JP2003021471A - Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator - Google Patents

Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator

Info

Publication number
JP2003021471A
JP2003021471A JP2001203665A JP2001203665A JP2003021471A JP 2003021471 A JP2003021471 A JP 2003021471A JP 2001203665 A JP2001203665 A JP 2001203665A JP 2001203665 A JP2001203665 A JP 2001203665A JP 2003021471 A JP2003021471 A JP 2003021471A
Authority
JP
Japan
Prior art keywords
exhaust gas
recuperator
heating furnace
water
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203665A
Other languages
Japanese (ja)
Inventor
Kuniaki Okada
邦明 岡田
Kiyobumi Shibuya
清文 渋谷
Kenji Umadate
健治 馬立
Noriaki Suefuji
典昭 末藤
Akihiro Nagahiro
昭浩 永廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001203665A priority Critical patent/JP2003021471A/en
Publication of JP2003021471A publication Critical patent/JP2003021471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide the operating method of exhaust gas sensible heat recovery equipment having a heating furnace recuperator capable of efficiently cooling the recuperator inlet side exhaust gas down to below the heat-resisting temperature of the recuperator, without increasing the flow rate of exhaust gas excessively. SOLUTION: In the operating method of the exhaust gas sensible heat recovery equipment having the heating furnace recuperator 13 provided in the exhaust gas flue 12 on the outlet side of the heating furnace 11, water is blown into an exhaust gas flue 12 between the heating furnace and the heating furnace recuperator from a sprinkler 21, so as to cool down exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材加熱炉、連続
焼鈍炉、熱処理炉等の工業炉に付設される加熱炉レキュ
ペレーター(予熱器)を有する排ガス顕熱回収設備の操
業方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator (preheater) attached to an industrial furnace such as a steel material heating furnace, a continuous annealing furnace, and a heat treatment furnace. Is.

【0002】[0002]

【従来の技術】鋼材加熱炉、連続焼鈍炉、熱処理炉等の
工業炉に付設される排ガスレキュペレーターは、炉から
排出される高温の排ガスから排熱回収を行い、その熱で
空気を予熱して燃焼用空気として用いるための熱交換器
であるが、導入される排ガスの温度をレキュペレーター
の耐熱温度未満とするため、従来はレキュペレーターの
排ガス入口において高温排ガス中に希釈空気を投入して
排ガスを冷却している。
2. Description of the Related Art Exhaust gas recuperators attached to industrial furnaces such as steel heating furnaces, continuous annealing furnaces and heat treatment furnaces recover exhaust heat from the high temperature exhaust gas discharged from the furnaces and preheat air with the heat. Although it is a heat exchanger for use as combustion air, in order to make the temperature of the introduced exhaust gas below the heat-resistant temperature of the recuperator, conventionally, dilution air was added to the high temperature exhaust gas at the exhaust gas inlet of the recuperator. It is thrown in to cool the exhaust gas.

【0003】図7は、このような希釈空気の投入を行う
従来のレキュペレーターの配置図である。加熱炉11よ
り排出される排ガスの煙道12に排熱回収を行うレキュ
ペレーター13が設置されており、その後段に排ガス吸
引を行う排気ブロワ14および煙突15を配置してい
る。レキュペレーター入側には、排ガス中に希釈空気を
投入することによって、高温の排ガスをレキュペレータ
ーの耐熱温度(溶損温度)未満の温度までに冷却するた
めの希釈空気導入部19(20は希釈空気ブロワ)が設
けられている。そして、レキュペレーター入側の排ガス
温度計17により検出される排ガス温度がレキュペレー
ター13の耐熱温度以上となった場合、もしくは予熱空
気配管系16のレキュペレーター出側に設置された予熱
空気温度計18により検出される予熱空気温度がレキュ
ペレーター13の耐熱温度以上となった場合に、希釈空
気ブロワ20を起動させて、希釈空気導入部19を通じ
て煙道中に空気を投入し、レキュペレーター入側排ガス
温度がレキュペレーターの耐熱温度未満となるように冷
却する。
FIG. 7 is a layout view of a conventional recuperator for introducing such dilution air. A recuperator 13 for recovering exhaust heat is installed in a flue 12 of exhaust gas discharged from the heating furnace 11, and an exhaust blower 14 and a chimney 15 for sucking the exhaust gas are arranged in the subsequent stage. On the inlet side of the recuperator, dilution air is introduced into the exhaust gas to cool the high temperature exhaust gas to a temperature lower than the heat resistant temperature (melting temperature) of the recuperator. Is equipped with a dilution air blower). When the exhaust gas temperature detected by the exhaust gas thermometer 17 on the recuperator inlet side is equal to or higher than the heat resistant temperature of the recuperator 13, or the preheated air installed on the recuperator outlet side of the preheated air piping system 16. When the preheated air temperature detected by the thermometer 18 becomes equal to or higher than the heat resistant temperature of the recuperator 13, the dilution air blower 20 is activated, and air is introduced into the flue through the dilution air introducing portion 19 to collect the Cool the exhaust gas on the inlet side to the temperature below the heat-resistant temperature of the recuperator.

