JP2004198391A - Observation method for blood vessel, bloodstream, and cellular structure - Google Patents

Observation method for blood vessel, bloodstream, and cellular structure Download PDF

Info

Publication number
JP2004198391A
JP2004198391A JP2002383270A JP2002383270A JP2004198391A JP 2004198391 A JP2004198391 A JP 2004198391A JP 2002383270 A JP2002383270 A JP 2002383270A JP 2002383270 A JP2002383270 A JP 2002383270A JP 2004198391 A JP2004198391 A JP 2004198391A
Authority
JP
Japan
Prior art keywords
image
observation
solution
ccd camera
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383270A
Other languages
Japanese (ja)
Other versions
JP2004198391A5 (en
Inventor
Hajime Murakami
一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGUCHI GENJI
Original Assignee
EGUCHI GENJI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGUCHI GENJI filed Critical EGUCHI GENJI
Priority to JP2002383270A priority Critical patent/JP2004198391A/en
Publication of JP2004198391A publication Critical patent/JP2004198391A/en
Publication of JP2004198391A5 publication Critical patent/JP2004198391A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow observation with a space between an observation field and an optical equipment without imparting physical stimulation at all to the cellular structure, the blood vessel and the like, and to observe an image of a sample by a monitor TV or by the optical equipment in response to requirement. <P>SOLUTION: A transparent gel-like solution 11 is dropped on a surface of the sample 12 to set the field desired to be observed. Light 14 is emitted in a periphery of an objective lens 16, and the clear image 13A is captured by a zoom type microscope 18. The image is converted into an image 13B enlarged optically, followed to be converted further into an electric signal by a CCD camera 25, and it is read in a personal computer 30 through a CCD camera cape 27 and a control interface panel 29 to be reproduced on the image monitor TV 32. The image is allowed to be digitized by reading the image in the personal computer 30, the image is easily brought into a numeral expression by an image measuring/image processing software 31, and the observation and inspection are allowed from various directions. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技能分野】
本発明は色々な生物の血管・血流・細胞組織を観察するため観察法に関する。
【0002】
【従来の技術】
従来の生物の血管・血流・細胞組織を観察は、物理的に細胞組織を体内から採取したり、血管・血流を観察するために皮膚をはがしたり傷つけたりして光学機器などを用いて観察していた。
【0003】
【発明が解決するための手段】
しかしながら、従来の方法だと観察試料(生物の血管・血流・細胞組織表面)の外部からの刺激により形而変化をおこし、自然のままの観察ができなかったり観察試料表面上での反射で、内部の細胞や血管・血流の観察ができなかったり、さらに観察試料の内側に光が入りにくいため高輝度の光が必要とされ、またその光の熱により観察視野が刺激を受け、自然の状態でうまく観察できなかった。
【0004】
【課題を解決するための手段】
本発明は、観察したい観察試料(血管・血流・細部組織)に対して観察する光学機器(観察試料と対物レンズの距離が取れるもの。例えば実体顕微鏡・生物顕微鏡等)を設定し、表面に焦点を合わせ、光を対物レンズの外側からもしくは、対物レンズの内側から観察したい観察試料(血管・血流・細部組織)に照射し、観察試料(血管・血流・細部組織)の表面に透明(色彩があっても良い)のゲル状溶液をたらすことにより、今まで解決できなかった表面の反射がキャンセルされ、さらにこの透明(色彩があっても良い)のゲル状溶液により、少ない光量でも細胞の内側に光を導き、さらには透明(色彩があっても良い)のゲル状溶液によってレンズ効果をもたらし、はっきりとした高解像の画像が浮かび上がって見えてくる。また観察したい観察試料(血管・血流・細部組織等)に対して光学機器の対物レンズを離して観察(非接触観察)できるため、操作があつかいやすく観察試料に対する物理的な刺激もなく、自然の状態での観察が可能となり、正確な形而変化を観察できるようになった今までにない新しい観察方法により上記課題を解決する。
【0005】
【実施例】
以下、本発明に係る血管・血流・細胞組織の観察法の実施例につき、図1を参照して詳細に説明する。
【0006】
図1は、本発明の一実施例を適用した光学機器(ズーム式顕微鏡)での血管・血流・細胞組織の観察法の概要を模式的に示す構成説明図である。
【0007】
