JP2004198316A - Method for adjusting sulfuric acid concentration - Google Patents

Method for adjusting sulfuric acid concentration Download PDF

Info

Publication number
JP2004198316A
JP2004198316A JP2002368673A JP2002368673A JP2004198316A JP 2004198316 A JP2004198316 A JP 2004198316A JP 2002368673 A JP2002368673 A JP 2002368673A JP 2002368673 A JP2002368673 A JP 2002368673A JP 2004198316 A JP2004198316 A JP 2004198316A
Authority
JP
Japan
Prior art keywords
sulfuric acid
concentration
acid concentration
temperature
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002368673A
Other languages
Japanese (ja)
Inventor
Masayuki Nakatani
雅行 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002368673A priority Critical patent/JP2004198316A/en
Publication of JP2004198316A publication Critical patent/JP2004198316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately and industrially adjusting a concentration of a sulfuric acid with a high concentration of approximately 100 wt%. <P>SOLUTION: An ultrasonic travel speed and a temperature are measured under a pressure fluctuation of 0.05 Mpa or less. Two or more places of the sulfuric acid concentration (wt%) after a decimal point are converted based on the measured ultrasonic travel speed and the temperature. The converted sulfuric acid concentration is monitored. The sulfuric acid concentration is adjusted to 96-104 WT%. <P>COPYRIGHT: (C)2004,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、硫酸濃度の調整方法であり、さらに詳しくは、100wt%近くの高濃度の硫酸を高精度に濃度調整する方法に関するものである。
【0002】
【従来の技術】
高濃度の硫酸は、高分子化学の分野では優れた溶剤としても用いられており、例えばポリパラフェニレンテレフタルアミド(以下、PPTAと略す。)などのアラミド繊維やアラミドフィルムの溶剤として用いられている。本発明者らは、硫酸にPPTAを溶かした溶液(以下、アラミドドープと略する。)は硫酸濃度によってその粘度は大きく変化し、フィルムの厚み斑や糸径斑に繋がっており、測定が容易でない濃度範囲(96〜104wt%)において長期に亘って安定した硫酸の精密な濃度調整、特に±0.05wt%以内のような精密な調整が望ましいことを突き止めた。
【0003】
精密な濃度調整にはその濃度の精密な測定が重要であり、実験的には中和滴定法、伝導度測定法、比重計を用いる方法、BaSO沈澱法、赤外吸収による方法、陰イオンクロマトを用いる方法など種々の方法が用いられている(参考;JIS K 1321-1994)。
しかしながら、これらの方法は、高濃度の硫酸を測定する場合は、高濃度硫酸の特異な性質から採用ができない場合や、また希釈操作が必要であったりするため、高濃度硫酸の測定方法としてプロセスに直接組み込むのは困難であった。
【0004】
一方、超音波濃度計は高濃度硫酸の測定が可能であり、市販品を入手することが可能である。下記特許文献1には、蒸留塔の硫酸溶液の濃度、製品硫酸の濃度を直接測定し、廃硫酸を効率良く精製して濃度の一定な精製硫酸を製造する方法が記載されており、その実施例では96wt%前後の硫酸濃度を超音波式濃度計で0.1wt%の表示精度で測定した例が記載されている。しかしながらこれらの測定精度は±0.1wt%であり、そのままでは精密な測定に不十分であり、更に精密な硫酸濃度調整方法が求められていた。
【0005】
【特許文献1】
特開平8−91811号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、100wt%近くの高濃度硫酸の濃度調整を高精度に工業的に行う方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、濃度調整方法について鋭意検討した結果、濃度調整工程を特定の条件で行うことと、その条件下での超音波伝播速度と温度データを用い、精度よく硫酸濃度に換算し、これを監視することによって濃度誤差の少ない精密な硫酸濃度調整ができることを見出し、本発明を完成するに至った。
即ち、本発明は、以下のとおりである。
圧力変動0.05MPa以内で超音波伝播速度と温度を測定し、測定した超音波伝播速度と温度から硫酸濃度(wt%)を小数点2桁以上まで換算し、換算した硫酸濃度を監視して、硫酸濃度を96wt%〜104wt%に調整することを特徴とする硫酸濃度の調整方法。
【0008】
【発明の実施の形態】
硫酸の濃度を調整する方法としは、濃度を高くする場合は、発煙硫酸のような濃い硫酸を混合して調整する方法、三酸化イオウを硫酸に吸収させて混合し調整する方法があり、濃度を低くする場合は、濃度の低い硫酸または水を濃度の高い硫酸に添加して混合する方法がある。これらの内、調整したい濃度の硫酸よりも高い濃度のものが容易に入手できる場合は、濃度の低い硫酸または水を添加して混合するのが簡便である。
【0009】
用いる硫酸については、他の成分を含んでいてもよく、例えばシリカ、アルミナ、酸化チタン、酸化亜鉛、硫酸カルシウム、カーボンブラックなどの微粒子を含んでいてもよい。その場合、大きな粒子を含むと、硫酸濃度を測定するのに超音波伝播速度を用いることから、測定誤差が大きくなるため、粒径が2μm以上のものを含まないことが好ましく、0.2μm以上のものを含まないことがより好ましい。また、量としても多すぎると測定誤差が大きくなるので、硫酸に対して1wt%以下、特に0.1wt%以下が好ましい。
硫酸濃度の調整においては、精度よく濃度の調整を行うことを考慮すると、完全な連続プロセスではなく、バッチ連続プロセスで行うのが好ましい。
【0010】
硫酸濃度の調整は、濃度の変化を伴うために熱が発生する。このため、工業的に多量に調整する場合は、槽内の硫酸を槽のジャケット等により除熱する方法もあるが除熱効率が充分とれないため、別途循環ラインを設置して伝熱面積の大きなクーラー等を用いて硫酸を除熱する方法が生産性の観点から採用される。また濃度の異なるものを混合する上でその混合の効率を考慮すると、硫酸の濃度調整する槽には攪拌機を設置するのが好ましい。したがって濃度調整する装置としては、混合のための攪拌機と槽、除熱するためのクーラー、クーラーに供給するための循環ラインとポンプ、濃度調整のために混合させる液(以下、添加液という。)を添加するための添加部からなるのが好ましい。なおこれらの設計において音速測定部でエアを巻き込まないようにする。エアを巻き込まないようにする方法としては、攪拌機の回転軸と循環ライン入り口とをずらして攪拌による渦のエアを循環ラインに巻き込まないようにする方法、攪拌の回転数を小さくして攪拌の渦を小さくして巻き込まないようにする方法、攪拌機の攪拌羽根の形状で攪拌液を上方に押す形状にする方法、循環ラインの槽へ戻すライン先端を攪拌液面下に設けてエアを巻き込まないようにする方法などがあり、これらの方法を全て採り入れても良いし、これらの方法から選択して行っても良い。
【0011】
濃度調整での添加液の供給は、定量ポンプで少量ずつ添加するのが濃度制御上、誤差を少なくすることができることから好ましい。特に調整したい濃度(以下、調整目標濃度という。)近傍、即ち調整目標濃度との差が0.15wt%より近い場合は、その添加量としては、調整する硫酸の量に対して、0.001〜0.1wt%/分の濃度変化に対応する添加速度が好ましく、特に0.003〜0.03wt%/分の添加速度が好ましい。0.1wt%/分を超える添加速度であると調整した硫酸濃度のバッチ間のばらつきが多くなり、0.001wt%/分未満の添加速度であると効率が悪いため実用的ではない。一方、調整目標濃度から離れている場合は、その添加速度はより速くしてもよい。
【0012】
添加液の槽への供給の停止は、硫酸の濃度を監視して、所定の濃度になった場合に供給する添加液を止める。所定の濃度とは、調整目標濃度であってもいいし、装置のズレを見込んで調整目標濃度の少し手前に設定してもよい。添加液の槽への供給はポンプの停止や添加部の自動バルブを閉めて停止することができる。この場合、これらの操作は人が硫酸の濃度を監視し判断して行ってもよいが、自動制御システム、例えば分散型制御システム(DCS)などに組み込み、自動制御するのは好ましい。
硫酸の濃度の監視には、濃度調整するための硫酸の超音波伝播速度と温度を測定し、これら超音波伝播速度と温度の測定値から換算して求めた硫酸濃度を用いる。
【0013】
液体中の超音波伝播速度(以下、音速という。)は、超音波変換機、超音波発信機、超音波受信機から構成される装置で測定できる。超音波発信機から発信された超音波パルス信号は硫酸中を伝播し、一定の距離におかれた受信部で受信され、そのパルスのズレから音速が計算される。ここで一定の距離にするため超音波発信機と超音波受信機を一体にしたものは誤差が少なく好ましい。このような音速を測定するための装置としては、市販品の超音波濃度計を利用することができる。また音速を測定するための装置としては、音速データをデジタルデータで取り出せるものがよく、その数値としては単位が(m/sec)の場合、温度、圧力、濃度などの条件によっても異なるが1200〜1300m/sec近傍の値を取り、この値の小数点以下1桁以上のデータで取り出せるものが濃度の精密測定上好ましく、特に小数点以下2桁以上のデータで取り出せるものが好ましい。また音速データはデジタルデータで取り出すことにより自動制御が容易になる。なおアナログデータとして取り出した場合はデジタルに変換して用いてもよい。
【0014】
超音波発信機の設置位置としては、硫酸を調整する槽の側面または除熱のための循環ラインに設置することができる。なお槽の側面に設置する場合は、攪拌の影響によって音速の変動が生じる場合があるので、その場合は攪拌の影響を受けにくいように攪拌の回転数を小さくして、影響を小さくすることが好ましい。
本発明において音波の測定部での圧力変動は0.05MPa以内にすることが必要である。本発明において音波の測定部とは硫酸溶液中で超音波伝播速度を計測している超音波の発信部設置箇所から受信部設置箇所までをいう。ただし硫酸溶液を同一配管中で計測する場合は、その上流側の圧力をその代表値として用いてもよい。ここでいう圧力変動とは、1秒毎の圧力の測定値を10点の移動平均して求めた圧力が硫酸の濃度調整中に変動する圧力範囲、即ち10点の移動平均して求めた圧力の最大値と最小値の差であり、またバッチ毎の圧力変動をいう。この圧力変動は、0.01MPa以下が特に好ましい。圧力変動を小さくすることによって音速の精度をあげることができ、換算される硫酸濃度を精度よく求めることができる。またこれにより換算する硫酸濃度(wt%)を小数点2桁以上の数値とすることに意味のある数値とすることができる。
【0015】
