JP2004197567A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2004197567A
JP2004197567A JP2002363239A JP2002363239A JP2004197567A JP 2004197567 A JP2004197567 A JP 2004197567A JP 2002363239 A JP2002363239 A JP 2002363239A JP 2002363239 A JP2002363239 A JP 2002363239A JP 2004197567 A JP2004197567 A JP 2004197567A
Authority
JP
Japan
Prior art keywords
refrigerant
container
liquid
compressor
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363239A
Other languages
Japanese (ja)
Inventor
Yoshifumi Abe
喜文 阿部
Tatsuhisa Taguchi
辰久 田口
Minoru Kajitani
稔 梶谷
Yukihiro Fujiwara
幸弘 藤原
Yasuhiro Asaida
康浩 浅井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002363239A priority Critical patent/JP2004197567A/en
Priority to US10/735,723 priority patent/US7472562B2/en
Priority to CNA2003101233655A priority patent/CN1508438A/en
Publication of JP2004197567A publication Critical patent/JP2004197567A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize further size and weight reductions by separating lubricating oil in a small space. <P>SOLUTION: A refrigerant circulating passage 34 is provided in a container 3, which circulates a refrigerant 30 discharged from a compression mechanism part 4 into a container 3 around an axial line X of a compressor 1 by introducing the refrigerant 30 from a refrigerant inlet 32 and which returns the refrigerant 30 from a refrigerant returning port 33 to a discharging port 9 side of the container 3 while centrifuging or centrifugal collision separation is being conducted. The separated liquid 7 is recovered by providing a liquid return port 35 for returning the centrifuged liquid 7 to the inside of the container 3 so as to have a gravity-directional component in a passage wall on the way and in such a direction as to be deviated from a circumferential direction of the refrigerant 30. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は容器内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部と、この圧縮機構部を含む摺動部への潤滑などを図る液を貯留する貯液部とを少なくとも有した圧縮機に関するものである。
【0002】
【従来の技術】
この種の圧縮機は容器が冷凍サイクルに接続されることにより密閉状態になる。圧縮機構が駆動されると容器の吸入口を通じて冷凍サイクル内の冷媒を吸入し、これを圧縮して容器内に吐出した後、容器の吐出口から冷凍サイクルに供給することを繰り返す。これに併せ、容器内の貯油部に貯留されている潤滑油が、圧縮機構部を含む摺動部に直接またはおよび冷媒による持ち運びによって供給され、前記摺動部の潤滑を行なう。これによってメンテナンスフリーな運転をも可能にしている。このような潤滑機構によって圧縮機構部から吐出され冷凍サイクルに供給される冷媒中には潤滑油が含まれる。冷凍サイクルに供給される冷媒中に含まれる潤滑油は冷凍サイクルに機能低下をもたらす。また、同時に冷凍サイクルに多くの潤滑油が循環すると、容器内での摺動部の潤滑が不足するので、これを補うには貯油部および注油量の増大を招き圧縮機が大型化し重量化する。
【0003】