即ち、図1に示す実施例装置の構成において、本血管・血流・細胞組織の観察法は、観察試料(人の指の爪と皮膚との境界線に近い部分12)の表面に透明(色彩があっても良い)のゲル状溶液(例えば、砂糖を溶かしたもの)11をたらし観察したい視野を設定する。その場所に光源23と光ファイバー15で対物レンズ16の回りから光14を照射する。その時ゲル状溶液(例えば、砂糖を溶かしたもの)11の効果により表面の反射がキャンセルされ、さらにこのゲル状溶液11が光14を細胞の内側に光を導き、さらにはレンズ効果をもたらして鮮明な画像13・Aを、ズーム式顕微鏡18で捕らえる。ズーム式顕微鏡18で捕らえた鮮明な画像13・Aは、対物レンズ16およびズームレンズ19で光学的に拡大画像13・Bに変換される。その拡大画像13・BをCCDカメラ25でとらえて電気的カラー映像信号13・Cに変換し、接続しているCCDカメラケーブル27とCCDカメラコントロールインターフェイス基盤29を通してパーソナルコンピュータ30に電気的カラー映像信号13−Cを取り込み、パーソナルコンピュータ30からその電気的カラー映像信号13・Cを表示するモニターTV32に再現する構成である。
【0008】
ここで、前記透明のゲル状溶液11は着色があっても良いが、なるべく色のついていない且つ気泡の少ないもの(例えば、砂糖を溶かしたもの等)が好ましい。
【0009】
ここで、前記光源23は、AC電源をDCに変えるスイッチング電源21とランプ(例えばハロゲンランプ)24と熱線をカットする熱線カットフィルター22、さらにランプ24から出力された光14を透明のゲル状溶液11まで導き、照射する光ファイバー15から構成されている。
【0010】
ここで、前記ズーム式顕微鏡18は、光源23からの光14を透明のゲル状溶液11まで導く光ファイバー15と、その鮮明な画像13・Aを拡大してとらえる対物レンズ16、さらにその画像を自在に拡大・縮小可能なズームレンズ19、その拡大画像13・BをCCDカメラ25まで導く鏡筒20で構成されている。
【0011】
ここで、前記光学的に拡大された拡大画像13・Bを、CCDカメラ25の内部にあるCCD素子(Charge Coupled Device)26で電気的カラー映像信号13・Cに変換し、その電気的カラー映像信号13・CはCCDカメラケーブル27と接続しているCCDカメラコントロールインターフェイス基盤29を通して、パーソナルコンピュータ30に電気的カラー映像信号13・Cとして取り込む。
【0012】
ここで、前記電気的カラー映像信号13・Cをパーソナルコンピュータ30に取り込み、モニターTV32に再現する構成である。さらに色々な画像計測・画像処理ソフトウエアー31で例えば(細胞の形而変化の数値化)・(血流の流速計測)・(血管の形而変化の数値化)など電気的カラー映像信号13・Cを数値化し色々な評価や検査・診断として表現可能となる。
【0013】
従って、本実施例装置の具体的構成では、先に述べた従来例の場合と比較して次のようなそれぞれの効果が得られる。即ち
(A)今までの観察法とは異なり物理的な刺激を与えず、自然のままの状態で観察可能になった。
(B)観察したい場所にゲル状溶液(例えば、砂糖を溶かしたもの)をたらすだけで「表面上の反射防止効果」・「少ない光量でも細胞の内側に光を導きより観察試料が観察しやすくなる」・「レンズ効果をもたらしてはっきりとした高解像の画像をとらえられる」など効果をもたらして簡単に観察可能になった。
(C)この方法の発明により画像をとらえる対物レンズとサンプルとの間隔に距離をもたせられることにより簡易な観察と簡易にサンプルに対する化学的刺激(例えば、薬投与の効果の確認)などが可能になった。
(D)さらにこの拡大画像をCCDカメラでとらえて電気的カラー映像信号に変換しパーソナルコンピュータに取り込むことにより画像のデジタル化・画像の数値化が可能となり、いろいろな方向からの観察・診断・検査が可能になった。
等である。
【0014】
なお、前記実施例構成においては、血管・血流・細胞組織の観察法とそのとらえた観察画像の拡大されたカラー映像を観察する場合について述べたが、まず第一に必ずしも観察に使用されるゲル状溶液は、透明な砂糖水に限定されるものではなく多少着色があっても良いが、なるべく透明な気泡のないゲル溶液が好ましい。また必ずしもこのようにカラー化・デジタル化による映像観察行う点に限定されるものではなく、必要に応じては、裸眼での観察・顕微鏡による接眼での観察・モノクロによる映像観察・アナログカメラによる映像観察などをなすことも可能である。
【0015】
【発明の効果】
以上、実施例よって詳述したように、本発明によれば、観察試料の表面に透明(色彩があっても良い)のゲル状溶液をたらし観察したい視野を設定する。その場所にレンズ回りから光を照射する。 その時ゲル状溶液により表面の反射がキャンセルされ、さらに光を細胞の内側に導き、さらには画像にレンズ効果をもたらし鮮明な画像が観察可能となる。
さらに拡大して観察するためにズーム式顕微鏡で捕らえた鮮明な画像は、光学的に拡大画像に変換される。その拡大画像をCCDカメラで電気的カラー映像信号に変換してCCDカメラケーブルと接続しているCCDカメラコントロールインターフェイス基盤を通してパーソナルコンピュータに取り込み、その電気的カラー映像信号を表示するモニターTV上に再現する今までない優れた効果のある観察法である。
【0016】
また前記電気的カラー映像信号をパーソナルコンピュータに取り込むことにより画像のデジタル化が可能となり、さらには画像計測・画像処理ソフトウエアーで画像の数値化が簡易となり、いろいろな方向からの観察・診断・検査が行うことができるなどの利点や今後の飛躍が可能となる。
【図面の簡単な説明】
11 透明(色彩があっても良い)のゲル状溶液
12 人の指
13・A 鮮明な画像
13・B 拡大画像
13・C 電気的カラー映像信号
14 光
15 光ファイバー
16 対物レンズ
17 対物レンズ交換リング
18 ズーム式顕微鏡
19 ズーム機構部
20 鏡筒
21 スイッチング電源(AC電源からDC電源へ変換)
22 熱線カットフィルター
23 光源
24 ランプ(ハロゲンランプ)
25 CCDカメラ(デジタル方式)
26 CCD素子(Charge Coupled Device)
27 CCDカメラケーブル
28 CCDカメラケーブルコネクター
29 CCDカメラコントローユニット
30 パーソナルコンピュータ
31 画像計測・画像処理ソフトウエアー
32 TVモニター
[0001]
[Technical field to which the invention belongs]
The present invention relates to an observation method for observing blood vessels, blood flows, and cell tissues of various organisms.
[0002]
[Prior art]
Conventional observation of blood vessels, blood flow, and cell tissue of living organisms is performed by physically collecting cell tissue from inside the body, peeling or damaging the skin to observe blood vessels and blood flow, using optical equipment, etc. I was observing.
[0003]
Means for Solving the Invention
