JP2004198091A - Exhaust gas facility for heating furnace - Google Patents

Exhaust gas facility for heating furnace Download PDF

Info

Publication number
JP2004198091A
JP2004198091A JP2002370761A JP2002370761A JP2004198091A JP 2004198091 A JP2004198091 A JP 2004198091A JP 2002370761 A JP2002370761 A JP 2002370761A JP 2002370761 A JP2002370761 A JP 2002370761A JP 2004198091 A JP2004198091 A JP 2004198091A
Authority
JP
Japan
Prior art keywords
exhaust gas
water
heating furnace
temperature
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002370761A
Other languages
Japanese (ja)
Inventor
Kenji Umadate
健治 馬立
Kuniaki Okada
邦明 岡田
Noriaki Suefuji
典昭 末藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002370761A priority Critical patent/JP2004198091A/en
Publication of JP2004198091A publication Critical patent/JP2004198091A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas facility for a heating furnace capable of thermally protecting the exhaust gas facility by efficiently cooling exhaust gas of an exhaust gas facility side to a temperature less than a heat resistant temperature (or a set temperature) of the exhaust gas facility with respect to even increase of exhaust gas flow rate or a rise of the exhaust gas temperature. <P>SOLUTION: The exhaust gas facility is composed so as to pass combustion exhaust gas generated by the heating furnace. A sprinkler is provided in a flue of the combustion exhaust gas, and the sprinkler lowers the exhaust gas temperature by sprinkling water on the combustion exhaust gas. It is preferable that the sprinkler is a mist sprinkler of mixed two fluids of air and water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材加熱炉、連続焼鈍炉、熱処理炉等の加熱炉から排出された燃焼排ガスの排ガス設備、詳細には高温の燃焼排ガスからの熱的保護を目的とした加熱炉の排ガス設備に関するものである。
【0002】
【従来の技術】
図6は連続焼鈍炉(加熱炉)の一例を示す概略図である。鋼板(ストリップ)1を所定のライン速度で通板して熱処理を行う連続焼鈍炉33は、上流側から順に予熱炉2、直火加熱炉3、還元加熱炉4、均熱炉5を有し、鋼板1はこれらの各炉を順次通過することにより熱処理される。この熱処理を行う際に連続焼鈍炉33から排出される燃焼排ガスは、排ガス煙道を通過して炉外に排出されるが、この高温の燃焼排ガスが通過する設備としては、排ガス煙道、レキュペレータ(熱交換器)、排気ブロア、排ガスダンパ等の排ガス設備がある。これらの排ガス設備を高温排ガスの熱から保護するために、従来、高温排ガス中に希釈空気を投入する方法が採られている。
【0003】
図7は、このような希釈空気の投入を行う従来の排ガス設備の配置図である。連続焼鈍炉等の加熱炉30より排出される排ガスの煙道6に排熱回収を行うレキュペレータ7が設置されており、その後段に排ガス量をコントロールする排気ダンパ9、排ガス吸引を行う排気ブロワ8および煙突10を配置している。これらの排ガス設備の入側には、排ガス中に希釈空気を投入することによって、高温の排ガスを排ガス設備の耐熱温度(もしくは、ある設定温度)未満の温度までに冷却するための希釈空気導入部13(12は希釈空気ブロワ)が設けられている。そして、排ガス設備入側温度計11により検出される排ガス温度が、排ガス設備の耐熱温度(もしくは、ある設定温度)以上となった場合、希釈空気ブロワ12を起動させて、希釈空気導入部13を通じて排ガス煙道中に空気を投入し、排ガス設備入側排ガス温度が排ガス設備の耐熱温度(もしくは、ある設定温度)未満となるように冷却する。
(例えば、特許文献1。)。
【0004】