圧力変動は種々の現象の総和として現れている。例えば攪拌による影響、循環による影響、温度の変化に対応する粘度変化による影響などが挙げられる。攪拌の影響が大きい場合は、その攪拌羽根の形状、攪拌機の挿入位置、回転数を変えることで小さくすることができ、回転斑を小さくすることでも小さくすることができる。該循環による影響が大きい場合は、回転斑の少ないポンプの選定、循環量の低下などにより小さくすることができる。温度変化による圧力変動が大きい場合は、その温度変化を小さくするために、除熱のための冷却効率を高くする方法、添加液の添加速度を小さくする方法などにより小さくできる。温度変化としては、30℃以内にするのが好ましく、特に15℃以内が好ましい。温度変化を小さくする方が硫酸濃度への換算精度を良くすることができる。
【0016】
音波の測定部での圧力としてはゲージ圧力で0.001〜1.0MPaの値をとってもよいが、0.001〜0.5MPaの方が圧力変動を小さく制御し易く好ましい。より好ましくは0.001〜0.1MPaである。該測定部の圧力は、循環ラインの槽への戻り部分にバルブを設置してバルブの開口率で調整する方法、循環する液量を調整する方法、循環ラインの配管径や長さで調整する方法があり、これらの方法で0.5MPa以下に調整することができる。
【0017】
温度は音速を測定している硫酸と同等と見なせる温度を測定する。攪拌と循環が充分である場合は、どの場所でもよいが、攪拌と循環が充分でない場合は、音速測定位置から1m以内にするのが好ましい。温度測定の単位は℃で測定する場合、小数点以下1桁以上のデータで取り出せるものが硫酸濃度の精密測定上好ましく、特に小数点以下2桁のデジタルデータが好ましい。デジタルデータで取り出すことにより自動制御が容易になる。なおアナログデータとして取り出した場合はデジタルデータに変換して用いてもよい。この温度測定は、超音波濃度計に付いている温度測定機を用いてもよい。
【0018】
硫酸の音速と温度の測定に際して、測定機の測定部位は硫酸に対する防食対策を行うのが好ましく、テフロン(登録商標)コーティングしたものを用いることができる。これにより長期に亘って所定の硫酸濃度の調整が可能となる。
測定した硫酸の音速と温度のデータは、自動計算機能をもつものに取り込んで硫酸濃度に換算する。データの取り込みは、添加液の添加量(添加速度)にもよるが、10秒に一回以上、好ましくは5秒に一回以上、特に1秒に一回以上取り込むのがよい。
【0019】
換算する方法としては、硫酸の濃度が100wt%近傍で音速が変曲点を有するため、2通りに分けて換算する必要がある。すなわち変曲点よりも濃度の高い場合(以下、HC側という。)と濃度の低い場合(以下、LC側という。)に分けて換算する。換算する方法としては、HC側とLC側についてそれぞれ硫酸濃度、温度、音速のデータを予め収集し、このデータの近似式を作製し、近似式から換算する。予め収集するデータは、実際に濃度を調整する工程で行うのが最も好ましい。実際に濃度を調整する工程での硫酸濃度、温度、音速のデータとオフラインでのデータとが異なることがある。オフラインでデータを収集して近似式を作製し、各係数を実際の工程でフィッティングするのが、実際の工程で近似式を最初から作製するよりも容易であることから好ましい。
【0020】
近似式については、Rの2乗値が0.999以上になるような近似を行うのが好ましい。Rの2乗値は近似曲線の確実度の係数とも呼ばれ、0から1の数値で表現され、1に近い数値が確実度の高い数値である。下記にRの2乗値を示す。
(R)=1−SE/ST
SE=Σ(Y−Y’)
ST=(ΣY )−(ΣY/n
(式中、(R)はRの2乗値を示す。Yは実際のデータを、Y’は近似値を、nは総データ数を示す。)(マイクロソフト社製表計算ソフト「エクセル」参照)
各硫酸濃度での温度と音速の関係を近似したとき、Rの2乗値が0.999以上になるように実験精度と近似精度をあげることにより、換算した硫酸濃度の精度をさらに上げることができる。
【0021】
換算した硫酸濃度のデータは、硫酸濃度の制御を高精度すなわち±0.05wt%以内で行うためには小数点以下2桁以上の数値で出す必要がある。一方、桁数を極端に大きくしても意味がないので通常小数点以下4桁までの桁数で換算を行う。また換算した硫酸濃度のデータは4点以上、特に10点以上の移動平均を用いるのは好ましい態様である。音速データがわずかに変動がある場合は特に移動平均を用いるのがよい。この場合、換算する音速データの方を移動平均して用いてもよい。移動平均データを用いることで測定精度をさらに上げることが可能になる。
【0022】
換算した硫酸濃度は、人、もしくは自動制御システム(DCSなど)で監視し、所定濃度になった時点で添加液の供給を停止する。なお所定濃度は調整目標濃度でもよく、また時間のずれを考慮して調整目標濃度の少し前にしてもよい。監視している硫酸濃度の表示が多少ばらついている場合には、自動制御する際に、上記所定濃度値以上または以下の硫酸濃度の表示であっても、該硫酸濃度の表示がある特定の時間以上表示された場合(例えば60秒間または120秒間など)は所定濃度に到達したと判断してもよい。
【0023】
硫酸濃度の調整において、音速の変曲点を通過させて自動調整する場合は、変曲点近傍で一旦調整目標を変更するのが好ましい。例えば、第一の調整目標値を変曲点近傍の値として添加液の供給を停止し、次の第二の調整目標値に最終的に得たい濃度の値とするのが好ましい態様である。これは音速がV字型に濃度に対して変化するためであり、その区別を行うためのものである。
なお、硫酸濃度の表示で100wt%を超えるものは、溶けている遊離の三酸化イオウ(分子量80.07)が全て硫酸(分子量98.08)になったものとして計算した濃度表示であり、下記にその計算式を示す。
硫酸濃度(wt%)=100×98.08×(a+b)/(98.08×a+80.07×b)
(式中、分母は溶液の質量を表し、aが硫酸のモル数、bが三酸化イオウのモル数を表す。)
【0024】
以下に、実施例により本発明を説明する。
図1に濃度調整に用いた装置の一例の概要図を示した。
図1において、1は硫酸を調整するための槽で、テフロンライニングしているものである。2は槽の中の硫酸を攪拌するための攪拌機である。3は硫酸の発熱を除熱するための循環ラインであり、このラインの途中に循環させるためのポンプ4とクーラー5を設置した。6は除熱のための冷媒ラインである。7は循環量を調整するためのバルブである。8は圧力を微調整するための自動調整バルブである。循環ラインの垂直な部分に超音波濃度計発信機(鈴木自動車工業(株)製、SDM−20、テフロンライニング製、超音波受信機と一体になったもの)9、温度測定機10、圧力測定機11を設置した。添加液を添加するために定量ポンプ12と添加液のライン14、添加液を遮断するための自動バルブ13を設置している。15は添加液の供給方向を示している。これらの内、9,10,11,6,8,12,13は自動制御するため、DCSに接続し1秒毎に取り込み、処理、制御を行った。音速(m/sec)、温度(℃)は小数点以下1桁で取り込んだ。
【0025】
(i)近似式の設定
オフラインで種々の濃度の硫酸について、それぞれ温度(℃)を変化させて音速(m/sec)を測定した。その結果、各濃度で、下記式(1)の関係が得られ、Rの2乗値は0.999以上が得られた。
V=A×T+B (1)
(式中、Vは音速(m/sec)、Tは温度(℃)、A、Bは係数である。)
【0026】
次に各濃度で得られた係数A、Bを硫酸の濃度に対してグラフ化したところ、特定の濃度(100wt%近傍)で折れ曲がっていることが分かった。そこでその特定の濃度を100.00wt%として微修正し、それよりも濃度の高い方(HC側)と濃度の低い方(LC側)について近似式を得た。その近似式はそれぞれ濃度に対して係数が1次の式で表せた。
A=C×SC+D (2)
B=E×SC+F (3)
(式中、SCは硫酸濃度(wt%)、A、B、C、D、E、Fは係数である。)
これらの結果から、式(2)及び式(3)を式(1)に代入して整理することにより濃度、音速、温度の関係式を得ることができた。それを下記に示す。
SC(wt%)={V−(D×T+F)}/(C×T+E)
【0027】
実際の濃度調整の工程では圧力、流速など条件が異なるため、DCSには下記の式とし、それぞれの係数を微調整可能なようにプログラムした。
SC(wt%)={V−(D×T+F)}/(C×T+E)+G
式中、係数C、D、E、F、GはHC側とLC側でそれぞれ別の値を持つ。
なお、近似式の作製において、実際の工程で温度と音速の関係が直線で近似できない場合は、5次式以上の近似式を用いてもよい。これらは、実験精度と近似精度により適宜選ばれる。
【0028】
【実施例1】
(1)係数の調整等
図1の装置を用いて、硫酸濃度の異なるものを槽1に入れ、攪拌、循環させながら温度を変えて運転し、式4の係数を調整した。
圧力測定機11での圧力は、バルブ7で0.03MPaとし、圧力変動は、自動調整バルブ8で微調整した。
硫酸濃度の換算においては、音速データは連続する10点の移動平均を用いた。
【0029】
(2)濃度調整1
調整する前の硫酸として約102wt%のものを約1000リットル槽1に入れ、攪拌、循環をしてクーラー5によって温度測定機10での温度が18℃になるように制御した。
これに添加液として水を硫酸に対して約0.005wt%/分の添加速度で定量ポンプ12を用いて添加した。最終的な調整目標濃度を99.80wt%とし、水の添加を、監視しているHC側近似値の硫酸濃度100.05wt%で、一旦停止した。その後、監視している硫酸濃度の調整目標を最終的な調整目標濃度としてLC側およびそれに対応するHC側の値として水添加を行った。目標値に到達したか否かは、該調整目標値に対してLC側近似値ではその値以下、HC側近似値では対応するその値以上を20秒以上検知した場合のいずれかを満たすことを判断基準としてプログラムした。
【0030】
自動調整していた間の圧力変動は0.003MPa以内で、温度は15℃〜19℃まで変動していた。また、自動調整後の硫酸濃度は、槽1から抜き取って別途、中和滴定で硫酸濃度を求めた(以下、この結果をオフライン測定結果という)。なお、オフライン測定結果の濃度表示は音速の変曲点を100.00wt%として微修正して用いた。
【0031】
(3)濃度調整2〜10
濃度調整1と同様の操作を全部で10回行った。その結果、オフライン測定結果を整理すると、10回の平均が99.79wt%、最大値99.80wt%、最小値99.78wt%で濃度の一定した硫酸が得られていた。
【0032】
【比較例1】
(1)係数の調整等
圧力測定機11での圧力は、バルブ7で0.19MPaとし、圧力変動は、自動バルブ8を全開にして調整しなかった。それ以外は実施例1と同様にして式4の係数を調整した。
(2)濃度調整1〜10
係数の調整等以外は実施例1と同様に行った。その結果、圧力変動は0.08MPaで、温度変化は実施例1と同様であった。また、オフライン測定結果を整理すると、平均99.70wt%、最大値99.80wt%、最小値99.40wt%だった。
【0033】
【発明の効果】
本発明の方法により、濃度のばらつきの少ない硫酸を工業的に得ることができる。これによりアラミド樹脂を硫酸溶液に溶解させたドープとした場合の粘度変化も小さく、フィルムにした場合はその厚み斑の少ないフィルムを得ることができ、アラミド繊維とした場合は、糸径斑の少ない繊維を得ることができることから、本発明の方法はアラミド樹脂を溶解させる硫酸溶液の濃度調整方法として有用である。
【図面の簡単な説明】
【図1】本発明の硫酸濃度の調整を行うための装置の一例を示す概要図である。
【符号の説明】
1 槽
2 攪拌機
3 循環ライン
4 ポンプ
5 クーラー
6 冷媒ライン
7 バルブ
8 自動調整バルブ
9 超音波濃度計発信機
10 温度測定機
11 圧力測定機
12 定量ポンプ
13 自動バルブ
14 添加液ライン
15 添加液供給方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for adjusting the concentration of sulfuric acid, and more particularly, to a method for adjusting the concentration of sulfuric acid having a high concentration of about 100 wt% with high accuracy.
[0002]
[Prior art]