そこで、従来、圧縮機構部から吐出される冷媒中の液を、冷凍サイクルに供給する前に遠心分離して、容器の貯油部に戻すようにした技術が知られている(例えば、特許文献1、2参照)。これらは、圧縮機構部からの吐出される冷媒を、軸線に直角な向きに設けた円筒状の遠心分離室内の上部に接線方向から導入させることにより、導入した冷媒に円筒面に沿った下向きの螺旋流を形成させて冷媒に随伴している潤滑油を遠心分離し、遠心分離後の冷媒は遠心分離室の下部からその中央部を上方へ抜けて冷凍サイクルに供給し、遠心分離した潤滑油は遠心分離室の下部から容器内に吹出させて注油部に戻すようにしている。いわゆるサイクロン方式にて潤滑油を冷媒に対して遠心分離している。
【0004】
特許文献2に記載のものは、特に、遠心分離後の潤滑油を貯油部の油面に平行に吹き出させて油面を変動させず、これによって、貯液部での潤滑油レベルを一定にして潤滑油の摺動部への供給を安定させる一方、貯油部の液が油面の変動によって遠心分離室内に逆流するようなことを防止できるようにしている。
【0005】
【特許文献1】
特開平07−151083号公報
【0006】
【特許文献2】
特開平11−082352号公報
【0007】
【発明が解決しようとする課題】
ところで、上記のような容器に内蔵した圧縮機が自動車の冷暖房用に搭載されるようになり、一部ルームエアコン用の電動圧縮機も用いられているが、環境やエネルギー問題の高まりの中で、車両の軽量化が求められている。特に、電気自動車やハイブリッド自動車での電動走行時にガソリン車レベルの駆動力が得られないことから、車両の軽量化は最重要課題となっている。そこで、比較的重量物である圧縮機、特に、大型化、重量化する電動機をも併せ内蔵した電動圧縮機は、車両に搭載する上で車両同様に小型、軽量化が重要課題になっている。
【0008】
しかし、上記従来の圧縮機が採用しているサイクロン方式の潤滑油分離機構は、円筒状の遠心分離室の円筒面に沿った螺旋流となって含まれている潤滑油を前記円筒面に遠心力で押しつけて分離しながら、従って、前記円筒面に押し付けた潤滑油を残しながら、遠心分離室の下部に向かう遠心分離中の冷媒の流れと、遠心分離室の下部に至ってその中央部を上方へ抜けて吐出されようとする遠心分離後の冷媒の流れとを確保できる広さが必要である。このため、それら流れを隔離する円筒壁を設けるにしても機構は比較的大径のものとなり、その分、圧縮機の容器内に占める軸線方向スペースが大きくなるので、小型化や軽量化の妨げになる。
【0009】
本発明の目的は、小さなスペースで潤滑油の分離ができ、さらなる小型化や軽量化が図れる圧縮機を提供することにある。
【0010】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の圧縮機は、容器内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部と、この圧縮機構部を含む摺動部への潤滑などを図る液を貯留する貯液部とを少なくとも有した圧縮機において、圧縮機構部から容器内に吐出される冷媒を冷媒導入口から導入して圧縮機の軸線まわりに周回させ液を遠心分離または遠心、衝突分離しながら容器の吐出口側に冷媒戻し口から戻す冷媒周回通路を容器内に設けるとともに、前記遠心分離される液を容器内に戻す液戻し口を途中通路壁に重力方向成分を持ちかつ前記冷媒の周回方向から外れた向きに設けたことを1つの特徴としている。
【0011】
このような構成では、圧縮機構部から容器内に吐出され容器の吐出口に向かう途中の冷媒を冷媒周回通路が冷媒導入口から導入して拘束し圧縮機の軸線回りに周回させた後、冷媒戻し口から容器の吐出口側に戻す。このとき、冷媒周回通路は周回させる冷媒に含まれる液を通路形態に従った遠心力または遠心力と衝突作用により分離して冷媒周回通路の遠心方向側またはおよび重力方向側の通路壁面に残しながら冷媒を進行させて冷媒戻し口から容器内に戻し、分離した液は通路途中壁にある液戻し口を通じ、これが冷媒の周回方向から外れかつ重力方向成分を持つ向きであることによって冷媒の吹出しを見ることなく容器内に戻す。これにより、冷媒周回通路は、圧縮機構部から吐出される冷媒を一方向に周回させるだけで冷媒と液を分離できてサイクロン方式のような冷媒の逆な流れを確保する場合のような広い通路でなくてよいし、容器内側で長い周回距離を得てそれに比例した分離性能が得られるので、周方向に細長く圧縮機の軸線方向の幅が極く小さなものとして、液の分離性能の低下なしに圧縮機のさらなる小型化、軽量化が図れる。
【0012】
本発明の圧縮機は、また、容器内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部と、この圧縮機構部を含む摺動部への潤滑などを図る液を貯留する貯液部とを少なくとも有し、斜めまたは横向きにして設置される横設型の圧縮機において、圧縮機構部から容器内に吐出される冷媒を容器内上部の冷媒導入口から導入して圧縮機の軸線まわりに旋回させ液を遠心分離または遠心、衝突分離しながら容器の吐出口側に容器内上部の冷媒戻し口から戻す冷媒周回通路を設けるとともに、前記遠心分離される液を容器内に戻す戻し口を低位側となる途中通路壁に重力方向成分を持ちかつ前記冷媒の周回方向から外れた向きに設けたことを別の特徴としている。
【0013】
このような構成では、冷媒周回通路が圧縮機の斜めまたは横向きな軸線の周りに位置して、圧縮機構部から容器内に吐出され容器の吐出口に向かう途中の冷媒を、容器内に貯留される液から離れた容器内上部に位置する冷媒導入口から貯留液の影響なしに導入して拘束し前記軸線回りに周回させた後、容器内に貯留される液から離れた容器内上部の冷媒戻し口から貯留液に影響なく容器の吐出口側に戻すことができる。このとき、冷媒周回通路は周回させる冷媒に含まれる液を通路形態に従った遠心力または遠心力と衝突作用により分離して冷媒周回通路の遠心方向側またはおよび重力方向側の通路壁面に残しながら冷媒を進行させて容器内上部の冷媒戻し口から容器内に戻し、分離した液は冷媒周回通路の低位に集まるのを利用してこの低位側の途中通路壁に設けた液戻し口を通じ、これが冷媒の周方向から外れかつ重力方向成分を持つ向きであることによって冷媒の吹出しを見ることなく容器内の貯留液近く、またはその液内に静かに戻す。これにより、冷媒周回通路は、圧縮機構部から吐出される冷媒を一方向に周回させるだけで冷媒と液を分離できてサイクロン方式のような冷媒の逆な流れを確保する場合のような広い通路でなくてよいし、容器内側で長い周回距離を得てそれに比例した分離性能が得られるので、周方向に細長く圧縮機の軸線方向の幅が極く小さなものとして、液の分離性能の低下なしに圧縮機のさらなる小型化、軽量化が図れる。