However, according to the conventional method, metabolic changes are caused by external stimuli of the observation sample (blood vessels, blood flow, cell tissue surface of living organisms), and observation cannot be performed as it is or reflection on the surface of the observation sample causes reflection. In addition, it is not possible to observe the cells, blood vessels and blood flow inside, and it is difficult for light to enter the inside of the observation sample, so high-intensity light is required. Could not be observed well.
[0004]
[Means for Solving the Problems]
According to the present invention, an optical device (a device capable of increasing a distance between an observation sample and an objective lens, for example, a stereoscopic microscope or a biological microscope) for observing an observation sample (blood vessel, blood flow, detailed tissue) to be observed is set on a surface. Focus and irradiate the observation sample (blood vessel, blood flow, detail tissue) to be observed from outside of the objective lens or from the inside of the objective lens, and transparent on the surface of the observation sample (blood vessel, blood flow, detail tissue) Deflection of the gel solution (which may have color) cancels the reflection of the surface which could not be solved until now, and furthermore, this transparent (color may be) gel solution allows even a small amount of light. The light is guided inside the cells, and furthermore, the lens effect is brought about by a transparent (possibly colored) gel-like solution, and a clear high-resolution image emerges. In addition, since the observation sample (blood vessel, blood flow, detailed tissue, etc.) to be observed can be observed (non-contact observation) by separating the objective lens of the optical device, the operation is easy to handle and there is no physical stimulus to the observation sample. The above-mentioned problem is solved by a new observation method that has never been used before, and enables observation in an accurate state.
[0005]
【Example】
Hereinafter, an embodiment of a method for observing blood vessels, blood flows, and cell tissues according to the present invention will be described in detail with reference to FIG.
[0006]
FIG. 1 is a configuration explanatory view schematically showing an outline of a method of observing a blood vessel, a blood flow, and a cell tissue with an optical device (zoom microscope) to which an embodiment of the present invention is applied.
[0007]
That is, in the configuration of the apparatus of the embodiment shown in FIG. 1, the method of observing the blood vessels, blood flow, and cell tissue is such that the surface of the observation sample (the portion 12 close to the boundary between the nail of the human finger and the skin) is transparent ( A visual field to be observed is set by applying a gel-like solution (for example, a solution in which sugar is dissolved) 11 of a color. Light 14 is radiated to the place from around the objective lens 16 by the light source 23 and the optical fiber 15. At that time, the reflection of the surface is canceled by the effect of the gel-like solution (for example, one in which sugar is dissolved) 11, and the gel-like solution 11 guides the light 14 to the inside of the cell, and