High-concentration sulfuric acid is also used as an excellent solvent in the field of polymer chemistry, and is used as a solvent for aramid fibers and aramid films such as polyparaphenylene terephthalamide (hereinafter abbreviated as PPTA). . The present inventors have found that the viscosity of a solution obtained by dissolving PPTA in sulfuric acid (hereinafter abbreviated as aramid dope) changes greatly depending on the sulfuric acid concentration, which leads to unevenness in film thickness and unevenness in yarn diameter. It has been found that precise concentration adjustment of sulfuric acid which is stable over a long period of time in a concentration range (96 to 104 wt%) which is not suitable, particularly a precise adjustment within ± 0.05 wt% is desirable.
[0003]
Precise measurement of the concentration is important for precise concentration adjustment. Experimentally, neutralization titration method, conductivity measurement method, method using hydrometer, BaSO 4 precipitation method, infrared absorption method, anion Various methods such as a method using chromatography have been used (reference: JIS K 1321-1994).
However, when these methods are used to measure high-concentration sulfuric acid, these methods cannot be adopted due to the unique properties of high-concentration sulfuric acid, or require a dilution operation. It was difficult to incorporate directly into
[0004]
On the other hand, an ultrasonic densitometer can measure high-concentration sulfuric acid, and a commercially available product can be obtained. Patent Literature 1 below describes a method for directly measuring the concentration of a sulfuric acid solution and the concentration of a product sulfuric acid in a distillation column, efficiently purifying waste sulfuric acid, and producing a purified sulfuric acid having a constant concentration. In the example, an example is described in which a sulfuric acid concentration of about 96 wt% is measured by an ultrasonic densitometer with a display accuracy of 0.1 wt%. However, their measurement accuracy is ± 0.1 wt%, which is insufficient for precise measurement as it is, and a more precise sulfuric acid concentration adjusting method has been demanded.
[0005]
[Patent Document 1]
JP-A-8-91811
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for industrially adjusting the concentration of high-concentration sulfuric acid near 100 wt% with high precision.
[0007]
[Means for Solving the Problems]
The present inventor has conducted extensive studies on the concentration adjustment method, and as a result, performing the concentration adjustment step under specific conditions, and using the ultrasonic wave propagation velocity and temperature data under those conditions, accurately converting the sulfuric acid concentration to The inventors have found that the concentration of sulfuric acid can be precisely adjusted by monitoring the concentration of sulfuric acid, thereby completing the present invention.
That is, the present invention is as follows.
The ultrasonic wave propagation velocity and temperature are measured within a pressure fluctuation of 0.05 MPa, the sulfuric acid concentration (wt%) is converted to two or more decimal places from the measured ultrasonic wave propagation velocity and temperature, and the converted sulfuric acid concentration is monitored. A method for adjusting a sulfuric acid concentration, wherein the sulfuric acid concentration is adjusted to 96 wt% to 104 wt%.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
There are two ways to adjust the concentration of sulfuric acid: to increase the concentration, adjust the concentration by mixing with concentrated sulfuric acid such as fuming sulfuric acid, or adjust the concentration by mixing sulfur trioxide with sulfuric acid. In order to lower the sulfuric acid, there is a method of adding sulfuric acid having low concentration or water to sulfuric acid having high concentration and mixing. When a higher concentration of sulfuric acid than the concentration to be adjusted is easily available, it is convenient to add sulfuric acid or water of lower concentration and mix.
[0009]
The sulfuric acid used may contain other components, for example, fine particles such as silica, alumina, titanium oxide, zinc oxide, calcium sulfate, and carbon black. In that case, if large particles are included, since the ultrasonic wave propagation velocity is used to measure the sulfuric acid concentration, the measurement error becomes large. Therefore, it is preferable not to include those having a particle size of 2 μm or more, and 0.2 μm or more. It is more preferred not to include Also, if the amount is too large, the measurement error increases, so the amount is preferably 1 wt% or less, particularly 0.1 wt% or less based on sulfuric acid.
In adjusting the sulfuric acid concentration, it is preferable that the adjustment be performed not in a completely continuous process but in a batch continuous process in consideration of performing the adjustment of the concentration with high accuracy.
[0010]
Adjustment of the sulfuric acid concentration involves a change in the concentration, which generates heat. For this reason, when adjusting industrially a large amount, there is a method of removing the heat of the sulfuric acid in the tank using a jacket of the tank, but since the heat removal efficiency is not sufficient, a separate circulation line is installed to increase the heat transfer area. A method of removing heat from sulfuric acid using a cooler or the like is adopted from the viewpoint of productivity. In addition, it is preferable to install a stirrer in the tank for adjusting the concentration of sulfuric acid in consideration of the efficiency of mixing when mixing different concentrations. Therefore, as a device for adjusting the concentration, a stirrer and a tank for mixing, a cooler for removing heat, a circulation line and