JP2004197621A - Operating method of centrifugal pump with different kinds of pumping abilities - Google Patents

Operating method of centrifugal pump with different kinds of pumping abilities Download PDF

Info

Publication number
JP2004197621A
JP2004197621A JP2002365762A JP2002365762A JP2004197621A JP 2004197621 A JP2004197621 A JP 2004197621A JP 2002365762 A JP2002365762 A JP 2002365762A JP 2002365762 A JP2002365762 A JP 2002365762A JP 2004197621 A JP2004197621 A JP 2004197621A
Authority
JP
Japan
Prior art keywords
pump
centrifugal pump
performance
impeller
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365762A
Other languages
Japanese (ja)
Other versions
JP2004197621A5 (en
Inventor
Takashi Yamamoto
多華示 山本
Masaru Imagawa
優 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSO ELEC Manufacturing
Sanso Electric Co Ltd
Original Assignee
SANSO ELEC Manufacturing
Sanso Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSO ELEC Manufacturing, Sanso Electric Co Ltd filed Critical SANSO ELEC Manufacturing
Priority to JP2002365762A priority Critical patent/JP2004197621A/en
Publication of JP2004197621A publication Critical patent/JP2004197621A/en
Publication of JP2004197621A5 publication Critical patent/JP2004197621A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for appropriately operating one centrifugal pump having two different kinds of pumping abilities according to the operating state by giving the pump a pumping ability ¾dH/dQ¾ of a small pump and a pumping ability ¾dH/dQ¾ of a large pump. <P>SOLUTION: When the centrifugal pump 8 comprising piping and equipment for liquid feeding to load resistance needs a high lift, it is operated by using a normal rotation 12 wherein the rotating direction of impellers 9 of the centrifugal pump 8 matches the direction of a discharging port 11, and when the pump 8 needs a low lift, it is operated by using a reverse rotation 13 wherein the rotating direction of the impellers 9 of the centrifugal pump 8 is different from the direction of the discharging port 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は遠心ポンプの運転方法に関し、特に暖房用機器などの熱源器機からの温湯を送給するために用いるDCモータ内蔵の遠心ポンプ(このDCモータ内蔵の遠心ポンプを本発明では「DCポンプ」という。)の運転方法に関する。
【0002】
【従来の技術】
工業用ポンプとして大量の液体を圧送する遠心ポンプは、渦巻き状のインペラーを有し、インペラーの軸心部からインペラーの回転方向と同方向に配設されたポンプ吐出口に遠心力により液体を吐出して送給している。このような遠心ポンプにおいて、図1に示すように、縦軸に全揚程[m]をとり横軸に揚水量[l/m]をとって性能曲線図にグラフとして描くとき、同一の動作点Aを通る遠心ポンプには、性能曲線1で示される締め切り揚程が低く開放揚水量が大きい|dH/dQ|の小さい(ここでdHは揚程の変化、dQは揚水量の変化を示す。)ポンプ性能の遠心ポンプと、性能曲線2で示される締め切り揚程が高く開放揚水量が小さい|dH/dQ|の大きいポンプ性能の遠心ポンプの2種が通常ある。一方、遠心ポンプに接続の配管および機器などから受ける負荷抵抗は二次曲線からなる負荷曲線3として性能曲線図に示される。
【0003】
ところで、配管や機器など負荷抵抗に接続した遠心ポンプは、その駆動するモータの回転数制御により遠心ポンプの回転数を低回転にしていくと、その揚程および揚水量はこの負荷曲線3に沿って減っていく。しかし、ある程度以下に回転数を減らしていくと、揚程が低くなるに連れて揚水量の減り方が急増しだして負荷曲線3は寝てくる。従って、僅かの揚程の変動で揚水量が大きく変化することとなり、揚水量がばらつき易くなるので、制御性が悪くなってくる。すなわち、図1において、性能曲線1は回転数を減らしていくと揚程が下がり、性能曲線4となるが、この状態からさらに回転数を減らして揚程を変化量xだけ減らすと性能曲線4’となる。すなわち、負荷曲線3との交点の動作点A’は動作点C’となる。この時の揚水量は変化量pとなる。この変化量pは、性能曲線1の負荷曲線3との交点の動作点Aが回転数を減らして揚程を変化量xだけ減らした時の性能曲線1’の負荷曲線3との交点の動作点Cとなるときの揚水量の変化量mよりも明らかに大きく、少しの揚程の変化で揚水量が変動し易いことを示している。
【0004】
次いで、性能曲線が同一動作点を通るものとしたとき、締め切り揚程(揚水量0のときの揚程)が低く開放揚水量が大きい|dH/dQ|の大きい性能曲線1で示されるポンプ性能の遠心ポンプと、締め切り揚程が高く開放揚水量が小さい性能曲線2で示される|dH/dQ|の大きいポンプ性能の遠心ポンプの2種の遠心ポンプを比較する。この場合、性能曲線1のポンプ性能の遠心ポンプの回転数を減らして性能曲線1’となるように揚程を変化量xだけ減らすとき、性能曲線1との交点である動作点Aは負荷曲線3に沿って移動して動作点Cとなり、揚水量の変化は動作点Aと動作点Cの間の揚水量の変化量mとなる。一方、同じ動作点Aを通る性能曲線2のポンプ性能で示される締め切り揚程が高く開放揚水量が小さい|dH/dQ|の大きいポンプ性能の遠心ポンプの回転数を減らして性能曲線2’となるように揚程を上記と同様に変化量xだけ減らすとき、性能曲線2の動作点Aは負荷曲線3に沿って移動して動作点Bとなり、揚水量の変化量は動作点Aと動作点Bの間の揚水量の変化量nとなる。
【0005】
