal multilayer substrates prepared as described above face each polymer liquid crystal layer so that the liquid crystal molecule alignment direction of each polymer liquid crystal layer, that is, the angle formed by the slow axis is 59 °. In addition, the phase plate 101 was manufactured by fixing with an epoxy adhesive.
[0027]
In the coordinate system shown in FIG. 3, the angle θ 1 formed by the optical axis S 1 of the polymer liquid crystal layer 1 constituting the phase plate 101 and the x axis is 74 °, and the optical axis S 2 of the polymer liquid crystal layer 2 and the x axis when the angle theta 2 of the and 15 °, (vibrates) with the polarization direction in the x-axis direction linearly polarized light incident to the phase plate 101, to measure the polarization state of the emitted light. As a result, almost circularly polarized outgoing light could be obtained in the entire visible range. That is, it was confirmed that the phase plate 101 of the present invention was a uniform quarter-wave plate for visible light.
[0028]
Further, the phase plate 101 of the present invention was used in the polarization conversion optical system shown in FIG. A polarization conversion optical system is used in liquid crystal projectors equipped with a liquid crystal display device premised on linearly polarized incident light. Randomly polarized light emitted from a white light source is converted into linearly polarized light with a uniform polarization plane. This is a conversion system, and includes a light source 41, a polarization beam splitter 42, mirrors 43 and 44, and a quarter-wave plate 45. As a result of using the phase plate 101 of the present invention in place of the quarter-wave plate 45, random polarized light in the visible range emitted from the light source could be converted to linearly polarized light with a uniform polarization plane. As a result, the light emitted from the light source can be efficiently incident on the liquid crystal display element as linearly polarized light, so that the brightness of the display is improved.
[0029]
Next, the phase plate 101 of the present invention was used in a liquid crystal projector using the reflective liquid crystal display element shown in FIG. The reflective liquid crystal display element includes a polarizing beam splitter 51, a polarizer 52, a reflective liquid crystal display element 53, and a quarter-wave plate 54, and changes the voltage applied to the liquid crystal layer of the liquid crystal display element 53. Thus, the amount of light emitted from the polarizer 52 can be adjusted. As a result of using the phase plate 101 of the present invention instead of the quarter-wave plate 54, the change in the amount of light emitted from the polarizer 52 in accordance with the voltage applied to the liquid crystal layer of the liquid crystal display element 53 is the light in the visible range. However, it showed almost uniform behavior. As a result, the uniformity and reproducibility of the display color was improved.
[0030]
【The invention's effect】
According to the present invention, two polymer liquid crystal layers having different thicknesses are formed using polymer liquid crystal, and the slow axes that are the alignment directions of the liquid crystal molecules intersect each other at a predetermined angle. Thus, it is possible to easily manufacture a phase plate that functions as a uniform quarter-wave plate for visible light.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a configuration of a phase plate of the present invention.
FIG. 2 is a cross-sectional view illustrating a method for laminating a polymer liquid crystal on a transparent substrate.
FIG. 3 is a plan view showing liquid crystal molecule alignment directions of two polymer liquid crystal layers constituting the phase plate of the present invention.
FIG. 4 is a graph showing phase difference characteristics between the phase plate of the present invention (quarter wave plate) and a conventional quarter wave plate.
FIG. 5 is a conceptual diagram of a polarization conversion optical system using the phase plate of the present invention.
FIG. 6 is a conceptual diagram of a reflective liquid crystal projector using the phase plate of the present invention.
[Explanation of symbols]
101: Phase plates 1, 2, 11: Polymer liquid crystal layers 3, 4, 13, 14: Transparent substrate 15, 16: Alignment film 41: White light source 42, 51: Polarizing beam splitter 43, 44: Mirror 45, 54: Quarter-wave plate 52: Polarizer 53: Reflective liquid crystal display element

Claims (3)