a pump for supplying the cooler, a liquid to be mixed for concentration adjustment (hereinafter, referred to as an additive liquid). It is preferable to comprise an addition section for adding the carboxylic acid. It should be noted that in these designs, air should not be entrained in the sound velocity measuring section. As a method of preventing air from being entrained, a method of shifting the rotation shaft of the stirrer and the entrance of the circulation line so that air of the vortex due to agitation is not entrained in the circulation line, a method of reducing the number of rotations of the agitation, and reducing the vortex To prevent the air from being caught, a method in which the stirring liquid is pushed upward in the shape of the stirring blade of the stirrer, and a line end for returning to the circulation line tank is provided below the stirring liquid surface so that air is not caught. And all of these methods may be adopted, or a method selected from these methods may be used.
[0011]
It is preferable to supply the additive liquid in the concentration adjustment by adding a small amount by a metering pump because the concentration control can reduce errors. In particular, when the concentration to be adjusted (hereinafter referred to as an adjustment target concentration) is near, that is, when the difference from the adjustment target concentration is closer than 0.15 wt%, the amount of addition is 0.001 to the amount of sulfuric acid to be adjusted. An addition rate corresponding to a concentration change of 0.1 to 0.1 wt% / min is preferable, and an addition rate of 0.003 to 0.03 wt% / min is particularly preferable. When the addition rate exceeds 0.1 wt% / min, the dispersion of the adjusted sulfuric acid concentration between batches increases, and when the addition rate is less than 0.001 wt% / min, the efficiency is poor, so that it is not practical. On the other hand, when the concentration is away from the adjusted target concentration, the addition rate may be higher.
[0012]
The supply of the additive liquid to the tank is stopped by monitoring the concentration of sulfuric acid and stopping the supply of the additive liquid when the concentration reaches a predetermined concentration. The predetermined density may be the adjustment target density, or may be set slightly before the adjustment target density in consideration of the deviation of the apparatus. The supply of the additive liquid to the tank can be stopped by stopping the pump or closing the automatic valve of the addition section. In this case, these operations may be performed by a person monitoring and judging the concentration of sulfuric acid. However, it is preferable that the operation be incorporated into an automatic control system, for example, a distributed control system (DCS) and then automatically controlled.
For monitoring the sulfuric acid concentration, the ultrasonic wave propagation speed and temperature of sulfuric acid for adjusting the concentration are measured, and the sulfuric acid concentration obtained by converting the measured ultrasonic wave propagation speed and temperature is used.
[0013]
The ultrasonic wave propagation velocity in the liquid (hereinafter referred to as sound velocity) can be measured by an apparatus including an ultrasonic transducer, an ultrasonic transmitter, and an ultrasonic receiver. The ultrasonic pulse signal transmitted from the ultrasonic transmitter propagates in the sulfuric acid, is received by a receiving unit located at a fixed distance, and the speed of sound is calculated from the deviation of the pulse. Here, in order to keep the distance constant, it is preferable that the ultrasonic transmitter and the ultrasonic receiver are integrated with a small error. As a device for measuring such a sound speed, a commercially available ultrasonic densitometer can be used. As a device for measuring sound speed, a device capable of extracting sound speed data as digital data is preferable. When the unit is (m / sec), the value differs depending on conditions such as temperature, pressure, concentration, etc. A value near 1300 m / sec, which can be extracted with data having one or more digits after the decimal point, is preferable for precise measurement of the concentration, and particularly, a value which can be obtained with data having two or more digits after the decimal point is preferable. In addition, automatic control is facilitated by extracting sound velocity data as digital data. When the data is extracted as analog data, it may be converted to digital and used.
[0014]
As an installation position of the ultrasonic transmitter, it can be installed on a side surface of a tank for adjusting sulfuric acid or a circulation line for heat removal. When installed on the side of the tank, the speed of sound may fluctuate due to the effect of agitation. preferable.
In the present invention, it is necessary that the pressure fluctuation of the sound wave in the measuring section be within 0.05 MPa. In the present invention, the sound wave measuring unit refers to a portion from an ultrasonic wave transmitting portion, which measures an ultrasonic wave propagation velocity in a sulfuric acid solution, to a receiving portion. However, when the sulfuric acid solution is measured in the same pipe, the pressure on the upstream side may be used as a representative value. The pressure fluctuation referred to here is a pressure range in which the pressure obtained by moving average the measured value of the pressure per second at 10 points fluctuates during the adjustment of the sulfuric acid concentration, that is, the pressure obtained by moving average of 10 points. Is the difference between the maximum value and the minimum value, and also refers to the pressure fluctuation for each batch. This pressure fluctuation is particularly preferably 0.01 MPa or less. By reducing the pressure fluctuation, the accuracy of the sound velocity can be increased, and the converted sulfuric acid concentration can be obtained with high accuracy. In addition, the converted sulfuric acid concentration (wt%) can be set to a value meaningful to be set to a value having two decimal places or more.