【0004】また、特開平8−199231号には、予
熱帯、加熱帯および均熱帯からなる加熱炉において、予
熱帯で複数の蓄熱式バーナーにより燃焼と蓄熱を交互に
繰り返して加熱し、蓄熱後の低温燃焼排ガスを空気予熱
器(エアレキュペレーター)入側の高温燃焼排ガス中へ
導入して燃焼排ガス温度を空気予熱器の溶損温度未満に
冷却しながら操業するようにした加熱炉の操業方法が示
されている。
Further, in Japanese Patent Application Laid-Open No. 8-199231, in a heating furnace composed of a pretropical zone, a heating zone and a soaking zone, a plurality of regenerative burners are alternately and alternately heated to heat in the pretropical zone, Method of operating a heating furnace in which low temperature flue gas is introduced into high temperature flue gas on the inlet side of the air preheater (air recuperator) to cool the flue gas to a temperature below the melting temperature of the air preheater It is shown.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来技術には次のような問題がある。排ガス系統の希
釈空気ブロワ、排気ブロワは加熱炉の炉仕様に合わせて
設計しているが、ブロワの容量に余裕が無い場合には設
備能力不足が発生する場合がある。加熱炉の処理量の増
加ニーズが発生した際に、加熱炉の燃焼量増加による排
ガス量の増加や排ガス温度の上昇が生じるからである。
その場合、従来の希釈空気方式ではブロワの更新もしく
は増設が必要となり、設備費が高価になる。また、加熱
炉を新設する場合においても、希釈空気ブロワの付帯、
大容量の排気ブロワの設置が必要となり設備費は高価に
なる。加えて、希釈空気ブロワ、排気ブロワの消費電力
が大きくなるというランニングコスト上の問題がある。
However, the above-mentioned conventional technique has the following problems. The diluted air blower and exhaust blower of the exhaust gas system are designed according to the furnace specifications of the heating furnace, but if the blower capacity is insufficient, the equipment capacity may be insufficient. This is because when there is a need to increase the throughput of the heating furnace, the amount of exhaust gas and the temperature of the exhaust gas increase due to the increase in the combustion amount of the heating furnace.
In that case, in the conventional dilution air system, the blower needs to be renewed or added, and the equipment cost becomes high. In addition, even when a new heating furnace is installed, the dilution air blower
A large-capacity exhaust blower must be installed, and the equipment cost will be high. In addition, there is a problem in running cost that power consumption of the dilution air blower and the exhaust blower increases.

【0006】また特開平8−199231号の方法で
は、30℃程度の希釈空気に代えて、蓄熱燃焼装置から
の蓄熱体を通過した200℃程度の燃焼排ガスを、空気
予熱器の入側に導入して排ガスを希釈するので、空気予
熱器の入側の高温燃焼排ガス温度を空気予熱器溶損温度
以下に低下させるためには、希釈空気を用いる場合より
もさらに多量の希釈用排ガスを導入する必要がある。こ
のため、空気予熱器入側の排ガス流量の増大によって圧
力損失が増大することになり、その結果、加熱炉の燃焼
負荷が大きい場合には操業に支障をきたす恐れがある。
Further, in the method of Japanese Patent Laid-Open No. 8-199231, instead of the dilution air of about 30 ° C., the combustion exhaust gas of about 200 ° C. which has passed through the heat storage from the heat storage combustion device is introduced into the inlet side of the air preheater. In order to lower the high temperature combustion exhaust gas temperature on the inlet side of the air preheater to below the melting temperature of the air preheater, a larger amount of the exhaust gas for dilution is introduced than when diluting air is used. There is a need. For this reason, the pressure loss increases due to the increase in the exhaust gas flow rate on the inlet side of the air preheater, and as a result, there is a risk of impairing the operation when the combustion load of the heating furnace is large.

【0007】したがって本発明の目的は、上記した従来
技術の問題点を解決し、排ガス流量を過剰に増大させる
ことなく、レキュペレーター入側排ガス温度をレキュペ
レーターの耐熱温度未満まで効率良く冷却することがで
きる、加熱炉レキュペレーターを有する排ガス顕熱回収
設備の操業方法を提供することにある。
Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to efficiently cool the exhaust gas temperature on the recuperator inlet side to a temperature lower than the heat resistant temperature of the recuperator without excessively increasing the exhaust gas flow rate. An object of the present invention is to provide a method of operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator capable of operating.

【0008】[0008]

【課題を解決するための手段】本発明者等は、このレキ
ュペレーター入側での排ガスの冷却方法について検討を
行い、煙道内に水吹き込みを行って水の蒸発潜熱を利用
して排ガス冷却を行うことにより、冷却後の排ガスボリ
ュームの増大を招くことなく排ガスの効率的な冷却が可
能となること、また、この水吹き込みを行う散水装置と
してミスト散水装置を用いることにより、排ガスをより
効率的に冷却できることを見出した。
Means for Solving the Problems The inventors of the present invention have studied the method of cooling exhaust gas on the inlet side of the recuperator, injecting water into the flue and utilizing the latent heat of vaporization of water to cool the exhaust gas. By doing so, it becomes possible to efficiently cool the exhaust gas without increasing the volume of the exhaust gas after cooling, and by using a mist sprinkler as the sprinkler that performs this water injection, the exhaust gas can be more efficiently It was found that it can be cooled effectively.