furthermore brings a lens effect to sharpen the light. The image 13A is captured by the zoom microscope 18. The clear image 13 · A captured by the zoom microscope 18 is optically converted into an enlarged image 13 · B by the objective lens 16 and the zoom lens 19. The enlarged image 13 · B is captured by the CCD camera 25 and converted into an electric color video signal 13 · C. The electric color video signal is transmitted to the personal computer 30 through the connected CCD camera cable 27 and CCD camera control interface board 29. The configuration is such that 13-C is taken in and reproduced from the personal computer 30 on the monitor TV 32 which displays the electric color video signal 13 · C.
[0008]
Here, the transparent gel-like solution 11 may be colored, but it is preferable that the solution is as colored as possible and has few bubbles (for example, a solution in which sugar is dissolved).
[0009]
Here, the light source 23 includes a switching power supply 21 for converting AC power to DC, a lamp (for example, a halogen lamp) 24, a heat ray cut filter 22 for cutting off heat rays, and a light 14 outputted from the lamp 24 for a transparent gel-like solution. It comprises an optical fiber 15 for guiding and irradiating up to 11.
[0010]
Here, the zoom microscope 18 includes an optical fiber 15 for guiding the light 14 from the light source 23 to the transparent gel-like solution 11, an objective lens 16 for enlarging a clear image 13A, and further, the image can be freely adjusted. And a lens barrel 20 for guiding the enlarged image 13B to the CCD camera 25.
[0011]
Here, the optically enlarged image 13B is converted into an electric color image signal 13C by a CCD (Charge Coupled Device) 26 inside the CCD camera 25, and the electric color image 13B is converted. The signal 13.C is taken into the personal computer 30 as an electric color video signal 13.C through the CCD camera control interface board 29 connected to the CCD camera cable 27.
[0012]
Here, the electric color video signal 13C is taken into the personal computer 30 and reproduced on the monitor TV32. Furthermore, various image measurement / image processing software 31 is used to generate electrical color image signals 13 such as (quantification of metaphysical changes of cells), (measurement of flow velocity of blood flow), (quantification of metamorphic changes of blood vessels). It is possible to express C as a numerical value and various evaluations, inspections, and diagnoses.
[0013]
Therefore, in the specific configuration of the apparatus according to the present embodiment, the following effects can be obtained as compared with the above-described conventional example. That is, (A) Unlike the conventional observation method, it is possible to observe in a natural state without giving a physical stimulus.
(B) Simply by applying a gel-like solution (for example, one in which sugar is dissolved) to the place you want to observe, "anti-reflective effect on the surface", "Even a small amount of light guides light inside the cells, making it easier to observe the observation sample. "The lens effect is provided, and a clear high-resolution image can be captured."