【0014】
冷媒周回通路は、場合により螺旋形状に設けることができる。しかし、同一平面上に設ける、さらなる構成によって、冷媒周回通路が占める圧縮機の軸線方向スペースが最小になって、圧縮機の小型化、軽量化に貢献しやすい。しかも、冷媒周回通路を渦巻き状の重なり部を設けることによって、前記軸線方向スペースを大きくすることなく、容器内側の周方向寸法を上回った長さで設けて、液の分離機能をさらに高めることができる。
【0015】
冷媒周回通路は、容器内の圧縮機構部からの吐出位置から容器の吐出口までの間のどの部分に設けてもよい。しかし、容器の吐出口側の端部内に設ける、さらなる構成により、容器内の設置物を避けた軸直角方向により広い平面範囲を利用して、高い自由度で容易に設けられる。
【0016】
冷媒周回通路は、既製のチューブを曲げて形成するなどどのように形成することもできる。しかし、容器の端部壁または容器に取り付けた基板に形成した凹条と、この凹条を覆う蓋部材とで形成する、さらなる構成によれば、端部壁または基板の型成形や彫りこんで形成した凹条を蓋部材にて覆って閉じることによってどのような形状にも容易かつ高精度に形成することができるし、蓋部材は圧縮機構部から吐出された冷媒を冷媒導入口から冷媒周回通路に導入するために容器内を仕切る仕切り壁を共用することができるので便利である。特に、容器の端部壁に凹条を形成すると、凹条を形成するための特別な部材が省略でき低コスト化に有利であるし、他の邪魔になりにくく容器の省スペース化にも好適である。また、冷媒周回通路が容器の吐出口側の端部に位置することにより、冷媒による容器内機器の冷却や冷媒に含む潤滑油による軸受部などの圧縮機構部以外の摺動部の潤滑などの利用に供した後に、潤滑油を分離して容器外に吐出して外部サイクルに供給できる利点がある。
【0017】
基板および蓋部材は容器のどの位置に取り付けてもよいし、個別に取り付けることもできる。しかし、基板を蓋部材とともに容器に取り付ける、さらなる構成によれば、取付けの手間が半減し低コスト化が図れる。
【0018】
冷媒導入口、冷媒戻し口、液戻し口はそれぞれ、周方向またはおよび圧縮機の軸線方向に複数設けられてもよい。しかし、周回方向に少なくとも1つ設けるだけでもよく、構造が簡単になる。
【0019】
冷媒導入口に、これよりも広域の冷媒を捕集して冷媒導入口に導く冷媒導入ガイドを設けた、さらなる構成では、冷媒導入口を上回る広域の冷媒を捕集して冷媒周回通路に導入することにより、導入する冷媒が増量した分だけ冷媒周回通路での周回速度が高まるので、冷媒の周回による遠心分離効果、または遠心、衝突分離効果が向上する。
【0020】
容器内に圧縮機構を駆動する電動機が収容されている、さらなる構成では、外部駆動源が不要であるが大型化、重量化しやすいのを、前記冷媒周回通路による液の分離機構によって小型化、軽量化が図れる利点がある。
【0021】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面の記載によって明らかになる。本発明の各特徴はそれ単独で、あるいは可能な限り種々な組合せで複合して採用することができる。
【0022】
【発明の実施の形態】
本発明の実施の形態にかかる圧縮機につき、図1〜図4を参照しながら詳細に説明する。本実施の形態は図4に示すように圧縮機1の胴部の周りにある取付け脚2によって横向きに設置される横型で冷凍サイクル用のスクロール圧縮機の場合の1つの例を示しており、圧縮機1の容器3内に圧縮機構部4およびこれを駆動する電動機5を内蔵し、圧縮機構部4を含む各摺動部の潤滑に供する液を貯留する貯液部6を備えている。取り扱う冷媒はガス冷媒であるが、液冷媒を含むときは冷媒から分離する液と同格に扱い分離できる。各摺動部の潤滑や圧縮機構部4の摺動部のシールに供する液としては潤滑油7などの液を採用している。また、冷媒に対して相溶性のあるものである。しかし、本発明はこれらに限られることはない。基本的には、容器3内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部4と、この圧縮機構部4を含む摺動部への潤滑などを図る液を貯留する貯液部6とを少なくとも有した圧縮機1であればよく、以下の説明は特許請求の範囲の記載を限定するものではない。
【0023】
本実施の形態の圧縮機1の圧縮機構部4は、図4に示すように固定鏡板11a、旋回鏡板12aから羽根が立ち上がった固定渦巻部品11と旋回渦巻部品12とを噛み合わせて形成した圧縮空間10が、旋回渦巻部品12を電動機5により駆動軸14を介して固定渦巻部品11に対し円軌道運動させたときに、移動を伴い容積を変化させることにより外部サイクルからの図4に破線矢印で示す冷媒30の吸入、圧縮および外部サイクルへの吐出を容器3に設けた図4に示す吸入口8および吐出口9を通じて行う。
【0024】