【0009】本発明はこのような知見に基づきなされた
もので、以下のような特徴を有する。
The present invention has been made on the basis of such findings and has the following features.

【0010】(1)加熱炉出側の排ガス煙道の途中に設
けられた加熱炉レキュペレーターを有する排ガス顕熱回
収設備の操業方法において、加熱炉と加熱炉レキュペレ
ーターとの間の排ガス煙道内に散水装置から水を吹き込
み、排ガスを冷却することを特徴とする加熱炉レキュペ
レーターを有する排ガス顕熱回収設備の操業方法。
(1) In an operating method of an exhaust gas sensible heat recovery facility having a heating furnace recuperator provided in the middle of an exhaust gas flue on the outlet side of the heating furnace, the exhaust gas between the heating furnace and the heating furnace recuperator. A method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator, characterized in that water is blown into a flue from a water sprinkler to cool the exhaust gas.

【0011】(2)散水装置が空気と水の混合二流体の
ミスト散水装置であることを特徴とする上記(1)に記
載の加熱炉レキュペレーターを有する排ガス顕熱回収設
備の操業方法。
(2) The method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator according to (1) above, wherein the water sprinkler is a mixed two-fluid mist water sprinkler.

【0012】(3)散水装置の水吹き込み位置からレキ
ュペレーターまでの間を、散水された水の略全量がレキ
ュペレーターに達する前に蒸発するような距離に設定す
ることを特徴とする上記(1)または(2)に記載の加
熱炉レキュペレーターを有する排ガス顕熱回収設備の操
業方法。
(3) The distance between the water injection position of the sprinkler and the recuperator is set to a distance such that substantially all the sprinkled water evaporates before reaching the recuperator. An operating method of an exhaust gas sensible heat recovery facility having the heating furnace recuperator according to (1) or (2).

【0013】[0013]

【発明の実施の形態】図1〜図3は本発明の加熱炉レキ
ュペレーターを有する排ガス顕熱回収設備の操業方法の
一実施形態を示すもので、図1は加熱炉レキュペレータ
ーを有する排ガス顕熱設備の全体説明図、図2は散水装
置が設置された煙道部の断面図、図3は散水装置の散水
ノズルの断面図である。
1 to 3 show one embodiment of a method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator according to the present invention, and FIG. 1 has a heating furnace recuperator. FIG. 2 is an overall explanatory view of the exhaust gas sensible heat equipment, FIG. 2 is a cross-sectional view of a flue portion in which a sprinkler is installed, and FIG. 3 is a cross-sectional view of a sprinkler nozzle of the sprinkler.

【0014】図1〜図3において、12は加熱炉11の
排ガスを排出するための煙道であり、この煙道12の途
中には排ガスの排熱回収を行うレキュペレーター13が
設置され、その後段に排ガス吸引を行う排気ブロア14
および煙突15が配置されている。
1 to 3, reference numeral 12 is a flue for discharging exhaust gas from the heating furnace 11, and a recuperator 13 for recovering exhaust heat of exhaust gas is installed in the flue 12 in the middle thereof. Exhaust blower 14 that sucks exhaust gas in the subsequent stage
And the chimney 15 is arranged.

【0015】前記レキュペレーター13は、加熱炉11
から排出される高温の排ガスから排熱回収を行い、その
熱で空気を予熱して燃焼用空気として用いるための熱交
換器であり、排ガス温度はレキュペレーター入側排ガス
温度計17により検出される。レキュペレーター13の
中には予熱空気配管系16が通過して空気が予熱され、
予熱空気配管系16のレキュペレター出側に予熱空気温
度を検出する予熱空気温度計18が設置されている。
The recuperator 13 is a heating furnace 11.
It is a heat exchanger for recovering exhaust heat from the high temperature exhaust gas discharged from the exhaust gas, and preheating the air with that heat to use as combustion air. The exhaust gas temperature is detected by the exhaust gas thermometer 17 on the inlet side of the recuperator. It A preheated air piping system 16 passes through the recuperator 13 to preheat the air,
A preheated air thermometer 18 for detecting the preheated air temperature is installed on the exit side of the recuperator of the preheated air piping system 16.

【0016】加熱炉11とレキュペレーター13との間
の煙道には、排ガス中に水吹き込みを行うことによって
高温の排ガスをレキュペレーターの耐熱温度(溶損温
度)未満の温度まで冷却するための散水装置21が設け
られている。
In the flue between the heating furnace 11 and the recuperator 13, water is blown into the exhaust gas to cool the high-temperature exhaust gas to a temperature lower than the heat resistant temperature (melting temperature) of the recuperator. A sprinkler device 21 is provided for this purpose.