図1から明らかなように揚水量の変化量mは揚水量の変化量nより大であるので、これら2種のポンプ性能では、同一の揚程の変化量xに対し、揚水量の変化量は、前者の|dH/dQ|の小さいポンプ性能の揚水量の変化量mより後者の|dH/dQ|の大きいポンプ性能の揚水量の変化量nの方が小さい。そこで、|dH/dQ|の大きいポンプ性能の遠心ポンプの方が回転数の変化が生じて揚程が変わっても揚水量の変動すなわちバラツキは少なく、制御性が良いといえる。ただし、|dH/dQ|の大きいポンプ性能の遠心ポンプはポンプの最大効率は悪くなる傾向が|dH/dQ|の小さいポンプ性能のポンプよりも高い。
【0006】
以上のような理由から、通常ユーザーはポンプ効率の良い|dH/dQ|の小さいポンプ性能で運転することを望んでいる。しかしながら、負荷曲線3の下方の揚程が0に近い領域の部分である低回転かつ揚水量の減って寝てくる制御性の悪くなる領域においては、|dH/dQ|の大きいポンプ性能で運転することで制御性が悪くなることを少しでも少なくしたい。そこで、ユーザーのこれらの2種の要求を1台の遠心ポンプで満足するために、遠心ポンプの吐出口に流量バルブを設け、通常は流量バルブを開放して運転し、低回転数時には流量バルブを閉じることで負荷抵抗を増加し、揚程を減らすことになるが負荷曲線の寝ている部分を立ち上がらせることで、揚程の変動量に対する揚水量の変動量を小さくして制御性を確保する方法をとっている。
【0007】
【非特許文献1】
山田 博著「実用モータ制御回路設計ガイド」総合電子出版社発行
【非特許文献2】
大町 正義著「うず巻きポンプの設計」株式会社パワー社発行
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記のように遠心ポンプの吐出口に流量バルブを設けることなく、1台の遠心ポンプ、特に1台のDCポンプ、に|dH/dQ|の小さいポンプ性能と|dH/dQ|の大きいポンプ性能の2種の異なるポンプ性能を持たせることにより、適宜運転状況に応じて、この1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転する方法を提供することである。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明の手段は、請求項1の発明では、管路および機器からなる負荷抵抗に給液する1台の遠心ポンプの運転において、高い揚程を必要とする場合は該遠心ポンプのインペラーの回転方向を吐出口の方向と一致した正転により運転し、低い揚程を必要とする場合は該遠心ポンプのインペラーの回転方向を吐出口の方向と異なった逆転により運転することを特徴とする1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転する方法である。
【0010】
請求項2の発明では、遠心ポンプは内蔵直流モータで直接駆動されるDCポンプであることを特徴とする請求項1の手段の1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転する方法。
【0011】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明する。図1は全揚程と揚水量の関係でポンプ性能を示すグラフである。図2は本発明における実施例のポンプ性能を示すグラフである。図3は本発明に使用する遠心ポンプのインペラーの部分を模式的に示す側面図で、図4は本発明に使用するDCポンプの一部断面で示す側面図で、図5は図4のDCポンプの吸込口側から見た正面図である。
遠心ポンプ8のインペラー9は、図3に示すように、羽根の形状が正転12の回転方向に対して逆方向の後側に渦巻き状に曲げられている。従って、インペラー軸10によりインペラー9を正転12した場合と逆転13した場合はポンプ効率およびポンプ性能が相違する。本発明は、このインペラー9の回転方向の相違によるポンプ効率およびポンプ性能の相違を利用するものである。すなわち、インペラー9の回転方向がインペラー9の先端の回転円の接線方向に延びる吐出口11の方向と一致した渦巻き方向と同じ方向のインペラー9の回転方向を正転12とし、インペラー9の回転方向が吐出口11の方向と異なったインペラーの渦巻き方向に逆方向のインペラー9の回転方向を逆転13とするとき、インペラー9の正転12の方向は、ポンプ効率が良く、|dH/dQ|の小さいポンプ性能となる。これに対し、インペラー9の逆転13の方向は、ポンプ効率が劣り、|dH/dQ|の大きいポンプ性能となる。本発明はこれらのポンプ効率およびポンプ性能の相違を本発明は利用する。
【0012】
そこで、請求項1の発明では、管路および機器からなる負荷抵抗に給液するための1台の遠心ポンプ8の運転において、高い揚程を必要とする場合はこの遠心ポンプ8のインペラー9の回転方向を吐出口11の方向と一致した矢印方向で示す正転12としてポンプ効率の良い、|dH/dQ|の小さいポンプ性能で運転し、低い揚程を必要とする場合はこの遠心ポンプ8のインペラー9の回転方向を吐出口11の方向と異なった逆向きの矢印方向で示す逆転13としてポンプ効率の劣る|dH/dQ|の大きいポンプ性能で運転する方法である。上記において吐出口11の方向とは、図5で示す、吐出口11を送り出される液体の液流方向15をいう。
【0013】
上記において、遠心ポンプ8を駆動するモータはDCモータによるものと、ACモータによるものがあるが、DCモータの方が回転数の制御が容易であるので、請求項2の発明では、請求項1の発明の手段の方法において、遠心ポンプ8はDCポンプとして運転する方法としたものである。
【0014】
本発明に使用する遠心ポンプ8を説明すると、図4および図5にに示すように、遠心ポンプ8は外装16内に一体的に組み込まれたDCモータとこのDCモータに軸心10で連結され駆動されるインペラー9からなっている。DCモータはステータ17側および磁石が嵌められている回転子18側はそれぞれ密閉されており、それらのステータ17側と回転子18側の狭い隙間および軸心10には汲み上げる液体が流通されている。ステータは、遠心ポンプ8は図4における右側に汲み上げる液体を吸い込むための吸込口14があり、吸込口14から吸い込まれた液体は軸心10の部分からインペラー9中から遠心力により吐出口11に送給されて汲み上げられる。
【0015】
本発明の具体操業例を表1および図2により説明する。管路および機器からなる負荷抵抗に給液する1台の遠心ポンプ8により運転する。高い全揚程を必要とする場合、表1のa〜dに示すように、遠心ポンプのインペラー9の回転方向を吐出口の方向と一致した正転12により運転し、インペラーの回転数を毎分3000回転とする。揚水量を毎分当たり0.0リットルから15.0リットルに増加する。この場合の揚水量と全揚程の関係は図2の性能曲線6に示すように、|dH/dQ|の小さい性能曲線のグラフであり、揚水量が毎分当たり0.0リットルから15.0リットルになっても、全揚程は8.0mから6.5mとそれほど減少しない。
【0016】
これに対し、同じ、インペラー9の回転数の毎分3000回転とするが、インペラー9の回転方向を吐出口の方向と反対向きの逆転13により運転する。この場合は、表1のe〜fおよび図2の性能曲線7に示されるように、揚水量を毎分当たり0.0リットルから7.5リットルに上げていくと全揚程は6.1mから1.5mと極端に減少して、|dH/dQ|の大きい性能曲線のグラフとなる。従って、インペラー9の回転数を落とすことなく、インペラー9の回転方向を正転12の方向から逆転13の方向に切り換えるのみで、同一回転数でありながら、全揚程を下げて、かつ、制御性の良好な|dH/dQ|の大きい性能曲線とすることができた。
【0017】
一方、インペラー9の回転方向を同じ正転12の方向として全揚程を低下する場合には、インペラー9の回転数を毎分3000回転から毎分2140回転に低下することで、表1のi〜mに示すように、あるいは、図2の性能曲線6’に示すように達成し得る。しかし、この場合は、図2の性能曲線6’に見られるように|dH/dQ|の小さい性能曲線となる。従って、図2において図1と同様に負荷曲線を仮に重ねるとき、全揚程の低い部分では、|dH/dQ|の大きい性能曲線7とした方が|dH/dQ|の小さい性能曲線6’よりも負荷曲線から見られる揚水量の変動が小さくなり、制御が容易である。
【0018】
【表1】