【特許文献1】
特開平8−199231号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来技術には次のような問題がある。
【0006】
排ガス系統の希釈空気ブロワ、排気ブロワは加熱炉の炉仕様に合わせて設計しているが、ブロワの容量に余裕が無い場合には十分に冷却できない場合がある。加熱炉の処理量の増加ニーズが発生した際に、加熱炉の燃焼量増加による排ガス量の増加や排ガス温度の上昇が生じるからである。その場合、従来の希釈空気方式ではブロワの更新もしくは増設が必要となり、設備費が高価になる。また、加熱炉を増設する場合においても、希釈空気ブロワの付帯、大容量の排気ブロワの設置が必要となり設備費は高価になる。加えて、希釈空気ブロワ、排気ブロワの消費電力が大きくなるというランニングコスト上の問題がある。
【0007】
したがって本発明の目的は、上記した従来技術の問題点を解決し、排ガス流量の増大、排ガス温度の上昇に対しても、排ガス設備入側の排ガス温度を排ガス設備の耐熱温度(もしくは、ある設定温度)未満まで効率良く冷却して、排ガス設備を熱的に保護することができる加熱炉の排ガス設備を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、この排ガス設備入側での排ガスの冷却方法について検討を行い、煙道内に水吹き込みを行って水の蒸発潜熱を利用して排ガス冷却を行うことにより、冷却後の排ガスボリュームの増大を招くことなく排ガスの効率的な冷却が可能となること、また、この水吹き込みを行う散水装置としてミスト散水装置を用いることにより、排ガスをより効率的に冷却できることを見出した。
【0009】
本発明はこのような知見に基づきなされたもので、以下のような特徴を有する。
【0010】
(1)加熱炉で発生した燃焼排ガスが通過する排ガス設備であって、燃焼排ガスの煙道中に燃焼排ガスに散水を行うことで排ガス温度を降下させるための散水装置を設けたことを特徴とした加熱炉の排ガス設備。
【0011】
(2)散水装置が空気と水の混合二流体のミスト散水装置であることを特徴とした上記(1)に記載の加熱炉の排ガス設備。
【0012】
【発明の実施の形態】
図1〜図3は本発明の加熱炉の排ガス設備の一実施形態を示すもので、図1は加熱炉の排ガス設備の全体説明図、図2は散水装置が設置された煙道部の断面図、図3は散水装置の散水ノズルの断面図である。
【0013】
図1〜図3において、6は加熱炉30の排ガスを排出するための煙道であり、この煙道6の途中には排ガスの排熱回収を行うレキュペレータ7が設置され、その後段に排ガス量をコントロールする排気ダンパ9、排ガス吸引を行う排気ブロア8および煙突10が配置されている。ここで、煙道6、レキュペレータ7、排気ダンパ9および排気ブロア8を加熱炉で発生した燃焼排ガスが通過する排ガス設備と称する。
【0014】
前記レキュペレータ7は、加熱炉30から排出される高温の排ガスから排熱回収を行い、その熱で空気を予熱して燃焼用空気として用いるための熱交換器である。レキュペレータ7の中には予熱空気配管系31が通過して空気が予熱され、予熱空気配管系31のレキュペレータ出側に予熱空気温度を検出する予熱空気温度計32が設置されている。
【0015】
加熱炉30とレキュペレータ7との間の煙道には、排ガス中に水吹き込みを行うことによって、高温の燃焼排ガスをそれが通過する排ガス設備の耐熱温度(もしくは、ある設定温度)未満の温度まで冷却するための散水装置14が設けられている。
【0016】
前記散水装置14は、煙道6の両側に対向するように設けられた1対の散水ノズル21を有している。この各散水ノズル21には水供給配管22、および空気供給配管23から水と空気がそれぞれ供給され、煙道内にミスト状態で水が吹き込まれるようになっている。図2の実施形態では1対のノズルを用いているが、所要の吹き込み水量に応じて任意の数のノズルを配置すれば良い。この時、煙道内部での排ガスとミストの混合を均一にすることが、蒸発時間を短くする点および煙道内面の水による濡れを防ぐ点で望ましく、このために、例えば円形煙道であればノズル配置を軸を中心に対向する配置とすることが望ましい。
【0017】
図3は散水ノズル21の構造例を示すもので、散水ノズル21は二重管構造の本体25とその先端に取付けられたノズルチップ24から構成されている。二重管構造の本体25は、外管と内管の間が空気用流路a、内管内が水用流路bとなっており、空気用流路aと水用流路bに前記空気供給配管23、水供給配管22を通じて空気と水を供給するための空気供給口27と水供給口26がそれぞれ設けられている。
【0018】
また、前記ノズルチップ24は、その中に孔が開いていて空気用流路aから流入する空気と水用流路bから流入する水とを混合してミストとしている。
【0019】
また、散水装置14による吹き込み水量を制御するために、各散水ノズル21の水供給配管22には個別遮断弁と水供給配管22の元部に取付けられた流量調整弁とがある。同様に、散水装置14による吹き込み空気量を制御するために、各散水ノズル21の空気供給配管23には個別遮断弁と空気供給配管23の元部に取付けられた流量調整弁とがある。
【0020】
以上のような加熱炉の排ガス設備においては、散水装置14から煙道6内に水の吹き込みを行う。水吹き込みの制御に関しては、排ガス設備入側温度計11により検出される排ガス温度が排ガス設備の耐熱温度(もしくは、ある設定温度)以上となった場合に散水装置21を作動させ、排ガス設備入側温度が排ガス設備の耐熱温度(もしくは、ある設定温度)未満となるのに必要な水量を投入して冷却する。
【0021】