(C) According to the invention of this method, the distance between the objective lens that captures an image and the sample is given a distance, so that simple observation and simple chemical stimulation of the sample (for example, confirmation of the effect of drug administration) can be performed. became.
(D) Further, the enlarged image is captured by a CCD camera, converted into an electrical color video signal, and taken into a personal computer, thereby enabling digitization of the image and digitization of the image, enabling observation, diagnosis, and inspection from various directions. Is now possible.
And so on.
[0014]
In addition, in the said Example structure, although the observation method of the blood vessel, the blood flow, and the cell tissue and the case of observing the enlarged color image of the observation image captured were described, first of all, it is not necessarily used for observation. The gel-like solution is not limited to transparent sugar water, and may have some coloring. However, a gel solution that is as clear as possible and has no bubbles is preferred. Also, it is not necessarily limited to the point of performing image observation by colorization and digitization as described above, and if necessary, observation with the naked eye, observation with an eyepiece using a microscope, image observation with a monochrome, image observation with an analog camera And so on.
[0015]
【The invention's effect】
As described above in detail in the examples, according to the present invention, a visual field to be observed is set by applying a transparent (or colored) gel-like solution on the surface of the observation sample. Light is applied to the location from around the lens. At that time, the reflection of the surface is canceled by the gel-like solution, the light is further guided to the inside of the cell, and further, a lens effect is brought to the image, so that a clear image can be observed.
The clear image captured by the zoom microscope for further enlarged observation is optically converted to an enlarged image. The enlarged image is converted into an electric color video signal by a CCD camera, taken into a personal computer through a CCD camera control interface board connected to a CCD camera cable, and reproduced on a monitor TV for displaying the electric color video signal. This is an observation method that has an outstanding effect.
[0016]
Also, by taking the electrical color video signal into a personal computer, it is possible to digitize the image, and furthermore, it is easy to digitize the image with image measurement and image processing software, and to observe, diagnose, and inspect from various directions. Can be performed, and the future leap is possible.
[Brief description of the drawings]
11 Transparent (may be colored) gel-like solution 12 Human finger 13 ・ A Clear image 13 ・ B Enlarged image 13 ・ C Electrical color video signal 14 Light 15 Optical fiber 16 Objective lens 17 Objective lens exchange ring 18 Zoom microscope 19 Zoom mechanism unit 20 Lens barrel 21 Switching power supply (Conversion from AC power supply to DC power supply)
22 Heat ray cut filter 23 Light source 24 Lamp (halogen lamp)
25 CCD camera (digital method)
26 CCD device (Charge Coupled Device)
27 CCD camera cable 28 CCD camera cable connector 29 CCD camera control unit 30 Personal computer 31 Image measurement / image processing software 32 TV monitor