Figure 2004197621
【0019】
すなわち、十分に低い揚程を必要とする場合は、遠心ポンプ8のインペラー9の回転方向を吐出口11の方向と異なった方向の逆転13により運転することにより1台の遠心ポンプ8を2種のポンプ性能の異なるポンプとして運転する。この場合、遠心ポンプ8は内蔵する直流モータで直接駆動されるDCポンプとする。直流モータは電圧を変えることで回転数を容易に変更できるので、本発明に使用するモータをDCポンプとすることで、回転数を変更しかつDCポンプのインペラー9の回転方向を逆転とすることを併用することで、目的とする全揚程の高さを容易に達成することができ、さらに|dH/dQ|の大きいポンプ性能の性能曲線を得ることができるので、1台の遠心ポンプ8でポンプ性能の制御が容易にコントロールすることができる。遠心ポンプ8のインペラー9の正転逆転は、モータ駆動ロジックICには正転逆転端子が通常は設けられており、H/L信号をこの端子に与えることで容易に入力して行うことができる。遠心ポンプ8は以上のように回転数の変更が容易にできるDCモータにより駆動するDCポンプとしているが、インペラー9の正転逆転による本発明の効果は、ACモータにより駆動するものであってもよいことはいうまでもない。
【0020】
【発明の効果】
以上説明したように、本発明は、遠心ポンプにおいて、インペラーの回転方向を正転および逆転に変更することで、回転速度を落とすことと合わせて、ポンプ性能が|dH/dQ|の小さい性能曲線のものから|dH/dQ|の大きい性能曲線のものに変更することで、低揚程で使用する場合に良好な制御特性の遠心ポンプとすることが可能であり、従来のもののように配管や機器など負荷抵抗を、遠心ポンプの吐出口に流量バルブを設け、低回転数時に流量バルブを閉じることで負荷抵抗を増加し、揚程を減らして負荷曲線の寝ている部分を立ち上がらせる必要を無くすなど、余分な設備を必要とせずに1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転することができる。
【図面の簡単な説明】
【図1】全揚程と揚水量の関係でポンプ性能を示すグラフである。
【図2】本発明における実施例のポンプ性能を示すグラフである。
【図3】本発明に使用する遠心ポンプのインペラーの部分を模式的に示す側面図である。
【図4】本発明に使用するDCポンプの一部断面で示す側面図である。
【図5】図4のDCポンプの吸込口側から見た正面図である。
【符号の説明】
1 性能曲線
1’ 性能曲線
2 性能曲線
2’ 性能曲線
3 負荷曲線
4 性能曲線
4’ 性能曲線
5 性能曲線
5’ 性能曲線
6 性能曲線
6’ 性能曲線
7 性能曲線
8 遠心ポンプ
9 インペラー
10 軸心
11 吐出口
12 正転
13 逆転
14 吸込口
15 液流方向
16 外装
17 ステータ
18 回転子
A 動作点
B 動作点
C 動作点
A’ 動作点
B’ 動作点
C’ 動作点
x 変化量
m 変化量
n 変化量
p 変化量
q 変化量[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of operating a centrifugal pump, and in particular, a centrifugal pump with a built-in DC motor used to supply hot water from a heat source device such as a heating device (the centrifugal pump with a built-in DC motor is referred to as a “DC pump” in the present invention). ).
[0002]
[Prior art]
A centrifugal pump that pumps a large amount of liquid as an industrial pump has a spiral impeller, and discharges the liquid by centrifugal force from a shaft center of the impeller to a pump discharge port arranged in the same direction as the rotation direction of the impeller. And sent. In such a centrifugal pump, as shown in FIG. 1, when the total head [m] is plotted on the vertical axis and the pumping rate [l / m] is plotted on the horizontal axis, the same operating point is plotted on a performance curve diagram. For the centrifugal pump passing through A, a pump with a low cutoff head and a large open pumping amount shown by the performance curve 1 and a small | dH / dQ | (where dH indicates a change in the head and dQ indicates a change in the pumping amount). There are two types of centrifugal pumps: a high-performance centrifugal pump and a high-performance pump with a high cutoff head and a low open-water yield, | dH / dQ |. On the other hand, the load resistance received from the piping and equipment connected to the centrifugal pump is shown in the performance curve diagram as a load curve 3 composed of a quadratic curve.
[0003]
By the way, when the rotation speed of the centrifugal pump connected to the load resistance such as piping or equipment is reduced by controlling the rotation speed of the motor to be driven, the head and the amount of pumped water follow this load curve 3. Will decrease. However, when the number of rotations is reduced to a certain degree or less, as the head becomes lower, the method of decreasing the amount of pumped water rapidly increases, and the load curve 3 falls. Accordingly, a slight change in the head causes a large change in the amount of pumped water, and the amount of pumped water is likely to vary, resulting in poor controllability. That is, in FIG. 1, the performance curve 1 shows a performance curve 4 as the head decreases as the rotation speed is reduced. If the rotation speed is further reduced from this state and the head is reduced by the variation x, the performance curve 4 ′ is obtained. Become. That is, the operating point A ′ at the intersection with the load curve 3 becomes the operating point C ′. The pumping amount at this time is the change amount p. The amount of change p is determined by the operating point A at the intersection of the performance curve 1 and the load curve 3 at the intersection with the load curve 3 of the performance curve 1 'when the rotational speed is reduced and the head is reduced by the change x. It is clearly larger than the change amount m of the pumping amount at the time of C, which indicates that the pumping amount is likely to fluctuate with a slight change in the head.
[0004]