[0015]
Pressure fluctuations appear as a sum of various phenomena. For example, the influence of stirring, the influence of circulation, the influence of viscosity change corresponding to the change of temperature, and the like can be given. When the effect of stirring is large, the size can be reduced by changing the shape of the stirring blade, the insertion position of the stirrer, and the number of rotations, and can also be reduced by reducing the unevenness of rotation. When the influence of the circulation is large, it can be reduced by selecting a pump with less rotation unevenness and reducing the circulation amount. When the pressure fluctuation due to the temperature change is large, the temperature change can be reduced by a method of increasing the cooling efficiency for heat removal, a method of reducing the rate of addition of the additive liquid, or the like. The temperature change is preferably within 30 ° C., particularly preferably within 15 ° C. The smaller the temperature change, the better the conversion accuracy to sulfuric acid concentration.
[0016]
The pressure of the sound wave at the measurement section may be a gauge pressure value of 0.001 to 1.0 MPa, but a pressure of 0.001 to 0.5 MPa is preferable because the pressure fluctuation can be easily reduced and controlled. More preferably, it is 0.001 to 0.1 MPa. The pressure of the measuring section is adjusted by a method of adjusting the opening ratio of the valve by installing a valve at a return portion of the circulation line to the tank, a method of adjusting the amount of circulating liquid, and a piping diameter or length of the circulation line. There are methods, and the pressure can be adjusted to 0.5 MPa or less by these methods.
[0017]
The temperature is measured at a temperature that can be regarded as equivalent to the sulfuric acid measuring the speed of sound. If the stirring and circulation are sufficient, any location may be used, but if the stirring and circulation are not sufficient, it is preferable to set the position within 1 m from the sound velocity measurement position. When the unit of the temperature measurement is measured in ° C., it is preferable for accurate measurement of the sulfuric acid concentration that the data can be taken out with data of one or more digits after the decimal point, particularly digital data with two digits after the decimal point. Automatic control is facilitated by taking out digital data. When the data is extracted as analog data, the data may be converted into digital data and used. This temperature measurement may be performed using a temperature measuring device attached to the ultrasonic densitometer.
[0018]
When measuring the sound speed and temperature of sulfuric acid, it is preferable to take measures against corrosion of sulfuric acid at the measurement site of the measuring instrument, and Teflon (registered trademark) -coated one can be used. This makes it possible to adjust the predetermined sulfuric acid concentration over a long period of time.
The data of the measured sound speed and temperature of sulfuric acid are taken into a device with an automatic calculation function and converted into sulfuric acid concentration. The data may be captured once or more every 10 seconds, preferably once or more every 5 seconds, and particularly preferably once or more every second, although it depends on the amount (addition rate) of the additive liquid.
[0019]
As a conversion method, since the sound velocity has an inflection point when the concentration of sulfuric acid is around 100 wt%, it is necessary to perform conversion in two ways. That is, the conversion is performed separately for a case where the concentration is higher than the inflection point (hereinafter referred to as HC side) and a case where the concentration is lower (hereinafter referred to as LC side). As a conversion method, data of the sulfuric acid concentration, temperature, and sound velocity are collected in advance for the HC side and the LC side, and an approximate expression of the data is created, and the data is converted from the approximate expression. It is most preferable that the data collected in advance is actually obtained in the step of adjusting the concentration. The data of the sulfuric acid concentration, temperature, and sound speed in the step of actually adjusting the concentration may be different from the offline data. It is preferable to collect data off-line to create an approximate expression and fit each coefficient in an actual process because it is easier than creating an approximate expression from the beginning in an actual process.
[0020]
It is preferable to perform the approximation so that the square value of R is 0.999 or more. The squared value of R is also referred to as a coefficient of certainty of the approximate curve, and is represented by a numerical value from 0 to 1, and a value close to 1 is a numerical value with high certainty. The square value of R is shown below.
(R) 2 = 1-SE / ST
SE = Σ (Y i −Y i ′) 2