少なくとも1枚の透明基板に固定された、複屈折性を有する、第1の有機物薄膜層と第2の有機物薄膜層とを備えた位相板であり、第1の有機物薄膜層は可視域の光に対し1/2波長のリタデーション値を有し、第2の有機物薄膜層は可視域の光に対し1/4波長のリタデーション値を有し、かつ第1の有機物薄膜層の光軸と第2の有機物薄膜層の光軸とが交差するように第1および第2の有機物薄膜層が重ねられて、可視域の光に対し1/4波長のリタデーション値を有するように構成されていることを特徴とする位相板。A phase plate having a birefringent first organic thin film layer and a second organic thin film layer fixed to at least one transparent substrate, wherein the first organic thin film layer is light in the visible range. The second organic thin film layer has a retardation value of 1/4 wavelength with respect to light in the visible range, and the optical axis of the first organic thin film layer and the second The first and second organic thin film layers are stacked so that the optical axis of the organic thin film layer intersects with each other, and has a retardation value of ¼ wavelength with respect to light in the visible range. Feature phase plate. 第1および第2有機物薄膜層は、液晶モノマーが硬化された高分子液晶層からなり、光軸が遅相軸となっている請求項1記載の位相板。The phase plate according to claim 1, wherein the first and second organic thin film layers are composed of a polymer liquid crystal layer in which a liquid crystal monomer is cured, and an optical axis is a slow axis. 2つの高分子液晶層のそれぞれの遅相軸のなす角度がほぼ60°である請求項1または2記載の位相板。The phase plate according to claim 1 or 2, wherein the angle formed by the slow axes of the two polymer liquid crystal layers is approximately 60 °.
JP2002370095A 2002-12-20 2002-12-20 Phase plate Withdrawn JP2004198942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370095A JP2004198942A (en) 2002-12-20 2002-12-20 Phase plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370095A JP2004198942A (en) 2002-12-20 2002-12-20 Phase plate

Publications (2)

Publication Number Publication Date
JP2004198942A true JP2004198942A (en) 2004-07-15
JP2004198942A5 JP2004198942A5 (en) 2006-02-02

Family

ID=32766132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370095A Withdrawn JP2004198942A (en) 2002-12-20 2002-12-20 Phase plate

Country Status (1)

Country Link
JP (1) JP2004198942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007552A1 (en) 2006-07-14 2008-01-17 Konica Minolta Opto, Inc. Optical pickup device, objective optical element and optical information recorder/reproducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007552A1 (en) 2006-07-14 2008-01-17 Konica Minolta Opto, Inc. Optical pickup device, objective optical element and optical information recorder/reproducer
WO2008007553A1 (en) 2006-07-14 2008-01-17 Konica Minolta Opto, Inc. Optical pickup device, objective optical element and optical information recorder/reproducer

Similar Documents

Publication Publication Date Title
TWI406018B (en) Cartesian polarizers utilizing photo-aligned liquid crystals
JP4876992B2 (en) Depolarizing element
US20040165126A1 (en) Multi-layer diffraction type polarizer and liquid crystal element
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP5107313B2 (en) Polarization diffraction element
WO2004019085A1 (en) Retardation optical device, its manufacturing method, and liquid crystal display
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
EP2631687B1 (en) Distributive compensator and projecting liquid-crystal display device
JP4930084B2 (en) Broadband wave plate
JP2001101700A (en) Optical head device
WO2018047497A1 (en) Optical compensation element, liquid crystal light bulb assembly and liquid crystal projector device
JP5228805B2 (en) Laminated quarter wave plate
JP5056059B2 (en) Broadband wave plate
JP2004110003A (en) Retardation optical element, manufacturing method therefor, and liquid crystal display device
JP2004198942A (en) Phase plate
JP2003121645A (en) Phase plate
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP2007280460A (en) Optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
JP4407495B2 (en) Broadband half-wave plate
JP5834970B2 (en) Wave plate and laser projector
US8164716B2 (en) Polarization beam splitter and optical system
JP2008112004A (en) Optical compensation plate and liquid display
JP4424448B2 (en) Optical head device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080827