Next, assuming that the performance curve passes through the same operating point, the centrifugation of the pump performance indicated by the performance curve 1 having a low deadline head (a head when the pumping amount is 0) and a large open pumping amount | dH / dQ | A pump and a centrifugal pump having a large pump performance of | dH / dQ | indicated by a performance curve 2 having a high cutoff head and a small open pumping amount are compared. In this case, when the rotational speed of the centrifugal pump having the pump performance of the performance curve 1 is reduced and the head is reduced by the variation x so as to obtain the performance curve 1 ', the operating point A which is the intersection with the performance curve 1 becomes the load curve 3 Move along the line to become the operating point C, and the change in the pumping amount becomes the change amount m in the pumping amount between the operating point A and the operating point C. On the other hand, the rotation speed of the centrifugal pump having a large pumping performance of | dH / dQ | with a high cutoff head and a small open pumping amount indicated by the pumping performance of the performance curve 2 passing through the same operating point A is reduced to a performance curve 2 '. As described above, when the head is reduced by the variation x in the same manner as described above, the operating point A of the performance curve 2 moves along the load curve 3 to become the operating point B, and the variation of the pumped water is the operating point A and the operating point B. The amount of change n in the amount of water pumped during the period is n.
[0005]
As is clear from FIG. 1, the change m in the pumping amount is larger than the change n in the pumping amount. Therefore, for these two types of pump performance, the change in the pumping amount is the same as the change x in the same head. The change n of the pumping amount of the pump performance with a large | dH / dQ | is smaller than the changing amount m of the pumping amount with a small | dH / dQ | of the former. Therefore, it can be said that a centrifugal pump having a large pump performance of | dH / dQ | has less fluctuation, that is, variation in the pumping amount even if the head changes due to a change in the number of revolutions, and has better controllability. However, a centrifugal pump having a large pump performance of | dH / dQ | tends to have a lower maximum efficiency than a pump having a small pump performance of | dH / dQ |.
[0006]
For the reasons described above, users usually want to operate with low pump performance of | dH / dQ | with high pump efficiency. However, in the region where the head below the load curve 3 is close to zero where the head is low and the controllability is low due to the low pumping rate and the amount of water being pumped down, the pump is operated with a large pump performance of | dH / dQ |. I want to reduce the possibility that controllability becomes worse. Therefore, in order to satisfy these two kinds of demands of the user with one centrifugal pump, a flow valve is provided at the discharge port of the centrifugal pump, the valve is normally operated with the flow valve opened, and the flow valve is operated at a low rotation speed. Closing the valve will increase the load resistance and reduce the head.However, by raising the sleeping part of the load curve, it is possible to reduce the fluctuation of the pumped water with respect to the fluctuation of the head to ensure controllability. Has taken.
[0007]
[Non-patent document 1]
Hiroshi Yamada, "Practical motor control circuit design guide" published by Sogo Denshi Publishing Co., Ltd. [Non-Patent Document 2]
Masayoshi Omachi, "Circulating Pump Design" Published by Power Corporation [0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a single centrifugal pump, particularly a single DC pump, with a small pump performance of | dH / dQ | without providing a flow valve at the discharge port of the centrifugal pump as described above. By providing two different pump performances, that is, a large pump performance of | dH / dQ | and a single centrifugal pump, it is possible to operate this one centrifugal pump as a pump with two different pump performances, depending on the operating conditions as appropriate. To provide.
[0009]
[Means for Solving the Problems]
Means of the present invention for solving the above-mentioned problems are as follows. According to the first aspect of the present invention, in the case of operating one centrifugal pump for supplying a load resistance consisting of a pipeline and equipment, when a high head is required, Operate the centrifugal pump with the impeller rotating in the forward direction that matches the direction of the discharge port.If a low head is required, operate the centrifugal pump impeller with the reverse direction different from the direction of the discharge port. This is a method of operating one centrifugal pump as a pump having two different pump performances.
[0010]
According to the second aspect of the present invention, the centrifugal pump is a DC pump directly driven by a built-in direct current motor, and one centrifugal pump of the means of the first aspect operates as two types of pumps having different pump performances. Method.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a graph showing pump performance in relation to the total head and the amount of pumped water. FIG. 2 is a graph showing the pump performance of the embodiment of the present invention. FIG. 3 is a side view schematically showing an impeller part of a centrifugal pump used in the present invention, FIG. 4 is a side view showing a partial cross section of a DC pump used in the present invention, and FIG. It is the front view seen from the suction port side of the pump.