【0017】前記散水装置21は、煙道12の両側に対
向するように設けられた1対の散水ノズル22を有して
いる。この各散水ノズル22には水供給配管23、およ
び空気供給配管24から水と空気がそれぞれ供給され、
煙道内にミスト状態で水が吹き込まれるようになってい
る。図2の実施形態では1対のノズルを用いているが、
所要の吹き込み水量に応じて任意の数のノズルを配置す
れば良い。この時、煙道内部での排ガスとミストの混合
を均一にすることが、蒸発時間を短くする点および煙道
内面の水による濡れを防ぐ点で望ましく、このために、
例えば円形煙道であればノズル配置を軸を中心に対向す
る配置とすることが望ましい。
The sprinkler device 21 has a pair of sprinkler nozzles 22 provided so as to face each other on both sides of the flue 12. Water and air are supplied to the water spray nozzles 22 from a water supply pipe 23 and an air supply pipe 24, respectively.
Water is blown into the flue in a mist state. Although the embodiment of FIG. 2 uses a pair of nozzles,
Any number of nozzles may be arranged according to the required amount of water to be blown. At this time, it is desirable to make the mixing of the exhaust gas and the mist inside the flue uniform in order to shorten the evaporation time and to prevent the inner surface of the flue from being wet with water.
For example, in the case of a circular flue, it is desirable that the nozzles are arranged so as to face each other around the axis.

【0018】図3は散水ノズル22の構造例を示すもの
で、散水ノズル22は二重管構造の本体26とその先端
に取付けられたノズルチップ25から構成されている。
二重管構造の本体26は、外管と内管の間が空気用流路
a、内管内が水用流路bとなっており、空気用流路aと
水用流路bに前記空気供給配管24、水供給配管23を
通じて空気と水を供給するための空気供給口28と水供
給口27がそれぞれ設けられている。
FIG. 3 shows an example of the structure of the water spray nozzle 22. The water spray nozzle 22 comprises a main body 26 having a double pipe structure and a nozzle tip 25 attached to the tip thereof.
The main body 26 of the double pipe structure has an air flow passage a between the outer pipe and the inner pipe and a water flow passage b inside the inner pipe, and the air flow passage a and the water flow passage b are provided with the air. An air supply port 28 and a water supply port 27 for supplying air and water through the supply pipe 24 and the water supply pipe 23 are provided, respectively.

【0019】また、前記ノズルチップ25は、空気用流
路aから流入する空気と水用流路bから流入する水とを
混合してミストとしている。
Further, the nozzle tip 25 mixes air flowing in from the air flow path a and water flowing in from the water flow path b to form a mist.

【0020】また、散水装置21による吹き込み水量を
制御するために、各散水ノズル22の水供給配管23に
は個別遮断弁と水供給配管23の元部に取付けられた流
量調整弁とがある。同様に、散水装置21による吹き込
み空気量を制御するために、各散水ノズル22の空気供
給配管24には個別遮断弁と空気供給配管24の元部に
取付けられた流量調整弁とがある。
Further, in order to control the amount of water blown by the water sprinkling device 21, the water supply pipe 23 of each water spray nozzle 22 has an individual shutoff valve and a flow rate adjusting valve attached to the base of the water supply pipe 23. Similarly, in order to control the amount of air blown by the water sprinkler 21, the air supply pipe 24 of each water spray nozzle 22 has an individual shutoff valve and a flow rate adjustment valve attached to the base of the air supply pipe 24.

【0021】以上のような加熱炉レキュペレーターを有
する排ガス顕熱回収設備においては、散水装置21から
煙道12内に水の吹き込みを行う。水吹き込みの制御に
関しては、レキュペレーター入側の排ガス温度計17に
より検出される排ガス温度がレキュペレーター13の耐
熱温度以上となった場合、もしくは予熱空気配管系16
のレキュペレーター出側に設置された予熱空気温度計1
8により検出される予熱空気温度がレキュペレーター1
3の耐熱温度以上となった場合に散水装置21を作動さ
せ、レキュペレーター入側排ガス温度がレキュペレータ
ーの耐熱温度未満となるのに必要な水量を投入して冷却
する。
In the exhaust gas sensible heat recovery equipment having the heating furnace recuperator as described above, water is blown into the flue 12 from the water sprinkler 21. Regarding the control of water injection, when the exhaust gas temperature detected by the exhaust gas thermometer 17 on the inlet side of the recuperator becomes equal to or higher than the heat resistant temperature of the recuperator 13, or the preheated air piping system 16
Preheated air thermometer 1 installed on the outlet side of the recuperator
The preheated air temperature detected by 8 is the recuperator 1
When the temperature exceeds the heat resistant temperature of 3, the water sprinkler 21 is operated, and the amount of water required for the exhaust gas temperature on the inlet side of the recuperator to be lower than the heat resistant temperature of the recuperator is added to cool.