次に吹き込み水量の制御方法について説明する。加熱炉の燃焼量により、排ガスの温度、排ガス量が変化するのに伴い、排ガス設備入側の高温排ガスを排ガス設備の耐熱温度(もしくは、ある設定温度)未満に冷却する水吹き込みの必要量も変化するため、水吹き込み量を可変とする制御が必要となる。制御方法としては2種類考えられる。一つは複数のノズルに対して、各ノズルの水供給配管22に個別遮断弁を設けるもので、各ノズルへの吹き込み水量は一定として、ON/OFFにより作動ノズル数を変更して吹き込み水量を階段状に制御するものである。他は水供給配管22の元部で流量調整弁により吹き込み流量の調整を行うものであり、この場合には各ノズルへの吹き込み水量が一様に変化する。図2は、複数対のノズルの内1対の散水ノズル21のみ図示している。吹き込み空気量についても、吹き込み水量に比例して同様の制御をしている。
【0022】
一般に加熱炉排ガス設備の耐熱温度により決まる排ガス設備入側の排ガス温度の限界値は800〜850℃であり、排ガス温度がこれ以上となる場合に水吹き込みにより冷却を実施する。この水吹き込み前の800〜850℃の高温状態、また水吹き込み後においても吹き込み水量をノズルのON/OFFで制御する場合には、高温排ガス中に水吹き込みを行わないノズルがさらされることになる。このとき、吹き込み水を停止するのと同時に空気の投入も停止すると、ノズルチップの焼損を招きトラブルに繋がるため、空気の投入は水吹き込みのON/OFFによらず常時行ってノズルチップの保護を行うことが好ましい。
【0023】
散水装置の水吹き込み位置から排ガス設備までの間を、散水量および散水された水粒子の粒径に応じて、散水された水の略全量が排ガス設備に達する前に蒸発するような距離に設定することが好ましい。
【0024】
一例として二流体ノズルにより噴出されるミストの粒径が300μmである場合には蒸発時間は0.4秒であり、水吹き込み位置から排ガス設備前で水による濡れを起こしてはならないので、排ガス温度計までの距離を排ガス移動時間で0.4秒以上確保する必要がある。
【0025】
図4(a)および(b)は本発明の加熱炉の排ガス設備の他の実施形態を示すもので、散水ノズルの配置を図2および図3とは異なる形態としたものである。
【0026】
煙道内部でのノズル配置については、排ガスとミストの混合を均一にする点および煙道内壁の水による濡れを防止する点で、煙道出側方向へ向けてミストを噴射するのが好ましい。このため図4(a)の実施形態では1対の散水ノズル21を煙道6の下流側に向けて斜めに設置し、また図4(b)の実施形態では対向する1対の散水ノズル21の先端を煙道6の下流側に向けて屈曲させたものである。
【0027】
【実施例】
本発明の加熱炉の排ガス設備を用いた場合と、従来の希釈空気投入方式を採用した排ガス設備を用いた場合について冷却後の排ガス量を調べた。本発明については図1に示す設備を用い、従来法については図7に示す設備を用いて以下の条件により行った。なお、本発明の散水ノズルは図2に示すような対向式のものを用いた。
【0028】
加熱炉出側排ガス温度1050℃、排ガス設備入側排ガス温度850℃の条件で加熱炉出側排ガス量(冷却前排ガス量)を30000Nm3/Hから50000Nm3/Hまで変化させて、冷却後の排ガス量の比較を行った。その結果を、従来法の希釈空気投入方式の排ガス設備の冷却時の希釈空気流量とともに図5に示す。
【0029】
図5から明らかなように、本発明の加熱炉の排ガス設備を用いた場合には、従来法の希釈空気投入方式の場合と比較して冷却後の排ガス量を減少することが可能である。加熱炉出側排ガス量が30000Nm3/Hから50000Nm3/Hまで変化させたどの場合も、加熱炉の排ガス設備を用いた場合には従来の希釈空気投入方式の場合と比較して冷却後の排ガス量を約15%減少させることが可能である。
【0030】
【発明の効果】
以上述べた本発明によれば、排ガス設備入側の排ガス温度を排ガス設備の耐熱温度(もしくは、ある設定温度)未満まで効率的に低下させることにより排ガス設備の熱的保護が可能となる。このため、希釈空気ブロワが不要となり、安価な設備で排ガス設備の冷却が可能となる。また、水吹き込みによれば水の蒸発潜熱を利用できるため、希釈空気を投入する場合と比較して冷却後の排ガス流量の増加が小さく、排ガス設備下流の排気ブロワの省電力が果たされる。
【図面の簡単な説明】
【図1】本発明の加熱炉の排ガス設備の一実施形態を示す加熱炉の排ガス設備の全体説明図
【図2】本発明の加熱炉の排ガス設備の一実施形態を示す散水装置が設置された煙道部の断面図
【図3】本発明の加熱炉の排ガス設備の一実施形態を示す散水装置の散水ノズルの断面図
【図4】(a)(b)本発明の加熱炉の排ガス設備の他の実施形態を示す散水ノズル配置図
【図5】本発明の加熱炉の排ガス設備を用いた場合と、従来の希釈空気投入方式を採用した排ガス設備を用いた場合との冷却後の排ガス量を比較したグラフ
【図6】連続焼鈍炉の一例を示す概略図
【図7】従来の希釈空気の投入による排ガス設備配置図
【符号の説明】
1 鋼板(ストリップ)
2 予熱炉
3 直火加熱炉
4 還元加熱炉
5 均熱炉
6 排ガス煙道
7 レキュペレータ
8 排気ブロア
9 排気ダンパ
10 煙突
11 排ガス設備入側温度計
12 希釈空気ブロア
13 希釈空気導入部
14 散水装置
21 散水ノズル
22 水供給配管
23 空気供給配管
24 ノズルチップ
25 二重管構造本体
26 水供給口
27 空気供給口
30 加熱炉
31 予熱空気配管系
32 予熱空気温度計
33 連続焼鈍炉