As shown in FIG. 3, the impeller 9 of the centrifugal pump 8 has a blade shape spirally bent rearward in a direction opposite to the rotation direction of the forward rotation 12. Therefore, the pump efficiency and the pump performance are different when the impeller 9 is rotated forward 12 by the impeller shaft 10 and when the impeller 9 is rotated backward 13. The present invention utilizes the difference in pump efficiency and pump performance due to the difference in the rotation direction of the impeller 9. That is, the direction of rotation of the impeller 9 is the same as the direction of the spiral that coincides with the direction of the discharge port 11 extending in the tangential direction of the rotation circle at the tip of the impeller 9, and the direction of rotation of the impeller 9 is defined as normal rotation 12. When the direction of rotation of the impeller 9 is different from the direction of the discharge port 11 to the direction of the spiral of the impeller, and the direction of rotation of the impeller 9 is the reverse rotation 13, the direction of the forward rotation 12 of the impeller 9 is good in pump efficiency and | dH / dQ | Small pump performance. On the other hand, in the direction of the reverse rotation 13 of the impeller 9, the pump efficiency is inferior and the pump performance of | dH / dQ | is large. The present invention takes advantage of these differences in pump efficiency and pump performance.
[0012]
Therefore, according to the first aspect of the present invention, in the operation of one centrifugal pump 8 for supplying a load resistance consisting of a pipeline and equipment, when a high head is required, the rotation of the impeller 9 of the centrifugal pump 8 is required. The direction of rotation is indicated by the arrow 12 which coincides with the direction of the discharge port 11. The pump 12 is operated at a high pump efficiency and a small pump performance of | dH / dQ |, and when a low head is required, the impeller of the centrifugal pump 8 is used. This is a method of operating with a pump performance of | dH / dQ |, which is inferior in pump efficiency, as a reverse rotation 13 in which the rotation direction of 9 is indicated by a reverse arrow direction different from the direction of the discharge port 11. In the above description, the direction of the discharge port 11 refers to the liquid flow direction 15 of the liquid sent out of the discharge port 11 shown in FIG.
[0013]
In the above, the motor for driving the centrifugal pump 8 may be a DC motor or an AC motor. However, the DC motor is easier to control the number of rotations. In the method of the invention, the centrifugal pump 8 is operated as a DC pump.
[0014]
The centrifugal pump 8 used in the present invention will be described. As shown in FIGS. 4 and 5, the centrifugal pump 8 is connected to a DC motor integrally incorporated in an exterior 16 and to the DC motor through an axis 10. It consists of a driven impeller 9. In the DC motor, the stator 17 side and the rotor 18 side on which the magnet is fitted are hermetically sealed, and the liquid to be pumped flows through the narrow gap between the stator 17 side and the rotor 18 side and the shaft 10. . In the stator, the centrifugal pump 8 has a suction port 14 for sucking the liquid to be pumped to the right side in FIG. 4, and the liquid sucked from the suction port 14 is centrifugally applied to the discharge port 11 from inside the impeller 9 from the shaft 10. Sent and pumped.
[0015]
A specific operation example of the present invention will be described with reference to Table 1 and FIG. It is operated by a single centrifugal pump 8 that feeds a load resistance consisting of a pipeline and equipment. When a high total head is required, the rotation direction of the impeller 9 of the centrifugal pump is driven by the forward rotation 12 which coincides with the direction of the discharge port, as shown in Tables a to d. 3000 rotations. Increase pumping volume from 0.0 liters per minute to 15.0 liters per minute. The relationship between the pumping amount and the total head in this case is a graph of a small performance curve of | dH / dQ |, as shown in a performance curve 6 in FIG. 2, where the pumping amount is from 0.0 liter / min to 15.0 / min. Even at liters, the total head does not decrease so much from 8.0m to 6.5m.
[0016]