【0022】次に吹き込み水量の制御方法について説明
する。加熱炉の燃焼量により、排ガスの温度、量が変化
するのに伴い、レキュペレーター入側の高温排ガスをレ
キュペレーターの耐熱温度未満に冷却する水吹き込みの
必要量も変化するため、水吹き込み量を可変とする制御
が必要となる。制御方法としては2種類考えられる。一
つは複数のノズルに対して、各ノズルの水供給配管23
に個別遮断弁を設けるもので、各ノズルへの吹き込み水
量は一定として、ON/OFFにより作動ノズル数を変
更して吹き込み水量を階段状に制御するものである。他
は水供給配管の元部で流量調整弁により吹き込み流量の
調整を行うものであり、この場合には各ノズルへの吹き
込み水量が一様に変化する。図2は、複数対のノズルの
内1対の散水ノズル22のみ図示している。吹き込み空
気量についても、吹き込み水量に比例して同様の制御を
している。
Next, a method of controlling the amount of water injected will be described. As the temperature and amount of the exhaust gas change depending on the combustion amount of the heating furnace, the required amount of water injection to cool the high temperature exhaust gas on the inlet side of the recuperator to less than the heat-resistant temperature of the recuperator also changes. It is necessary to control the amount to be variable. There are two possible control methods. One is for multiple nozzles, and the water supply pipe 23 for each nozzle is
An individual shutoff valve is provided for each nozzle, and the amount of water blown into each nozzle is kept constant, and the number of operating nozzles is changed by ON / OFF to control the amount of water blown in steps. The other is to adjust the flow rate of air blown by a flow rate adjusting valve at the base of the water supply pipe, and in this case, the amount of water blown into each nozzle changes uniformly. FIG. 2 illustrates only one pair of watering nozzles 22 of the plurality of pairs of nozzles. The amount of blown air is also controlled in the same manner as the amount of blown water.

【0023】一般に加熱炉レキュペレーターの耐熱温度
により決まるレキュペレーター入側の排ガス温度の限界
値は800〜850℃であり、排ガス温度がこれ以上と
なる場合に水吹き込みにより冷却を実施する。この水吹
き込み前の800〜850℃の高温状態、また水吹き込
み後においても吹き込み水量をノズルのON/OFFで
制御する場合には、高温排ガス中に水吹き込みを行わな
いノズルがさらされることになる。このとき、吹き込み
水を停止するのと同時に空気の投入も停止すると、ノズ
ルチップの焼損を招きトラブルに繋がるため、空気の投
入は水吹き込みのON/OFFによらず常時行ってノズ
ルチップの保護を行うことが好ましい。
Generally, the limit value of the exhaust gas temperature on the inlet side of the recuperator, which is determined by the heat resistant temperature of the heating furnace recuperator, is 800 to 850 ° C., and when the exhaust gas temperature is higher than this, cooling is performed by blowing water. If the high-temperature state of 800 to 850 ° C. before the water injection and the amount of water injection after the water injection are controlled by turning the nozzles ON / OFF, the nozzles that do not perform the water injection are exposed to the high-temperature exhaust gas. . At this time, if the injection of water is stopped at the same time as the injection of air is stopped, the nozzle tip will be burned, leading to a problem. Therefore, the injection of air is always performed regardless of whether the water injection is ON or OFF to protect the nozzle tip. It is preferable to carry out.

【0024】散水装置の水吹き込み位置からレキュペレ
ーターまでの間を、散水量および散水された水粒子の粒
径に応じて、散水された水の略全量がレキュペレーター
に達する前に蒸発するような距離に設定することが好ま
しい。
From the water injection position of the sprinkler to the recuperator, almost all the sprinkled water evaporates before reaching the recuperator, depending on the sprinkling amount and the particle size of the sprinkled water particles. It is preferable to set such a distance.

【0025】一例として二流体ノズルにより噴出される
ミストの粒径が300μmである場合には蒸発時間は
0.4秒であり、水吹き込み位置からレキュペレーター
前で水による濡れを起こしてはならないので、排ガス温
度計までの距離を排ガス移動時間で0.4秒以上確保す
る必要がある。
As an example, when the particle size of the mist ejected from the two-fluid nozzle is 300 μm, the evaporation time is 0.4 seconds, and wetting should not occur with water from the water injection position before the recuperator. Therefore, it is necessary to secure the distance to the exhaust gas thermometer in the exhaust gas moving time of 0.4 seconds or more.

【0026】図4および図5は本発明の加熱炉レキュペ
レーターを有する排ガス顕熱回収設備操業方法の他の実
施形態を示すもので、散水ノズルの配置を図1〜図3と
は異なる形態としたものである。
FIGS. 4 and 5 show another embodiment of the method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator according to the present invention. The arrangement of the water spray nozzle is different from that shown in FIGS. It is what

【0027】煙道内部でのノズル配置については、排ガ
スとミストの混合を均一にする点および煙道内壁の水に
よる濡れを防止する点で、煙道出側方向へ向けてミスト
を噴射するのが好ましい。このため図4の実施形態では
1対の散水ノズル22を煙道12の下流側に向けて斜め
に設置し、また図5の実施形態では対向する1対の散水
ノズル22の先端を煙道12の下流側に向けて屈曲させ
たものである。
Regarding the nozzle arrangement inside the flue, the mist is sprayed toward the outlet side of the flue in order to evenly mix the exhaust gas and the mist and to prevent the inner wall of the flue from getting wet with water. Is preferred. Therefore, in the embodiment of FIG. 4, the pair of water spray nozzles 22 are installed obliquely toward the downstream side of the flue 12, and in the embodiment of FIG. Is bent toward the downstream side of.