ST = (ΣY i 2 ) − (ΣY i ) 2 / n
(Where, (R) 2 represents the square of R. Y i represents actual data, Y i ′ represents an approximate value, and n represents the total number of data.) (Microsoft spreadsheet software “ Excel ")
When the relationship between temperature and sound speed at each sulfuric acid concentration is approximated, the accuracy of the converted sulfuric acid concentration can be further increased by increasing the experimental accuracy and the approximation accuracy so that the square value of R is 0.999 or more. it can.
[0021]
In order to control the sulfuric acid concentration with high accuracy, that is, within ± 0.05 wt%, the converted sulfuric acid concentration data needs to be expressed by a numerical value having two or more decimal places. On the other hand, since it is meaningless to make the number of digits extremely large, conversion is usually performed with the number of digits up to four digits after the decimal point. In a preferred embodiment, the converted sulfuric acid concentration data uses a moving average of 4 points or more, particularly 10 points or more. If the sound velocity data slightly fluctuates, it is particularly preferable to use a moving average. In this case, the sound speed data to be converted may be used as a moving average. The use of moving average data makes it possible to further increase measurement accuracy.
[0022]
The converted sulfuric acid concentration is monitored by a person or an automatic control system (such as DCS), and when the concentration reaches a predetermined concentration, the supply of the additive liquid is stopped. The predetermined density may be the adjusted target density, or may be slightly before the adjusted target density in consideration of a time lag. If the display of the monitored sulfuric acid concentration is slightly varied, the automatic display may be performed for a specific time even if the display of the sulfuric acid concentration is equal to or more than the predetermined concentration value. When the above is displayed (for example, for 60 seconds or 120 seconds), it may be determined that the predetermined density has been reached.
[0023]
In the adjustment of the sulfuric acid concentration, when the automatic adjustment is performed by passing through the inflection point of the sound velocity, it is preferable to temporarily change the adjustment target near the inflection point. For example, in a preferred embodiment, the supply of the additive liquid is stopped with the first adjustment target value being a value near the inflection point, and the concentration is finally obtained as the second adjustment target value. This is because the speed of sound changes with respect to the density in a V-shape, and this is for discrimination.
If the sulfuric acid concentration exceeds 100 wt%, the concentration is calculated by assuming that all dissolved free sulfur trioxide (molecular weight: 80.07) has become sulfuric acid (molecular weight: 98.08). Shows the calculation formula.
Sulfuric acid concentration (wt%) = 100 × 98.08 × (a + b) / (98.08 × a + 80.07 × b)
(In the formula, the denominator represents the mass of the solution, a represents the number of moles of sulfuric acid, and b represents the number of moles of sulfur trioxide.)
[0024]
Hereinafter, the present invention will be described with reference to examples.
FIG. 1 shows a schematic diagram of an example of an apparatus used for density adjustment.
In FIG. 1, reference numeral 1 denotes a tank for adjusting sulfuric acid, which is lined with Teflon. 2 is a stirrer for stirring the sulfuric acid in the tank. Reference numeral 3 denotes a circulation line for removing heat generated by the sulfuric acid, and a pump 4 and a cooler 5 for circulating the heat were installed in the middle of this line. Reference numeral 6 denotes a refrigerant line for removing heat. Reference numeral 7 denotes a valve for adjusting a circulation amount. Reference numeral 8 denotes an automatic adjustment valve for finely adjusting the pressure. Ultrasonic densitometer transmitter (integrated with SDM-20, Teflon lining, integrated with ultrasonic receiver) 9, temperature measuring device 10, pressure measurement in vertical part of circulation line Machine 11 was installed. A metering pump 12 for adding the additive solution, a line 14 for the additive solution, and an automatic valve 13 for shutting off the additive solution are provided. Numeral 15 indicates the supply direction of the additive liquid. Of these, 9, 10, 11, 6, 8, 12, and 13 were connected to DCS for automatic control, and fetched every second for processing and control. The sound speed (m / sec) and temperature (° C.) were taken in one decimal place.
[0025]
(I) Setting of approximate formula Off-line, various speeds of sulfuric acid were measured at different temperatures (° C.) and the sound speed (m / sec) was measured. As a result, the relationship represented by the following formula (1) was obtained at each concentration, and the squared value of R was 0.999 or more.
V = A × T + B (1)
(Where V is the speed of sound (m / sec), T is the temperature (° C.), and A and B are coefficients.)
[0026]
Next, when the coefficients A and B obtained at each concentration were graphed with respect to the concentration of sulfuric acid, it was found that the curve was bent at a specific concentration (around 100 wt%). Therefore, the specific concentration was finely corrected to 100.00 wt%, and an approximate expression was obtained for the higher concentration (HC side) and the lower concentration (LC side). Each of the approximate expressions could be expressed by a first-order coefficient with respect to the concentration.