これに併せ、容器3の貯液部6に貯留されている潤滑油7が容積型ポンプ13などを駆動軸14にて駆動するか容器3内の差圧を利用するなどして、駆動軸14を通じ旋回渦巻部品12の旋回駆動に伴い旋回渦巻部品12の背面の液溜まり21またはおよび液溜まり22、図に示す例では液溜まり21に供給し、この液溜まり21に供給した潤滑油7はさらに旋回渦巻部品12の外周部の背面側に旋回渦巻部品12を通じ絞り23などによる所定の制限の基に供給して旋回渦巻部品12をバックアップしながら、前記潤滑油7を旋回渦巻部品12を通じ旋回渦巻部品12の羽根における先端の固定渦巻部品11との間のシール部材の一例であるチップシール24を保持する保持溝25に供給して固定、旋回各渦巻部品11、12間のシールおよび潤滑を図る。
【0025】
本実施の形態の圧縮機1は、特に、図4に示すように圧縮機構部4の吐出口31から容器3内に吐出される冷媒30を圧縮機1の軸線X周りに周回させる冷媒周回通路34を設ける。この冷媒周回通路34は、冷媒導入口32から図1、図4に破線矢印で示すように冷媒30を導入して図2、図3に破線矢印で示すように圧縮機1の軸線Xまわりに周回させることによって、冷媒30に混合し相溶して含んでいる潤滑油7を図2、図3に実線矢印で示すように遠心分離または遠心、衝突分離しながら容器3の吐出口9側に冷媒戻し口33から戻す。また、冷媒周回通路34は、前記遠心分離される潤滑油7を容器3内に戻す液戻し口35を途中通路壁に重力方向成分を持ちかつ前記冷媒の周回方向から外れた向きに設けている。
【0026】
冷媒周回通路34は図1、図2に1つの例を示すように、圧縮機構部4、電動機5と共通した軸線Xを持った容器3の内側に近いほぼ同心な曲率の大きい大湾曲部34aを両端部に持ち、これらの間を、前記大湾曲部34aよりも曲率半径の小さな小湾曲部34b、ほぼ直線部34cが交互に繋がった通路形態をなし、全体として冷媒30を周回させて冷媒中の潤滑油7を主として遠心分離する。しかし、潤滑油7が大湾曲部34aから小湾曲部34bに入るとき、直線部34cから小湾曲部34bに入るときに、冷媒30の周回方向の変化の急激度に応じて冷媒30が通路壁34dに衝突し、この衝突作用によって潤滑油7を衝突分離することができる。
【0027】
このような衝突分離は冷媒30の周回方向が急激に変化するほど強くなり分離効果が高まる。それには冷媒周回通路34の途中に屈曲部や衝突壁を設けるなどすればよい。図2に仮想線で示す例では衝突壁36を冷媒周回通路34の液戻し口35の下流側に設けてあり、液戻し口35を過ぎて容器3内に戻されようとする冷媒30を衝突させて潤滑油7の分離を最終的に図れるようにしてある。このような衝突壁36を図2に破線で示すように液戻し口35の下流側直ぐの位置に設けると、液戻し口35を過ぎようとする冷媒を衝突させて潤滑油7の分離をより促進しながら、その時点までに冷媒30から分離した潤滑油7を堰き止めて下流へ移行するのを防止し、液戻し口35を通じた容器3内への回収率を高めることができる。もっとも、衝突壁36の下流側に潤滑油7を分離する部分がある場合、そこで分離された潤滑油7が前記液戻し口35に戻るのを邪魔しない逃がし路か、衝突壁36の下流側に別な液戻し口35を設けて容器3内に戻せるようにする必要がある。このような衝突壁36は、また、冷媒周回通路34の対向壁との間で冷媒周回通路34の通路が狭くなるいわゆる絞り部を形成するので、このような絞り部によっても冷媒と潤滑油との気液分離を行うことができる。もっとも、気液分離のための絞り部は衝突壁36の有無に関係なく設けることができるし、突出壁36が前記のような絞り部を形成しないように、冷媒周回通路34の対向壁をえぐって逃がし部を形成することができる。
【0028】
以上のような冷媒周回通路34は、圧縮機構部4から容器3内に吐出され容器3の吐出口9に向かう途中の冷媒30を冷媒導入口32から導入して拘束し圧縮機1の軸線X回りに図1、図2に破線矢印で示すように周回させた後、冷媒戻し口33から容器3の吐出口9側に戻す。このとき、冷媒周回通路34は周回させる冷媒30に含まれる潤滑油7を前記のような通路形態に従った遠心力または遠心力と衝突作用により分離して冷媒周回通路34の遠心方向側またはおよび重力方向側の通路壁面に残しながら冷媒を進行させて冷媒戻し口33から容器3内に戻し、分離した潤滑油7は通路途中壁にある液戻し口35を通じ、これが冷媒30の周回方向から外れかつ重力方向成分を持つ向きであることによって冷媒の吹出しを見ることなく容器3内に戻す。このような冷媒30から分離した潤滑油7の液戻し口35を通じた容器3内への回収は、液戻し口35が冷媒30の周回方向に対し直角以下の鋭角な向きほど、また、重力方向に一致している向きであるほどスムーズに行なわれ、回収率も高まる。
【0029】
以上の結果、冷媒周回通路34は、圧縮機構部4から吐出される冷媒30を一方向に周回させるだけで冷媒30と潤滑油7を分離できてサイクロン方式のような旋回流と別で逆な流れを確保する場合のような広い通路でなくてよいし、容器3の内側でその周長に近い長い周回距離を得てそれに比例した分離性能を発揮できるので、周方向に細長く圧縮機1の軸線X方向の幅が極く小さなものとして、潤滑油7の分離性能の低下なく、逆に高めて圧縮機1のさらなる小型化、軽量化が図れる。図4に示す例では圧縮機構部4および電動機5を持った圧縮機1の軸線X方向の長さのほぼ1/24程度の軸線X方向寸法となっている。
【0030】
また、前記のような冷媒周回通路34を設けるのに、本実施の形態が横型の圧縮機1であることを配慮したより特定した視点から、軸線Xが斜めであるような特別な場合をも含んで、圧縮機構部4から容器3内に吐出される冷媒30を図1、図2、図4に示す容器3内上部の冷媒導入口32から導入して圧縮機1の軸線Xまわりに図1、図2に破線矢印で示すように旋回させ潤滑油7を遠心分離または遠心、衝突分離しながら容器3の吐出口9側に容器3内上部の図1、図2、図4に示す冷媒戻し口33から戻すように冷媒周回通路34を設けるとともに、前記遠心分離される潤滑油7を容器3内に戻す液戻し口35を図1、図2、図4に示すように低位側となる途中通路壁に重力方向成分を持ちかつ前記冷媒30の周回方向から外れた向きに設けている。図示する例では液戻し口35は重力方向に一致している。