【0028】[0028]

【実施例】本発明法の水吹き込みによるレキュペレータ
ーの冷却方法と、従来法の希釈空気方式のレキュペレー
ターの冷却方法との冷却後の排ガス量の比較を、本発明
法については図1に示す設備を用い、従来法については
図7に示す設備を用いて以下の条件により行った。な
お、本発明法の水吹き込みノズルは図2に示すような対
向式のものを用いた。
EXAMPLES A comparison of the amount of exhaust gas after cooling between the method for cooling a recuperator by blowing water according to the method of the present invention and the method for cooling a recuperator using a conventional dilution air system is shown in FIG. The equipment shown in FIG. 7 was used, and the equipment shown in FIG. 7 was used for the conventional method under the following conditions. The water-blowing nozzle used in the method of the present invention was of the opposed type as shown in FIG.

【0029】加熱炉出側排ガス温度1050℃、レキュ
ペレーター入側排ガス温度850℃の条件で加熱炉出側
排ガス量(冷却前排ガス量)を30000Nm3/Hか
ら50000Nm3/Hまで変化させて、冷却後の排ガ
ス量の比較を行った。その結果を、従来法の希釈空気方
式のレキュペレーターの冷却時の希釈空気流量とともに
図6に示す。図6から明らかなように、本発明法の水吹
き込み方式の場合には、従来法の希釈空気方式の場合と
比較して冷却後の排ガス量を減少することが可能であ
る。加熱炉出側排ガス量が30000Nm3/Hから5
0000Nm3/Hまで変化させたどの場合も、水吹き
込み方式の場合には従来の希釈空気方式の場合と比較し
て冷却後の排ガス量を約15%減少させることが可能で
ある。
The heating furnace outlet side exhaust gas temperature is 1050 ° C. and the recuperator inlet side exhaust gas temperature is 850 ° C., and the heating furnace outlet side exhaust gas amount (exhaust gas amount before cooling) is changed from 30,000 Nm 3 / H to 50000 Nm 3 / H. The amounts of exhaust gas after cooling were compared. The results are shown in FIG. 6 together with the dilution air flow rate during cooling of the conventional dilution air type recuperator. As is apparent from FIG. 6, in the case of the water blowing method of the present invention, the amount of exhaust gas after cooling can be reduced as compared with the case of the conventional dilution air method. Exhaust gas amount on outlet side of heating furnace is from 30,000 Nm 3 / H to 5
In any case of changing to 0000 Nm 3 / H, it is possible to reduce the amount of exhaust gas after cooling by about 15% in the case of the water blowing method as compared with the case of the conventional dilution air method.

【0030】[0030]

【発明の効果】以上述べた本発明によれば、排ガスボリ
ュームを過剰に増大させることなく、レキュペレーター
入側の排ガス温度をレキュペレーターの耐熱温度未満ま
で効率的に低下させることができる。このため、希釈空
気ブロワが不要となり、安価な設備でレキュペレーター
の冷却が可能となる。また、水吹き込みによれば水の蒸
発潜熱を利用できるため、希釈空気を投入する場合と比
較して冷却後の排ガス流量の増加が小さく、レキュペレ
ーター下流の排気ブロワの省電力が果たされる。
According to the present invention described above, the exhaust gas temperature on the inlet side of the recuperator can be efficiently lowered to below the heat resistant temperature of the recuperator without excessively increasing the exhaust gas volume. Therefore, a dilution air blower is not required, and the recuperator can be cooled with inexpensive equipment. Further, since the latent heat of vaporization of water can be utilized by the water injection, the increase in the exhaust gas flow rate after cooling is small as compared with the case where the dilution air is input, and the power consumption of the exhaust blower downstream of the recuperator is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱炉レキュペレーターを有する排ガ
ス顕熱回収設備の操業方法の一実施形態を示す加熱炉レ
キュペレーターを有する排ガス顕熱回収設備の全体説明
FIG. 1 is an overall explanatory view of an exhaust gas sensible heat recovery facility having a heating furnace recuperator showing an embodiment of a method of operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator of the present invention.

【図2】本発明の加熱炉レキュペレーターを有する排ガ
ス顕熱回収設備の操業方法の一実施形態を示す散水装置
が設置された煙道部の断面図
FIG. 2 is a cross-sectional view of a flue section in which a sprinkler is installed, showing an embodiment of an operating method of an exhaust gas sensible heat recovery facility having a heating furnace recuperator of the present invention.

【図3】本発明の加熱炉レキュペレーターを有する排ガ
ス顕熱回収設備の操業方法の一実施形態を示す散水装置
の水吹き込みノズルの断面図
FIG. 3 is a cross-sectional view of a water injection nozzle of a water sprinkler showing an embodiment of an operating method of an exhaust gas sensible heat recovery facility having a heating furnace recuperator of the present invention.

【図4】本発明の加熱炉レキュペレーターを有する排ガ
ス顕熱回収設備の操業方法の他の実施形態を示す散水ノ
ズル配置図
FIG. 4 is a sprinkling nozzle arrangement view showing another embodiment of the operating method of the exhaust gas sensible heat recovery equipment having the heating furnace recuperator of the present invention.