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas facility for combustion exhaust gas discharged from a heating furnace such as a steel heating furnace, a continuous annealing furnace, and a heat treatment furnace, and more particularly to an exhaust gas facility for a heating furnace for thermal protection from high-temperature combustion exhaust gas. Things.
[0002]
[Prior art]
FIG. 6 is a schematic view showing an example of a continuous annealing furnace (heating furnace). The continuous annealing furnace 33 for performing heat treatment by passing the steel plate (strip) 1 at a predetermined line speed has a preheating furnace 2, a direct-fired heating furnace 3, a reduction heating furnace 4, and a soaking furnace 5 in this order from the upstream side. The steel sheet 1 is heat-treated by sequentially passing through each of these furnaces. The flue gas discharged from the continuous annealing furnace 33 when performing this heat treatment passes through the flue gas flue and is discharged outside the furnace. Examples of facilities through which the high-temperature flue gas passes include flue gas flue, recuperator (Heat exchanger), exhaust gas blowers, exhaust gas dampers and other exhaust gas equipment. Conventionally, in order to protect these exhaust gas facilities from the heat of the high-temperature exhaust gas, a method of introducing dilution air into the high-temperature exhaust gas has been adopted.
[0003]
FIG. 7 is a layout view of a conventional exhaust gas facility for introducing such dilution air. A recuperator 7 for collecting exhaust heat is installed in a flue 6 of exhaust gas discharged from a heating furnace 30 such as a continuous annealing furnace, and an exhaust damper 9 for controlling an exhaust gas amount and an exhaust blower 8 for sucking exhaust gas are provided at a subsequent stage. And a chimney 10. At the inlet of these exhaust gas facilities, dilution air is introduced into the exhaust gas to cool the high-temperature exhaust gas to a temperature lower than the heat-resistant temperature (or a certain set temperature) of the exhaust gas facility. 13 (12 is a dilution air blower). When the exhaust gas temperature detected by the exhaust gas facility inlet thermometer 11 is equal to or higher than the heat-resistant temperature of the exhaust gas facility (or a certain set temperature), the dilution air blower 12 is started, and Air is introduced into the flue gas flue and cooled so that the temperature of the flue gas on the inlet side of the flue gas facility is lower than the heat-resistant temperature (or a certain set temperature) of the flue gas facility.