【0031】
このような冷媒周回通路34は、圧縮機1の斜めまたは横向きな軸線Xの周りに図1、図2、図4に示すように位置して、圧縮機構部4から容器3内に吐出され容器3の吐出口9に向かう途中の冷媒30を、容器3内に貯留される潤滑油7から離れた容器3内上部に位置する冷媒導入口32から貯留潤滑油7の影響なしに導入して拘束し前記軸線X回りに周回させた後、容器3内に貯留される潤滑油7から離れた容器3内上部の冷媒戻し口33から貯留潤滑油7に影響なく容器3の吐出口9側に戻すことができる。
【0032】
このとき、冷媒周回通路34は周回させる冷媒30に含まれる潤滑油7を通路形態に従った遠心力または遠心力と衝突作用により既述したように分離して冷媒周回通路34の遠心方向側またはおよび重力方向側の通路壁面に残しながら冷媒30を進行させて容器3内上部の冷媒戻し口33から容器3内に戻し、分離した潤滑油7は冷媒周回通路34の低位に図2に実線矢印で示すように集まるのを利用してこの低位側の途中通路壁に設けた前記液戻し口35を通じ、これが冷媒の周方向から外れかつ重力方向成分を持つ向きであることによって冷媒30の吹出しを見ることなく容器3内の貯留潤滑油7の近く、またはその潤滑油7内に静かに戻すことができる。
【0033】
これにより、冷媒周回通路34は、圧縮機構部4から吐出される冷媒30を一方向に周回させるだけで冷媒30と潤滑油7を分離できてサイクロン方式のような旋回流と別出逆な流れを確保する場合のような広い通路でなくてよいし、容器3の内側でその周長に近い長い周回距離を得てそれに比例した分離性能を発揮できるので、周方向に細長く圧縮機1の軸線X方向の幅が極く小さなものとして、潤滑油7の分離性能の低下なく逆により高めて圧縮機1のさらなる小型化、軽量化が図れる。
【0034】
ここで、冷媒周回通路34は、螺旋形状に設けて周回距離を延ばすことができる。しかし、本実施例では、図1、図2、図4に示すように同一平面上に設けてある。これにより冷媒周回通路34が占める圧縮機1の軸線X方スペースが、単一の冷媒周回通路34の幅内に納まる最小となって、圧縮機1の小型化、軽量化に貢献しやすい。しかも、冷媒周回通路34は図1、図2に示すように渦巻き状の重なり部34eを設けることによって、前記軸線X方向スペースを大きくすることなく、容器3内側の周方向寸法を上回った長さで設けて、潤滑油7の分離機能をさらに高めることができる。
【0035】
また、冷媒周回通路34は、容器3内の圧縮機構部4からの吐出位置から容器3の吐出口9までの間のどの部分に設けてもよい。しかし、本実施の形態では図1、図4に示すように容器3の吐出口9側の端部内に設けてある。これにより、容器3内の特に軸線X方向の設置物である圧縮機構部4や電動機5などを避けた軸直角方向により広い平面範囲を利用して、高い自由度で容易に設けられる。しかも、冷媒周回通路34が容器3の吐出口9側の端部に位置することにより、冷媒30による容器3内機器である電動機5などの冷却や冷媒30に含む潤滑油7による副軸受部41などの圧縮機構部4以外の摺動部の潤滑などの利用に供した後に、潤滑油7を分離して容器3外に吐出し外部サイクルに供給できる利点がある。なお、圧縮機構部4側の主軸受部42や偏心軸受部43などは圧縮機構部4に供給される潤滑油7が液溜まり21や22を通じて供給される。
【0036】
冷媒周回通路34は、既製のチューブを曲げて形成するなどどのように形成することもできる。しかし、図4に示すような容器3の端部壁3aまたは容器3に取り付けた図1、図2、図4に示すような基板44に形成した凹条45と、この凹条45を覆う図1、図3、図4に示すような蓋部材46とで形成するようにすると、端部壁3aまたは基板44の型成形や彫りこんで形成した凹条45を蓋部材46にて覆って閉じることによってどのような形状にも容易かつ高精度に形成することができる。特に、容器3の端部壁3aに凹条45を形成すると、凹条45を形成するための特別な部材が省略でき低コスト化に有利であるし、他の邪魔になりにくく容器の省スペース化にも好適である。図に示す本実施の形態のように基板44に形成した凹条45を蓋部材46により閉じる場合でも、基板44を蓋部材46とともに容器3に取り付けることにより、取付けの手間が半減し低コスト化が図れる。いずれの場合も、蓋部材46は本実施の形態で行なっているように、圧縮機構部4から吐出された冷媒30を冷媒導入口32から冷媒周回通路34に導入するために容器3内を容器3の吐出口9側と仕切る仕切り壁を共用することができるので便利である。基板44および蓋部材46の最下部には分離し容器3内に戻した潤滑油7を貯液部6に分散させる分散穴48を有しているが、貯液部6の潤滑油7中に没しているので、前記のような仕切り機能を損なわない。もっとも、基板44および蓋部材46は容器3のどの位置に取り付けてもよいし、場合によっては個別に取り付けることもできる。
【0037】
本実施の形態では基板44は図1、図4に示すように、容器3の内周の端部壁3a近くに形成した環状の段部71に当てがい、蓋部材46とともにねじ47によって取付けてある。前記端部壁3aの内側には前記段部71よりも少し低い放射状のリブ72をハウジング部55のまわりに設けてある。このリブ72は端部壁3aおよびハウジング部55の補強になるとともに、貯液部6の潤滑油7が端部壁3aと基板44との間で吸入通路54を通じポンプ13によって吸入されるときの移動を制限し、潤滑油7がポンプ13によって過剰に吸い上げられ消費されるのを防止する。
【0038】