On the other hand, the same rotation speed of the impeller 9 is set to 3000 revolutions per minute, but the impeller 9 is operated by the reverse rotation 13 opposite to the direction of the discharge port. In this case, as shown in e to f in Table 1 and the performance curve 7 in FIG. 2, when the pumping amount is increased from 0.0 liters per minute to 7.5 liters per minute, the total head is increased from 6.1 m. It is extremely reduced to 1.5 m, and becomes a graph of a large performance curve of | dH / dQ |. Accordingly, the rotation direction of the impeller 9 is simply switched from the direction of the forward rotation 12 to the direction of the reverse rotation 13 without lowering the rotation speed of the impeller 9. And a performance curve with a large | dH / dQ |
[0017]
On the other hand, when the total head is reduced by setting the rotation direction of the impeller 9 to the same direction of the forward rotation 12, the rotation speed of the impeller 9 is reduced from 3000 rotations per minute to 2140 rotations per minute, whereby i to i in Table 1 are reduced. m, or as shown by the performance curve 6 'in FIG. However, in this case, a performance curve of | dH / dQ | is small as seen in the performance curve 6 'of FIG. Therefore, in FIG. 2, when the load curves are tentatively overlapped as in FIG. 1, in a portion where the total head is low, the performance curve 7 having a large | dH / dQ | is better than the performance curve 6 'having a small | dH / dQ | Also, the fluctuation of the pumping amount seen from the load curve is small, and the control is easy.
[0018]
[Table 1]
Figure 2004197621
[0019]
That is, when a sufficiently low head is required, one centrifugal pump 8 is driven by two rotations of the impeller 9 of the centrifugal pump 8 in the reverse direction 13 different from the direction of the discharge port 11 so that one centrifugal pump 8 is driven by two types. Operate as pumps with different pump performance. In this case, the centrifugal pump 8 is a DC pump directly driven by a built-in DC motor. Since the rotation speed of a DC motor can be easily changed by changing the voltage, the rotation speed is changed and the rotation direction of the impeller 9 of the DC pump is reversed by using a DC pump as the motor used in the present invention. With the use of a single centrifugal pump 8, it is possible to easily achieve the desired height of the total head and to obtain a performance curve of large pump performance of | dH / dQ |. Control of pump performance can be easily controlled. Normal rotation and reverse rotation of the impeller 9 of the centrifugal pump 8 can be easily performed by inputting an H / L signal to this terminal, which is usually provided with a normal rotation reverse rotation terminal in the motor drive logic IC. . As described above, the centrifugal pump 8 is a DC pump driven by a DC motor whose rotation speed can be easily changed. However, the effect of the present invention due to the forward / reverse rotation of the impeller 9 is not limited to the case where the centrifugal pump 8 is driven by an AC motor. It goes without saying that it is good.
[0020]
【The invention's effect】
As described above, according to the present invention, in the centrifugal pump, by changing the rotation direction of the impeller to forward rotation and reverse rotation, the pump performance is reduced along with the reduction of the rotation speed, and the performance curve of small | dH / dQ | By changing from the one with a large performance curve of | dH / dQ |, it is possible to make a centrifugal pump with good control characteristics when used at low heads, as with conventional piping and equipment. By installing a flow valve at the discharge port of the centrifugal pump and increasing the load resistance by closing the flow valve at low rotation speed, reducing the lift and eliminating the need to raise the sleeping part of the load curve In addition, one centrifugal pump can be operated as a pump having two different pump performances without requiring extra equipment.
[Brief description of the drawings]
FIG. 1 is a graph showing pump performance in relation to the total head and the amount of pumped water.
FIG. 2 is a graph showing the pump performance of an example according to the present invention.
FIG. 3 is a side view schematically showing an impeller part of a centrifugal pump used in the present invention.
FIG. 4 is a side view showing a partial cross section of a DC pump used in the present invention.
FIG. 5 is a front view of the DC pump of FIG. 4 as viewed from a suction port side.
[Explanation of symbols]
Reference Signs List 1 Performance curve 1 'Performance curve 2 Performance curve 2' Performance curve 3 Load curve 4 Performance curve 4 'Performance curve 5 Performance curve 5' Performance curve 6 Performance curve 6 'Performance curve 7 Performance curve 8 Centrifugal pump 9 Impeller 10 Shaft center 11 Discharge port 12 Forward rotation 13 Reverse rotation 14 Suction port 15 Liquid flow direction 16 Exterior 17 Stator 18 Rotor A Operating point B Operating point C Operating point A 'Operating point B' Operating point C 'Operating point x Change m Change n Change Quantity p Change q Change