(For example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-8-199231
[Problems to be solved by the invention]
However, the above-described prior art has the following problems.
[0006]
The dilution air blower and exhaust blower of the exhaust gas system are designed according to the furnace specifications of the heating furnace, but if the capacity of the blower is not sufficient, cooling may not be sufficient. This is because when a need for increasing the throughput of the heating furnace arises, an increase in the amount of exhaust gas and an increase in the temperature of the exhaust gas due to an increase in the combustion amount of the heating furnace occur. In that case, in the conventional dilution air system, replacement or addition of blowers is required, and the equipment cost becomes high. In addition, even when an additional heating furnace is installed, it is necessary to provide a dilution air blower and a large-capacity exhaust blower, which increases the equipment cost. In addition, there is a problem in running cost that the power consumption of the dilution air blower and the exhaust blower increases.
[0007]
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to increase the exhaust gas flow rate and the exhaust gas temperature, the exhaust gas temperature at the exhaust gas inlet side is set to the heat-resistant temperature (or a certain setting) of the exhaust gas equipment. It is an object of the present invention to provide an exhaust gas facility of a heating furnace that can efficiently cool the exhaust gas facility to less than (temperature) and thermally protect the exhaust gas facility.
[0008]
[Means for Solving the Problems]
The present inventors studied a method of cooling the exhaust gas on the inlet side of the exhaust gas facility, and blown water into the flue to use the latent heat of evaporation of water to cool the exhaust gas. It has been found that it is possible to efficiently cool the exhaust gas without increasing the amount of exhaust gas, and that the exhaust gas can be cooled more efficiently by using a mist water spray device as the water spray device for blowing the water.
[0009]
The present invention has been made based on such findings, and has the following features.
[0010]
(1) Exhaust gas equipment through which flue gas generated in a heating furnace passes, wherein a sprinkler is provided for lowering the temperature of flue gas by spraying water on the flue gas in the flue of the flue gas. Exhaust gas equipment for heating furnace.
[0011]
(2) The exhaust gas equipment for a heating furnace according to the above (1), wherein the water spray device is a mist water spray device for mixing two fluids of air and water.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show an embodiment of an exhaust gas facility of a heating furnace according to the present invention. FIG. 1 is an overall explanatory view of the exhaust gas facility of the heating furnace, and FIG. 2 is a cross section of a flue section provided with a sprinkler. FIG. 3 is a cross-sectional view of the watering nozzle of the watering device.
[0013]
1 to 3, reference numeral 6 denotes a flue for discharging exhaust gas from the heating furnace 30. A recuperator 7 for recovering exhaust heat of the exhaust gas is provided in the middle of the flue 6, and a flue gas amount is provided at a subsequent stage. An exhaust damper 9 for controlling exhaust gas, an exhaust blower 8 for sucking exhaust gas, and a chimney 10 are arranged. Here, the flue 6, the recuperator 7, the exhaust damper 9, and the exhaust blower 8 are referred to as exhaust gas equipment through which the combustion exhaust gas generated in the heating furnace passes.
[0014]
The recuperator 7 is a heat exchanger that recovers exhaust heat from high-temperature exhaust gas discharged from the heating furnace 30 and preheats the air with the heat to use it as combustion air. In the recuperator 7, air is preheated by passing a preheating air piping system 31, and a preheating air thermometer 32 for detecting a preheating air temperature is installed on the preheating air piping system 31 on the recuperator outlet side.
[0015]
The flue gas between the heating furnace 30 and the recuperator 7 is blown with water into the flue gas to reach a temperature lower than the heat-resistant temperature (or a certain set temperature) of the flue gas equipment through which the high-temperature flue gas passes. A sprinkler 14 for cooling is provided.