Claims (3)

透明(色彩があっても良い)のゲル状溶液を観察したい観察試料にたらすことにより、細胞内の状態(血管・血流・細胞組織)を観察できる観察法。An observation method that allows observation of the intracellular state (blood vessels, blood flow, cell tissue) by applying a transparent (may be colored) gel-like solution to the observation sample to be observed. 上記方法により観察試料に対して非接触で観察できる観察法。An observation method in which an observation sample can be observed without contact by the above method. 上記方法により観察試料に対して外部からの刺激がなく、自然な状態で観察できる観察法。An observation method in which an observation sample can be observed in a natural state without an external stimulus by the above method.
JP2002383270A 2002-12-13 2002-12-13 Observation method for blood vessel, bloodstream, and cellular structure Pending JP2004198391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383270A JP2004198391A (en) 2002-12-13 2002-12-13 Observation method for blood vessel, bloodstream, and cellular structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383270A JP2004198391A (en) 2002-12-13 2002-12-13 Observation method for blood vessel, bloodstream, and cellular structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005002057U Continuation JP3112102U (en) 2005-03-10 2005-03-10 Optical instruments for observing blood vessels, blood flow, and cellular tissues

Publications (2)

Publication Number Publication Date
JP2004198391A true JP2004198391A (en) 2004-07-15
JP2004198391A5 JP2004198391A5 (en) 2005-08-25

Family

ID=32767046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383270A Pending JP2004198391A (en) 2002-12-13 2002-12-13 Observation method for blood vessel, bloodstream, and cellular structure

Country Status (1)

Country Link
JP (1) JP2004198391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017961A (en) * 2006-07-12 2008-01-31 Image One Co Ltd Method and device for measuring blood flow rate
JP2017217300A (en) * 2016-06-09 2017-12-14 花王株式会社 Observation method of dermal capillary

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017961A (en) * 2006-07-12 2008-01-31 Image One Co Ltd Method and device for measuring blood flow rate
JP2017217300A (en) * 2016-06-09 2017-12-14 花王株式会社 Observation method of dermal capillary

Similar Documents

Publication Publication Date Title
JP6710735B2 (en) Imaging system and surgery support system
US5408996A (en) System and method for localization of malignant tissue
JP6468287B2 (en) Scanning projection apparatus, projection method, scanning apparatus, and surgery support system
US20100016668A1 (en) Medical device for discreetly performing a routine vaginal examination
CN103040429B (en) Optical image detection device for oral cavity and imaging method
Peterson et al. Feasibility of a video‐mosaicking approach to extend the field‐of‐view for reflectance confocal microscopy in the oral cavity in vivo
US20200367735A1 (en) Imaging system and method using multicore fiber
WO2015100264A1 (en) Rotational scanning endoscope
Wang et al. Automated classification of dual channel dental imaging of auto-fluorescence and white lightby convolutional neural networks
CN111163678A (en) Digital device for facilitating body cavity examination and diagnosis
WO2015041446A1 (en) Microscope system, and method for providing augmented reality images of microscope system
CN207166606U (en) Medical imaging extraction element and system
Simon et al. Transillumination and reflectance probes for in vivo near-IR imaging of dental caries
Hong et al. Smartphone microendoscopy for high resolution fluorescence imaging
CN206102640U (en) Imaging system is fused with laser speckle formation of image to endoscope formation of image
JP2004198391A (en) Observation method for blood vessel, bloodstream, and cellular structure
CN203153692U (en) Optical image detecting device for mouth cavity
CN101779947B (en) Confocal microscope and rigid electronic arthroscope integrated system
CN109965987A (en) Visor outside a kind of robot with common focus point migration function
JP3112102U (en) Optical instruments for observing blood vessels, blood flow, and cellular tissues
CN103006326B (en) Visual field adjustable double-video fusion imaging system
RU177110U1 (en) DEVICE FOR DYNAMIC CLINICAL AND INSTRUMENTAL OBSERVATION OF PATIENTS WITH SKIN DISORDERS
CN210962341U (en) Robot outer sight glass with confocal laser scanning function
CN107874741A (en) Biological tissue optical detection probe
CN210277364U (en) Integrated external-view mirror laparoscope system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208