Claims (2)

管路および機器からなる負荷抵抗に給液する1台の遠心ポンプの運転において、高い揚程を必要とする場合は該遠心ポンプのインペラーの回転方向を吐出口の方向と一致した正転により運転し、低い揚程を必要とする場合は該遠心ポンプのインペラーの回転方向を吐出口の方向と異なった逆転により運転することを特徴とする1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転する方法。In the operation of a single centrifugal pump that supplies liquid to a load resistance consisting of a pipeline and equipment, if a high head is required, operate the centrifugal pump by rotating the impeller in the forward direction that matches the direction of the discharge port. When a low head is required, the centrifugal pump operates as a pump having two different pump performances, characterized in that the rotation direction of the impeller of the centrifugal pump is operated by reverse rotation different from the direction of the discharge port. how to. 遠心ポンプは内蔵直流モータで直接駆動されるDCポンプであることを特徴とする請求項1に記載の1台の遠心ポンプを2種の異なるポンプ性能のポンプとして運転する方法。The method according to claim 1, wherein the centrifugal pump is a DC pump directly driven by a built-in DC motor.
JP2002365762A 2002-12-17 2002-12-17 Operating method of centrifugal pump with different kinds of pumping abilities Pending JP2004197621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365762A JP2004197621A (en) 2002-12-17 2002-12-17 Operating method of centrifugal pump with different kinds of pumping abilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365762A JP2004197621A (en) 2002-12-17 2002-12-17 Operating method of centrifugal pump with different kinds of pumping abilities