冷媒導入口32、冷媒戻し口33、液戻し口35はそれぞれ、冷媒周回通路34の周方向またはおよび圧縮機1の軸線X方向に複数設けられてもよい。しかし、旋回方向に少なくとも1つ設けるだけでもよく、構造が簡単になる。本実施の形態では冷媒導入口32を図1、図2に示すように周方向に2つ設けてある。これにより、冷媒導入口32を大きく1つ設ける場合のような冷媒30の吹き戻しが生じるのを防止しながら、より多くの冷媒30を冷媒周回通路34に導入して、導入した冷媒30の周回速度を上げて潤滑油7の遠心分離効果、遠心、衝突分離効果が高まるようにしている。
【0039】
これに代えて、またはこれに加えて、冷媒導入口32に、これよりも広域の冷媒を捕集して冷媒導入口32に導く漏斗状をするなどした図示しない冷媒導入ガイドを設けると、冷媒導入口32を上回る広域の冷媒30を捕集して冷媒周回通路34に導入することにより、導入する冷媒30が増量した分だけ冷媒周回通路34での周回速度が高まるので、冷媒30の周回による遠心分離効果、または遠心、衝突分離効果が向上する。
【0040】
本実施の形態の圧縮機1につきさらに詳述すると、図4に示すように前記端部壁3aを端部に持った主ケース3b内に、その端部壁3a側からポンプ13、副軸受部41、電動機5、前記主軸受部42および偏心軸受部43を持った主軸受部材51を配置してあり、ポンプ13は端部壁3aの外面から収容して蓋体52との間に保持するとともに、蓋体52の内側に貯液部6に通じるポンプ室53を形成して前記吸入通路54を介し貯液部6に通じるようにしてある。副軸受部41は端部壁3aのポンプ13を収容している部分の内側に一体形成したハウジング部55にて支持し、駆動軸14のポンプ13に連結している側を軸受するようにしてある。電動機5はロータ5aを主ケース3bの内周に焼き嵌めなどして固定し、駆動軸14の途中まわりに固定したロータ5bとによって駆動軸14を回転させられるようにしている。主軸受部材51は主ケース3bの内周に焼き嵌めなどして固定し、これの外面に前記固定渦巻部品11をボルト56などによって取付け、これら主軸受部材51と固定渦巻部品11との間に前記旋回渦巻部品12を挟み込んで圧縮機構部4を構成している。主軸受部材51と旋回渦巻部品12との間にはオルダムリングなどの旋回渦巻部品12の自転を防止して円運動させるための自転拘束部57が拘束され、駆動軸14を前記偏心軸受43を介して旋回渦巻部品12に接続して、旋回渦巻部品12を円軌道上で旋回させられるようにしている。
【0041】
圧縮機構部4の主ケース3bからの露出部分は、主ケース3bと開口どうしを突き合わせてボルト58などにて固定した副ケース3cにより覆い、副ケース3cの端部壁3dと固定渦巻部品11の背部との間に、吸入口8から圧縮機構部4の吸入口59に繋がる吸入室61ないしは通路と、圧縮機構部4の吐出口31からリード弁31aを介して吐出させ電動機5側に導く吐出室62ないしは通路を形成している。
【0042】
吐出室62は固定渦巻部品11および主軸受部材51ないしはこれらと容器3との間に形成した通路63を経て電動機5側に通じている。冷媒周回通路34の基板44は、容器3の端部壁3aのハウジング部55に被さるカバー部44aを有してハウジング部55の外回りに向けられ、容器3の胴部との間の軸線Xに直角な向きの広いドーナツ型の平面スペースを利用して冷媒周回通路34を形成している。容器3の胴部途中、特に、電動機5への給電ターミナル64を設けて、圧縮機1が軸線X方向に大きくなるのを防止している。
【0043】
【発明の効果】
本発明の圧縮機によれば、圧縮機構部から容器内に吐出され容器の吐出口に向かう途中の冷媒を冷媒周回通路が冷媒導入口から導入して拘束し圧縮機の軸線回りに周回させた後、冷媒戻し口から容器の吐出口側に戻すのに、冷媒周回通路は、圧縮機構部から吐出される冷媒を一方向に周回させるだけで冷媒と液を通路形態に応じた遠心分離または遠心、衝突分離ができ、サイクロン方式のような冷媒の逆な流れを確保する場合のような広い通路でなくてよいし、容器内側で長い周回距離を得てそれに比例した分離性能が得られるので、周方向に細長く圧縮機の軸線方向の幅が極く小さなものとして、液の分離性能の低下なしに圧縮機のさらなる小型化、軽量化が図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る圧縮機の冷媒と潤滑油の分離機構部の1つの例を示す分解斜視図。
【図2】図1の分離機構部の冷媒周回通路を形成する凹条を持った基板を示し、その(a)は正面図、その(b)は1つの角度で見た断面図、その(c)は別の角度で見た断面図。
【図3】図2の基板と併せて冷媒周回通路を形成する蓋部材を示し、その(a)は正面図、その(b)は断面図。
【図4】図1の分離機構をもった圧縮機全体の断面図。
【符号の説明】
1 圧縮機
3 容器
3a 端部壁
4 圧縮機構部
5 電動機
6 貯液部
7 潤滑油
8 容器の吸入口
9 容器の吐出口
13 ポンプ
14 駆動軸
30 冷媒
31 圧縮機構部の吐出口
32 冷媒導入口
33 冷媒戻し口
34 冷媒周回通路
34a 大湾曲部
34b 小湾曲部
34c 直線部
35 液戻し口
X 軸線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a compressor having at least a compression mechanism for sucking, compressing and discharging refrigerant, and a liquid storage for storing a liquid for lubricating a sliding portion including the compression mechanism in a container. It is about.