[0016]
The watering device 14 has a pair of watering nozzles 21 provided on both sides of the flue 6 so as to face each other. Water and air are supplied to each of the watering nozzles 21 from a water supply pipe 22 and an air supply pipe 23, and water is blown into the flue in a mist state. Although a pair of nozzles is used in the embodiment of FIG. 2, an arbitrary number of nozzles may be arranged according to the required amount of water to be blown. At this time, it is desirable to make the mixing of the exhaust gas and the mist uniform in the flue in order to shorten the evaporation time and to prevent the inner surface of the flue from being wet by water. For example, it is desirable to arrange the nozzles so as to face each other around the axis.
[0017]
FIG. 3 shows an example of the structure of the watering nozzle 21. The watering nozzle 21 is composed of a main body 25 having a double pipe structure and a nozzle tip 24 attached to the tip thereof. The main body 25 having a double pipe structure has an air flow path a between the outer pipe and the inner pipe, and a water flow path b inside the inner pipe. The air flow path a and the water flow path b An air supply port 27 and a water supply port 26 for supplying air and water through the supply pipe 23 and the water supply pipe 22 are provided, respectively.
[0018]
The nozzle tip 24 has a hole therein and mixes the air flowing from the air channel a with the water flowing from the water channel b to form a mist.
[0019]
In addition, in order to control the amount of water blown by the water sprinkling device 14, the water supply pipe 22 of each water sprinkling nozzle 21 has an individual shutoff valve and a flow control valve attached to the base of the water supply pipe 22. Similarly, in order to control the amount of air blown by the water sprinkling device 14, the air supply pipe 23 of each water sprinkling nozzle 21 has an individual shutoff valve and a flow control valve attached to the base of the air supply pipe 23.
[0020]
In the exhaust gas equipment of the heating furnace as described above, water is blown from the sprinkler 14 into the flue 6. Regarding the control of the water injection, when the exhaust gas temperature detected by the exhaust gas facility inlet thermometer 11 becomes equal to or higher than the heat-resistant temperature of the exhaust gas facility (or a certain set temperature), the water spray device 21 is operated, and the exhaust gas facility inlet side is operated. The amount of water necessary for the temperature to become lower than the heat-resistant temperature (or a certain set temperature) of the exhaust gas equipment is supplied and cooled.
[0021]
Next, a method of controlling the amount of blown water will be described. As the temperature of the exhaust gas and the amount of exhaust gas change depending on the amount of combustion in the heating furnace, the required amount of water injection to cool the high-temperature exhaust gas on the inlet side of the exhaust gas facility to below the heat-resistant temperature (or a certain set temperature) of the exhaust gas facility also increases. Therefore, it is necessary to perform control for changing the amount of water blown. There are two types of control methods. One is to provide an individual shutoff valve in the water supply pipe 22 of each nozzle for a plurality of nozzles. The amount of water blown into each nozzle is fixed, and the number of working nozzles is changed by ON / OFF to reduce the amount of water blown. The control is performed stepwise. The other is to adjust the blowing flow rate by a flow control valve at the base of the water supply pipe 22, and in this case, the amount of water blown into each nozzle changes uniformly. FIG. 2 shows only one pair of the watering nozzles 21 out of the plurality of pairs of nozzles. The same control is performed on the blown air amount in proportion to the blown water amount.
[0022]
Generally, the limit value of the exhaust gas temperature on the inlet side of the exhaust gas equipment determined by the heat-resistant temperature of the heating furnace exhaust gas equipment is 800 to 850 ° C. When the exhaust gas temperature becomes higher than this, cooling is performed by blowing water. If the high-temperature state of 800 to 850 ° C. before the water injection and the amount of water to be injected is controlled by ON / OFF of the nozzle even after the water injection, the nozzle that does not perform the water injection is exposed to the high-temperature exhaust gas. . At this time, if the injection of air is also stopped at the same time as the injection of water, the nozzle tip may be burned and a trouble may occur. Therefore, the injection of air is always performed regardless of ON / OFF of the water injection to protect the nozzle tip. It is preferred to do so.
[0023]
Set the distance from the water injection position of the sprinkler to the exhaust gas facility so that almost the entire amount of sprinkled water evaporates before reaching the exhaust gas facility, according to the amount of water sprayed and the particle size of the water particles sprayed. Is preferred.
[0024]
As an example, when the particle diameter of the mist ejected by the two-fluid nozzle is 300 μm, the evaporation time is 0.4 seconds, and water must not be wetted from the water injection position to the exhaust gas facility, so that the exhaust gas temperature It is necessary to secure a distance to the total of 0.4 seconds or more in the exhaust gas transfer time.