【図5】本発明の加熱炉レキュペレーターを有する排ガ
ス顕熱回収設備の操業方法の他の実施形態を示す散水ノ
ズル配置図
FIG. 5 is a sprinkling nozzle arrangement view showing another embodiment of the operating method of the exhaust gas sensible heat recovery equipment having the heating furnace recuperator of the present invention.

【図6】本発明法と従来法との冷却後の排ガス量を比較
したグラフ
FIG. 6 is a graph comparing the amounts of exhaust gas after cooling according to the method of the present invention and the conventional method.

【図7】従来の希釈空気の投入によるレキュペレーター
配置図
Fig. 7 Layout of recuperator with conventional dilution air input

【符号の説明】[Explanation of symbols]

11 加熱炉 12 煙道 13 レキュペレーター 14 排気ブロワ 15 煙突 16 予熱空気配管系 17 レキュペレーター入側排ガス温度計 18 予熱空気温度計 19 希釈空気導入部 20 希釈空気ブロワ 21 散水装置 22 散水ノズル 23 水供給配管 24 空気供給配管 25 ノズルチップ 26 二重管構造本体 27 水供給口 28 空気供給口 11 heating furnace 12 flue 13 Recuperator 14 Exhaust blower 15 chimney 16 Preheated air piping system 17 Recuperator inlet exhaust gas thermometer 18 Preheated air thermometer 19 Dilution air inlet 20 diluted air blower 21 Sprinkler 22 Watering nozzle 23 Water supply piping 24 Air supply piping 25 nozzle tip 26 Double tube structure body 27 Water supply port 28 Air supply port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬立 健治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 末藤 典昭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 永廣 昭浩 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K023 QA03 QB00 QC08 3K070 DA37 DA50 DA58 4K056 AA08 AA09 CA02 DA02 DA22 DA32 FA06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenji Madate             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Noriaki Sueto             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Akihiro Nagahiro             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 3K023 QA03 QB00 QC08                 3K070 DA37 DA50 DA58                 4K056 AA08 AA09 CA02 DA02 DA22                       DA32 FA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉出側の排ガス煙道の途中に設けら
れた加熱炉レキュペレーターを有する排ガス顕熱回収設
備の操業方法において、加熱炉と加熱炉レキュペレータ
ーとの間の排ガス煙道内に散水装置から水を吹き込み、
排ガスを冷却することを特徴とする加熱炉レキュペレー
ターを有する排ガス顕熱回収設備の操業方法。
1. A method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator provided in the middle of an exhaust gas flue on the heating furnace exit side, wherein exhaust gas smoke between the heating furnace and the heating furnace recuperator. Blow water from the sprinkler into the road,
A method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator, characterized by cooling exhaust gas.
【請求項2】 散水装置が空気と水の混合二流体のミス
ト散水装置であることを特徴とする請求項1に記載の加
熱炉レキュペレーターを有する排ガス顕熱回収設備の操
業方法。
2. The method for operating an exhaust gas sensible heat recovery facility having a heating furnace recuperator according to claim 1, wherein the water sprinkler is a mixed-fluid mist water sprinkler of air and water.
【請求項3】 散水装置の水吹き込み位置からレキュペ
レーターまでの間を、散水された水の略全量がレキュペ
レーターに達する前に蒸発するような距離に設定するこ
とを特徴とする請求項1または2に記載の加熱炉レキュ
ペレーターを有する排ガス顕熱回収設備の操業方法。
3. A distance between the water injection position of the sprinkler and the recuperator is set to a distance such that substantially the entire amount of sprinkled water evaporates before reaching the recuperator. An operating method of an exhaust gas sensible heat recovery facility having the heating furnace recuperator according to 1 or 2.
JP2001203665A 2001-07-04 2001-07-04 Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator Pending JP2003021471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203665A JP2003021471A (en) 2001-07-04 2001-07-04 Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203665A JP2003021471A (en) 2001-07-04 2001-07-04 Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator

Publications (1)

Publication Number Publication Date
JP2003021471A true JP2003021471A (en) 2003-01-24

Family

ID=19040260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203665A Pending JP2003021471A (en) 2001-07-04 2001-07-04 Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator

Country Status (1)