[0002]
[Prior art]
This type of compressor is closed by connecting the container to a refrigeration cycle. When the compression mechanism is driven, the refrigerant in the refrigeration cycle is sucked through the suction port of the container, compressed, discharged into the container, and then repeatedly supplied to the refrigeration cycle from the discharge port of the container. At the same time, the lubricating oil stored in the oil storage section in the container is supplied to the sliding section including the compression mechanism section directly or by carrying with a refrigerant to lubricate the sliding section. This enables maintenance-free operation. The refrigerant discharged from the compression mechanism by such a lubrication mechanism and supplied to the refrigeration cycle contains lubricating oil. Lubricating oil contained in the refrigerant supplied to the refrigeration cycle causes a decrease in the function of the refrigeration cycle. In addition, if a large amount of lubricating oil circulates in the refrigeration cycle at the same time, lubrication of the sliding part in the container becomes insufficient. To compensate for this, the oil storage part and the amount of lubricating oil are increased, and the compressor becomes larger and heavier. .
[0003]
Therefore, conventionally, a technique is known in which liquid in a refrigerant discharged from a compression mechanism is centrifuged before being supplied to a refrigeration cycle and returned to an oil storage section of a container (for example, Patent Document 1). , 2). In these, the refrigerant discharged from the compression mechanism is introduced tangentially into the upper part of a cylindrical centrifugal separation chamber provided in a direction perpendicular to the axis, so that the refrigerant introduced is directed downward along the cylindrical surface. The centrifugal separation of the lubricating oil accompanying the refrigerant by forming a helical flow, the centrifuged refrigerant flows upward from the lower part of the centrifugal chamber through its central part and is supplied to the refrigeration cycle, and the centrifugally separated lubricating oil Is blown into the container from the lower part of the centrifugal separation chamber and returned to the lubrication section. The lubricating oil is centrifuged with respect to the refrigerant by a so-called cyclone method.
[0004]
The one described in Patent Document 2 particularly blows out the lubricating oil after centrifugation in parallel to the oil level of the oil storage section so that the oil level does not fluctuate, thereby keeping the lubricating oil level in the liquid storage section constant. While stabilizing the supply of the lubricating oil to the sliding portion, it is possible to prevent the liquid in the oil storage portion from flowing back into the centrifugal separation chamber due to fluctuations in the oil level.
[0005]
[Patent Document 1]
JP-A-07-15083
[0006]
[Patent Document 2]
JP-A-11-083522
[0007]
[Problems to be solved by the invention]
By the way, the compressor built in the container as described above has been mounted for cooling and heating of automobiles, and some electric compressors for room air conditioners have been used, but with the increasing environmental and energy problems, Therefore, there is a demand for a lighter vehicle. In particular, since a driving force at the level of a gasoline-powered vehicle cannot be obtained during electric running of an electric vehicle or a hybrid vehicle, weight reduction of the vehicle has become the most important issue. Therefore, for a compressor that is a relatively heavy object, particularly an electric compressor that also incorporates a motor that increases in size and weight, it is important to reduce the size and weight of the compressor as in the case of mounting on a vehicle. .
[0008]
However, the cyclone-type lubricating oil separation mechanism employed in the conventional compressor described above centrifugates the lubricating oil contained as a spiral flow along the cylindrical surface of the cylindrical centrifugal separation chamber onto the cylindrical surface. The flow of the refrigerant during centrifugal separation toward the lower part of the centrifugal separation chamber and the lower part of the centrifugal separation chamber are lifted up the central part while pressing and separating with the force, thus leaving the lubricating oil pressed against the cylindrical surface. It is necessary to have an area that can secure the flow of the refrigerant after centrifugal separation, which is to be discharged and discharged. For this reason, even if a cylindrical wall for isolating these flows is provided, the mechanism has a relatively large diameter, and the axial space occupied in the compressor container becomes large, which hinders miniaturization and weight reduction. become.
[0009]
An object of the present invention is to provide a compressor that can separate lubricating oil in a small space and that can be further reduced in size and weight.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a compressor of the present invention includes, in a container, a compression mechanism that sucks, compresses, and discharges a refrigerant, and lubricates a sliding portion including the compression mechanism. In a compressor having at least a liquid storage unit for storing a liquid to be processed, a refrigerant discharged from a compression mechanism into a container is introduced from a refrigerant inlet and circulates around the axis of the compressor to centrifuge or centrifuge the liquid. A refrigerant circulation path for returning from the refrigerant return port to the discharge port side of the container while colliding and separating is provided in the container, and a liquid return port for returning the liquid to be centrifugally separated into the container has a gravity direction component in a passage wall in the middle. Another feature is that the refrigerant is provided in a direction deviating from the circulation direction of the refrigerant.