A = C × SC + D (2)
B = E × SC + F (3)
(Where SC is the sulfuric acid concentration (wt%), and A, B, C, D, E, and F are coefficients.)
From these results, by substituting Equations (2) and (3) into Equation (1) and organizing them, a relational expression of concentration, sound velocity, and temperature could be obtained. It is shown below.
SC (wt%) = {V− (D × T + F)} / (C × T + E)
[0027]
In the actual concentration adjustment process, conditions such as pressure and flow velocity are different. Therefore, DCS is programmed as follows, and each coefficient is programmed so that each coefficient can be finely adjusted.
SC (wt%) = {V− (D × T + F)} / (C × T + E) + G
In the equation, coefficients C, D, E, F, and G have different values on the HC side and the LC side, respectively.
Note that in the production of the approximate expression, if the relationship between the temperature and the sound velocity cannot be approximated by a straight line in the actual process, an approximate expression of 5th order or higher may be used. These are appropriately selected depending on the experimental accuracy and the approximation accuracy.
[0028]
Embodiment 1
(1) Adjustment of Coefficient, etc. Using the apparatus shown in FIG. 1, those having different sulfuric acid concentrations were put into the tank 1, and operated while changing the temperature while stirring and circulating to adjust the coefficient of Equation 4.
The pressure in the pressure measuring device 11 was set to 0.03 MPa by the valve 7, and the pressure fluctuation was finely adjusted by the automatic adjusting valve 8.
In the conversion of the sulfuric acid concentration, a moving average of 10 consecutive points was used for the sound velocity data.
[0029]
(2) Density adjustment 1
About 102 wt% of sulfuric acid before adjustment was put into about 1000 liter tank 1, stirred, circulated, and controlled by cooler 5 so that the temperature at temperature measuring device 10 became 18 ° C.
Water was added as a liquid additive thereto using the metering pump 12 at an addition rate of about 0.005 wt% / min to sulfuric acid. The final adjusted target concentration was 99.80 wt%, and the addition of water was temporarily stopped at the monitored sulfuric acid concentration of 100.05 wt%, which is an approximate value on the HC side. Thereafter, water was added as a monitored adjustment target of the sulfuric acid concentration as a final adjustment target concentration as a value on the LC side and a corresponding HC side. Whether or not the target value has been reached is determined by satisfying any of the following conditions when the adjustment target value is detected for 20 seconds or more when the LC-side approximate value is equal to or less than the value, and the HC-side approximate value is equal to or greater than the corresponding value. Programmed as a criterion.
[0030]
The pressure fluctuation during the automatic adjustment was within 0.003 MPa, and the temperature fluctuated from 15 ° C to 19 ° C. The sulfuric acid concentration after the automatic adjustment was taken out of the tank 1 and the sulfuric acid concentration was separately obtained by neutralization titration (hereinafter, this result is referred to as an off-line measurement result). Note that the concentration display of the off-line measurement result was used after finely correcting the inflection point of the sound velocity to be 100.00 wt%.
[0031]
(3) Density adjustment 2 to 10
The same operation as in density adjustment 1 was performed a total of 10 times. As a result, when the results of the off-line measurement were arranged, sulfuric acid having a constant concentration was obtained at an average of 99.79% by weight, a maximum value of 99.80% by weight, and a minimum value of 99.78% by weight.
[0032]
[Comparative Example 1]
(1) Adjustment of Coefficients The pressure in the pressure measuring device 11 was set to 0.19 MPa by the valve 7, and the pressure fluctuation was not adjusted by fully opening the automatic valve 8. Except for this, the coefficient of Equation 4 was adjusted in the same manner as in Example 1.
(2) Density adjustment 1 to 10
Except for the adjustment of the coefficients, the procedure was the same as in Example 1. As a result, the pressure fluctuation was 0.08 MPa, and the temperature change was the same as in Example 1. In addition, when the results of the offline measurement were arranged, the average was 99.70 wt%, the maximum was 99.80 wt%, and the minimum was 99.40 wt%.
[0033]
【The invention's effect】
By the method of the present invention, sulfuric acid having a small concentration variation can be industrially obtained. Thus, the change in viscosity when the dope is obtained by dissolving the aramid resin in a sulfuric acid solution is small, and when the film is formed, a film having a small thickness unevenness can be obtained. Since a fiber can be obtained, the method of the present invention is useful as a method for adjusting the concentration of a sulfuric acid solution in which an aramid resin is dissolved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an apparatus for adjusting a sulfuric acid concentration of the present invention.
[Explanation of symbols]
1 tank 2 stirrer 3 circulation line 4 pump 5 cooler 6 refrigerant line 7 valve 8 automatic adjustment valve 9 ultrasonic densitometer transmitter 10 temperature measuring device 11 pressure measuring device 12 metering pump 13 automatic valve 14 additive liquid line 15 additive liquid supply direction