Publications (2)

Publication Number Publication Date
JP2004197621A true JP2004197621A (en) 2004-07-15
JP2004197621A5 JP2004197621A5 (en) 2006-01-05

Family

ID=32763221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365762A Pending JP2004197621A (en) 2002-12-17 2002-12-17 Operating method of centrifugal pump with different kinds of pumping abilities

Country Status (1)

Country Link
JP (1) JP2004197621A (en)

Similar Documents

Publication Publication Date Title
CN107605741B (en) A kind of multistage discharge capacity is adjustable from cooling water pump
SE453160B (en) CIRCULATING SYSTEM FOR LIQUID FRUITS FOR USE IN A SPRAY PAINTING PLANT
JP2004197621A (en) Operating method of centrifugal pump with different kinds of pumping abilities
JP4329435B2 (en) Pump operation system
JP2022090617A (en) Energy-saving fluid pump
CN102748300A (en) Spiral axial-flow pump
WO2021039025A1 (en) Pump device
JPH1193881A (en) Vortex type pump
AU2018214435B2 (en) A swimming pool pump
JP2000227086A (en) Self-priming pump
JP2005226457A (en) Axial flow pump
JP2008151074A (en) Pump
JP2009007957A (en) Centrifugal pump
JP2003343473A (en) Mixed flow impeller with screw in mixed flow pump
JP7022523B2 (en) Fluid machine
JP2002005074A (en) Control unit for self-priming pump
JP3982208B2 (en) Pump, pump control method, motor control device
JP2000314390A (en) Pump
KR200341456Y1 (en) Underwater pump
JP2002155881A (en) Pump
CN103967804B (en) High speed well pump
CN116804410A (en) Fire-fighting water supply system and method based on double squirrel cage motors
JP2005220886A (en) Pump
JP4733381B2 (en) Automatic water supply device
JP2009007959A (en) Centrifugal pump

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Effective date: 20090126

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224