[0025]
FIGS. 4 (a) and 4 (b) show another embodiment of the exhaust gas equipment of the heating furnace of the present invention, in which the arrangement of the watering nozzles is different from those of FIGS. 2 and 3. FIG.
[0026]
Regarding the nozzle arrangement inside the flue, it is preferable to spray the mist toward the flue exit side from the viewpoint of uniform mixing of the exhaust gas and the mist and of preventing the flue inner wall from being wet by water. For this reason, in the embodiment of FIG. 4A, a pair of watering nozzles 21 are installed obliquely toward the downstream side of the flue 6, and in the embodiment of FIG. Is bent toward the downstream side of the flue 6.
[0027]
【Example】
The amount of exhaust gas after cooling was examined in the case of using the exhaust gas equipment of the heating furnace of the present invention and in the case of using the exhaust gas equipment employing the conventional dilution air injection method. For the present invention, the equipment shown in FIG. 1 was used, and for the conventional method, the equipment shown in FIG. 7 was used under the following conditions. The watering nozzle of the present invention used was a facing nozzle as shown in FIG.
[0028]
Furnace exit side exhaust gas temperature 1050 ° C., by changing the conditions in the heating furnace exit side exhaust quantity of the exhaust gas facility inlet side exhaust gas temperature 850 ° C. The (before cooling the exhaust gas amount) from 30000 nM 3 / H to 50,000 nm 3 / H, after cooling The exhaust gas amount was compared. The results are shown in FIG. 5 together with the flow rate of dilution air at the time of cooling the exhaust gas equipment of the conventional dilution air injection method.
[0029]
As is clear from FIG. 5, when the exhaust gas equipment of the heating furnace of the present invention is used, the amount of exhaust gas after cooling can be reduced as compared with the case of the conventional dilution air charging method. In any case where the amount of exhaust gas on the exit side of the heating furnace was changed from 30,000 Nm 3 / H to 50,000 Nm 3 / H, when the exhaust gas equipment of the heating furnace was used, compared with the case of the conventional dilution air injection method, the cooling air after cooling was used. It is possible to reduce the amount of exhaust gas by about 15%.
[0030]
【The invention's effect】
According to the present invention described above, the exhaust gas facility can be thermally protected by efficiently lowering the exhaust gas temperature on the inlet side of the exhaust gas facility to below the heat-resistant temperature (or a certain set temperature) of the exhaust gas facility. For this reason, a dilution air blower is not required, and the exhaust gas equipment can be cooled with inexpensive equipment. In addition, since the latent heat of vaporization of water can be used by blowing water, an increase in the flow rate of exhaust gas after cooling is smaller than in the case of introducing dilution air, and power saving of the exhaust blower downstream of the exhaust gas equipment is achieved.
[Brief description of the drawings]
FIG. 1 is an overall explanatory view of an exhaust gas facility of a heating furnace showing an embodiment of an exhaust gas facility of a heating furnace of the present invention. FIG. 2 is provided with a water spray device showing an embodiment of an exhaust gas facility of the heating furnace of the present invention. FIG. 3 is a sectional view of a water spray nozzle of a water spray device showing an embodiment of an exhaust gas facility of a heating furnace according to the present invention. FIG. 4 (a) and (b) exhaust gas of a heating furnace of the present invention. Sprinkling nozzle arrangement diagram showing another embodiment of the equipment. FIG. 5 shows a cooling furnace after using the exhaust gas equipment of the heating furnace of the present invention and a case using the exhaust gas equipment adopting the conventional dilution air charging method after cooling. FIG. 6 is a schematic diagram showing an example of a continuous annealing furnace. FIG. 7 is a layout diagram of a conventional exhaust gas system by introducing dilution air.