Claims (1)

圧力変動0.05MPa以内で超音波伝播速度と温度を測定し、測定した超音波伝播速度と温度から硫酸濃度(wt%)を小数点2桁以上まで換算し、換算した硫酸濃度を監視して、硫酸濃度を96wt%〜104wt%に調整することを特徴とする硫酸濃度の調整方法。The ultrasonic wave propagation velocity and temperature are measured within a pressure fluctuation of 0.05 MPa, the sulfuric acid concentration (wt%) is converted to two decimal places or more from the measured ultrasonic wave propagation velocity and temperature, and the converted sulfuric acid concentration is monitored. A method for adjusting a sulfuric acid concentration, wherein the sulfuric acid concentration is adjusted to 96 wt% to 104 wt%.
JP2002368673A 2002-12-19 2002-12-19 Method for adjusting sulfuric acid concentration Pending JP2004198316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368673A JP2004198316A (en) 2002-12-19 2002-12-19 Method for adjusting sulfuric acid concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368673A JP2004198316A (en) 2002-12-19 2002-12-19 Method for adjusting sulfuric acid concentration

Publications (1)

Publication Number Publication Date
JP2004198316A true JP2004198316A (en) 2004-07-15

Family

ID=32765180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368673A Pending JP2004198316A (en) 2002-12-19 2002-12-19 Method for adjusting sulfuric acid concentration

Country Status (1)

Country Link
JP (1) JP2004198316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768244B1 (en) 2010-02-08 2017-08-14 오토텍 오와이제이 Method and apparatus for adjusting the concentration of acids or lyes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768244B1 (en) 2010-02-08 2017-08-14 오토텍 오와이제이 Method and apparatus for adjusting the concentration of acids or lyes

Similar Documents

Publication Publication Date Title
JP2003501254A (en) METHOD AND APPARATUS FOR PRODUCTION OF COMPOUNDS USING ULTRASONIC APPARATUS
JP4746385B2 (en) Flocculant injection control device applied to water treatment plant
CN109521813A (en) A kind of system and method for thermal power plant recirculated water concentration rate stability contorting
US20090035180A1 (en) Control system for industrial water system and method for its use
US11866348B2 (en) System, apparatus, and method for treating wastewater in real time
CN109707659B (en) Online performance monitoring system for fan
CN111348786A (en) Automatic dosing control system and method for wastewater softening pretreatment system
CN105658319A (en) Hydrolysis vessel used in a process for amidification of acetone cyanohydrin
CN110850833B (en) Intelligent setting system and method for aluminum oxide dissolution process
JP2004198316A (en) Method for adjusting sulfuric acid concentration
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
CN104237319A (en) PH value online analysis device suitable for industrial production and application of device
CN117311287A (en) Production site deviation rectifying control system based on chemical industry
CN101706304A (en) Method and equipment for monitoring liquid levels in real time in large-scale polymeric kettle reaction process
CN108404828A (en) A kind of process control method and reaction tower of ferric trichloride production process
JPH043280B2 (en)
JPH08295504A (en) Sulfuric acid diluting device
CN116578124A (en) Economical sewage dephosphorization control system based on machine learning
CA2139441A1 (en) Process and apparatus for neutralisation of acid streams
CN1685214A (en) Measurement of batch properties
JPH02218408A (en) Method for regulating injection rate of flocculant by means of floc measuring device
US9296833B2 (en) Method for controlling bubble formation in polymerization reactors
CN110794883A (en) Control method and system for automatically adding ammonia into condensed water of power plant
JP2019530768A (en) Preparation of aqueous solution of diamine / diacid salt
JPH06184085A (en) Determination of ammonium carbamate solution and process control of urea plant by the determination

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051014

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A02