Country Link
JP (1) JP2003021471A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442035B2 (en) 2005-04-26 2008-10-28 Gei Development, Llc Gas induction bustle for use with a flare or exhaust stack
US8459984B2 (en) 2005-04-26 2013-06-11 Heartland Technology Partners Llc Waste heat recovery system
US8585869B1 (en) 2013-02-07 2013-11-19 Heartland Technology Partners Llc Multi-stage wastewater treatment system
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8721771B2 (en) 2011-01-21 2014-05-13 Heartland Technology Partners Llc Condensation plume mitigation system for exhaust stacks
US8741100B2 (en) 2007-03-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US8741101B2 (en) 2012-07-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US8790496B2 (en) 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
US8801897B2 (en) 2007-03-13 2014-08-12 Heartland Technology Partners Llc Compact wastewater concentrator and contaminant scrubber
US8808497B2 (en) 2012-03-23 2014-08-19 Heartland Technology Partners Llc Fluid evaporator for an open fluid reservoir
US9199861B2 (en) 2013-02-07 2015-12-01 Heartland Technology Partners Llc Wastewater processing systems for power plants and other industrial sources
US9296624B2 (en) 2011-10-11 2016-03-29 Heartland Technology Partners Llc Portable compact wastewater concentrator
US9808738B2 (en) 2007-03-13 2017-11-07 Heartland Water Technology, Inc. Compact wastewater concentrator using waste heat
US10005678B2 (en) 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator
JP2021007898A (en) * 2019-06-28 2021-01-28 三菱パワー株式会社 Crushing device, boiler system, and operation method of crushing device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442035B2 (en) 2005-04-26 2008-10-28 Gei Development, Llc Gas induction bustle for use with a flare or exhaust stack
US8172565B2 (en) 2005-04-26 2012-05-08 Heartland Technology Partners Llc Gas induction bustle for use with a flare or exhaust stack
US8459984B2 (en) 2005-04-26 2013-06-11 Heartland Technology Partners Llc Waste heat recovery system
US10179297B2 (en) 2007-03-13 2019-01-15 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US9808738B2 (en) 2007-03-13 2017-11-07 Heartland Water Technology, Inc. Compact wastewater concentrator using waste heat
US11376520B2 (en) 2007-03-13 2022-07-05 Heartland Water Technology, Inc. Compact wastewater concentrator using waste heat
US8741100B2 (en) 2007-03-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US10946301B2 (en) 2007-03-13 2021-03-16 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8790496B2 (en) 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
US8801897B2 (en) 2007-03-13 2014-08-12 Heartland Technology Partners Llc Compact wastewater concentrator and contaminant scrubber
US10596481B2 (en) 2007-03-13 2020-03-24 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US10005678B2 (en) 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator
US9926215B2 (en) 2007-03-13 2018-03-27 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
US9617168B2 (en) 2007-03-13 2017-04-11 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8721771B2 (en) 2011-01-21 2014-05-13 Heartland Technology Partners Llc Condensation plume mitigation system for exhaust stacks
US9296624B2 (en) 2011-10-11 2016-03-29 Heartland Technology Partners Llc Portable compact wastewater concentrator
US9943774B2 (en) 2012-03-23 2018-04-17 Heartland Technology Partners Llc Fluid evaporator for an open fluid reservoir
US8808497B2 (en) 2012-03-23 2014-08-19 Heartland Technology Partners Llc Fluid evaporator for an open fluid reservoir
US8741101B2 (en) 2012-07-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US9199861B2 (en) 2013-02-07 2015-12-01 Heartland Technology Partners Llc Wastewater processing systems for power plants and other industrial sources
US8585869B1 (en) 2013-02-07 2013-11-19 Heartland Technology Partners Llc Multi-stage wastewater treatment system
JP2021007898A (en) * 2019-06-28 2021-01-28 三菱パワー株式会社 Crushing device, boiler system, and operation method of crushing device
JP7423204B2 (en) 2019-06-28 2024-01-29 三菱重工業株式会社 Grinding equipment, boiler system, and method of operating the grinding equipment

Similar Documents

Publication Publication Date Title
JP2003021471A (en) Operating method of exhaust gas sensible heat recovery equipment having heating furnace recuperator
JP2001276547A (en) Temperature conditioner and temperature conditioning method for high temperature exhaust gas
CN1926248B (en) Direct smelting plant and process
RU2469961C2 (en) Furnace and combustion method with oxygen blowing for melting of glass-forming materials
CN108931141B (en) A kind of technique for realizing inexpensive denitration using sinter waste-heat sintered discharge gas
US11795091B2 (en) System for preheating glass melting furnace batch materials
KR850001930B1 (en) Method of operating regenerator for furnace
US20200317556A1 (en) System for Preheating Glass Melting Furnace Batch Materials
CN105238901B (en) A kind of multiduty hot-blast stove high temperature preheating system
JP4227710B2 (en) Reduced iron production equipment
JP2004198091A (en) Exhaust gas facility for heating furnace
JP4274358B2 (en) Flue gas denitration device and flue gas denitration method
JP5362983B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus for electric furnace
CN108955277A (en) A kind of system for realizing inexpensive denitration using sinter waste-heat sintered discharge gas
CN207113629U (en) A kind of system for realizing inexpensive denitration using sintering deposit waste-heat sintered discharge gas
JP4418053B2 (en) Continuous annealing furnace
JPH06193823A (en) Heat storage type low-nox burner
JP2000055303A (en) Waste heat recovering facility for melt reducing furnace and method for operating the same
JP3799841B2 (en) Operating method of heating furnace
JP4567221B2 (en) Vertical continuous heat treatment equipment
JPH11323432A (en) Heating furnace device
TWI685570B (en) A device for heating iron or steel products and a method for heating iron or steel products
JP2002022119A (en) Radiation heating apparatus
CN113528732A (en) Combustion control method and device for blast furnace hot blast stove
JPH10251763A (en) Method for cooling continuous heat treatment furnace for metallic strip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605