1 steel plate (strip)
2 Preheating furnace 3 Open fire heating furnace 4 Reduction heating furnace 5 Soaking furnace 6 Exhaust gas flue 7 Recuperator 8 Exhaust blower 9 Exhaust damper 10 Chimney 11 Exhaust gas facility inlet thermometer 12 Dilution air blower 13 Diluted air introduction unit 14 Sprinkler device 21 Watering nozzle 22 Water supply pipe 23 Air supply pipe 24 Nozzle tip 25 Double pipe structure body 26 Water supply port 27 Air supply port 30 Heating furnace 31 Preheating air piping system 32 Preheating air thermometer 33 Continuous annealing furnace

Claims (2)

加熱炉で発生した燃焼排ガスが通過する排ガス設備であって、燃焼排ガスの煙道中に燃焼排ガスに散水を行うことで排ガス温度を降下させるための散水装置を設けたことを特徴とした加熱炉の排ガス設備。An exhaust gas facility through which flue gas generated by the heating furnace passes, and a sprinkler for lowering the temperature of the flue gas by spraying water on the flue gas in a flue of the flue gas. Exhaust gas equipment. 散水装置が空気と水の混合二流体のミスト散水装置であることを特徴とした請求項1に記載の加熱炉の排ガス設備。The exhaust gas equipment of a heating furnace according to claim 1, wherein the water spraying device is a mist water spraying device of a mixed two fluid of air and water.
JP2002370761A 2002-12-20 2002-12-20 Exhaust gas facility for heating furnace Pending JP2004198091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370761A JP2004198091A (en) 2002-12-20 2002-12-20 Exhaust gas facility for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370761A JP2004198091A (en) 2002-12-20 2002-12-20 Exhaust gas facility for heating furnace

Publications (1)

Publication Number Publication Date
JP2004198091A true JP2004198091A (en) 2004-07-15

Family

ID=32766591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370761A Pending JP2004198091A (en) 2002-12-20 2002-12-20 Exhaust gas facility for heating furnace

Country Status (1)

Country Link
JP (1) JP2004198091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865751A (en) * 2012-10-09 2013-01-09 无锡信德隆工业炉有限公司 Energy-saving combustion system of gas bell-type annealing furnace
CN103791727A (en) * 2012-11-01 2014-05-14 宜宾恒旭投资集团有限公司 Flue structure inside rotary kiln
CN109612284A (en) * 2018-11-28 2019-04-12 佛山市宏富达机械设备有限公司 A kind of aluminum-bar heating furnace with waste gas recovering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865751A (en) * 2012-10-09 2013-01-09 无锡信德隆工业炉有限公司 Energy-saving combustion system of gas bell-type annealing furnace
CN103791727A (en) * 2012-11-01 2014-05-14 宜宾恒旭投资集团有限公司 Flue structure inside rotary kiln
CN109612284A (en) * 2018-11-28 2019-04-12 佛山市宏富达机械设备有限公司 A kind of aluminum-bar heating furnace with waste gas recovering device

Similar Documents

Publication Publication Date Title
ES2937048T3 (en) System for preheating batch materials for glass melting furnace
JP2003021471A (en) Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator
CN101680049A (en) Method and equipment for heating a metal strip, in particular for annealing
JPH09126665A (en) Recovering method of waste heat of steel heating furnace and facility therefor
WO2006017965A1 (en) A dry-type dusting installation having heat exchanger for blast furnace
RU2436011C1 (en) Flue gas heat utilisation device and method of its operation
CN107477608A (en) Air preheater hot blast automatic block clearing anti-blocking system
JP2004198091A (en) Exhaust gas facility for heating furnace
JP6632439B2 (en) Heat source device
JP4227710B2 (en) Reduced iron production equipment
JP4757596B2 (en) Thermal storage burner device and its operation method
WO2004022672A1 (en) Coke dry quenching method and system
CN107781829A (en) A kind of rotation RTO bodies of heater and its heat preserving method that can realize interim blowing out insulation
JP5362983B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus for electric furnace
JP6617870B2 (en) Coke dry fire extinguishing equipment
JPH10158656A (en) Dry coke quencher
KR101854341B1 (en) Burn-Off Unit with Emitting Combusted Oil Vapor, Debris and Thinner by Jet Fan During Heat Treatment
CN207741587U (en) A kind of device of processing vanadium titanium reduction rotary kiln exhaust gas
CN205495327U (en) SNCR denitrification facility of pyrolysis furnace flue gas
JP2007101129A (en) Heat storage type burner device and its operation method
JP3782672B2 (en) Coke dry fire extinguishing method and apparatus
JP4362577B2 (en) Waste incineration equipment
CZ289861B6 (en) Gas-gas heater protection system and method
CN217465399U (en) Flue gas quenching and spraying device of steelmaking electric furnace
CN204455205U (en) A kind of can the low temperature naked light heat treatment furnace of homogeneous heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202