[0011]
In such a configuration, the refrigerant circulating passage is introduced from the refrigerant introduction port to restrict the refrigerant that is discharged from the compression mechanism portion into the container and headed toward the discharge port of the container from the refrigerant introduction port and circulates around the axis of the compressor. Return from the return port to the discharge port side of the container. At this time, the refrigerant circulation passage separates the liquid contained in the refrigerant to be circulated by centrifugal force or centrifugal force and collision action according to the passage form and leaves the liquid on the centrifugal direction side of the refrigerant circulation passage or on the passage wall surface on the gravity direction side. The refrigerant advances and returns to the inside of the container from the refrigerant return port.The separated liquid passes through the liquid return port on the middle wall of the passage and blows out the refrigerant by deviating from the circumferential direction of the refrigerant and having a gravitational direction component. Return into container without looking. Accordingly, the refrigerant circulation path can be separated from the refrigerant and the liquid only by circulating the refrigerant discharged from the compression mechanism in one direction, and is a wide path as in a case where a reverse flow of the refrigerant is secured as in a cyclone system. And the separation performance is proportional to that by obtaining a long circulation distance inside the container.Therefore, there is no decrease in liquid separation performance as long as it is elongated in the circumferential direction and the width in the axial direction of the compressor is extremely small. Furthermore, the size and weight of the compressor can be further reduced.
[0012]
The compressor of the present invention also has a compression mechanism that sucks, compresses, and discharges a refrigerant in a container, and a liquid storage that stores a liquid that lubricates a sliding part including the compression mechanism. In a horizontal compressor that is installed at least diagonally or horizontally, the refrigerant discharged into the container from the compression mechanism is introduced from the refrigerant inlet at the upper part of the container around the axis of the compressor. While providing a refrigerant circulation path for returning from the refrigerant return port in the upper part of the container at the discharge port side of the container while spinning and centrifuging or centrifuging and separating the liquid, the return port for returning the liquid to be centrifuged into the container is low. Another feature is that the passage wall on the side has a gravity direction component and is provided in a direction deviating from the circumferential direction of the refrigerant.
[0013]
In such a configuration, the refrigerant circulation path is located around the oblique or horizontal axis of the compressor, and the refrigerant that is discharged from the compression mechanism into the container and is on the way to the discharge port of the container is stored in the container. After being introduced and confined from the refrigerant introduction port located at the upper part of the container away from the liquid to be circulated and circling around the axis, the refrigerant at the upper part of the container distant from the liquid stored in the container The liquid can be returned from the return port to the discharge port side of the container without affecting the stored liquid. At this time, the refrigerant circulation passage separates the liquid contained in the refrigerant to be circulated by centrifugal force or centrifugal force and collision action according to the passage form and leaves the liquid on the centrifugal direction side of the refrigerant circulation passage or on the passage wall surface on the gravity direction side. The refrigerant is advanced and returned into the container from the refrigerant return port in the upper part of the container, and the separated liquid is collected at the lower position of the refrigerant circulation path, and is passed through the liquid return port provided in the lower halfway passage wall. Since the refrigerant deviates from the circumferential direction and has a gravitational direction component, the refrigerant is gently returned to or near the stored liquid in the container without seeing the blowing of the refrigerant. Accordingly, the refrigerant circulation path can be separated from the refrigerant and the liquid only by circulating the refrigerant discharged from the compression mechanism in one direction, and is a wide path as in a case where a reverse flow of the refrigerant is secured as in a cyclone system. And the separation performance is proportional to that by obtaining a long circulation distance inside the container.Therefore, there is no decrease in liquid separation performance as long as it is elongated in the circumferential direction and the width in the axial direction of the compressor is extremely small. Furthermore, the size and weight of the compressor can be further reduced.
[0014]
The coolant circulation passage may be provided in a spiral shape as the case may be. However, the additional configuration provided on the same plane minimizes the axial space of the compressor occupied by the refrigerant circulation passage, which easily contributes to downsizing and weight reduction of the compressor. Moreover, by providing the refrigerant circulation path with a spiral overlapping portion, it is possible to further increase the liquid separation function by providing the refrigerant circulation path with a length exceeding the circumferential dimension inside the container without increasing the axial space. it can.
[0015]
The refrigerant circulation passage may be provided at any part between the discharge position from the compression mechanism in the container and the discharge port of the container. However, with the further configuration provided in the end portion of the container on the discharge port side, the container can be easily provided with a high degree of freedom by utilizing a wider plane area in a direction perpendicular to the axis avoiding the objects in the container.
[0016]
The refrigerant circulation passage can be formed in any manner, for example, by bending a ready-made tube. However, according to a further configuration formed by a concave portion formed on the end wall of the container or the substrate attached to the container and a lid member covering the concave portion, the end wall or the substrate is formed by molding or engraving. By covering the formed ridge with a lid member and closing it, any shape can be easily and accurately formed, and the lid member circulates the refrigerant discharged from the compression mechanism from the refrigerant inlet through the refrigerant circulation port. This is convenient because a partition wall for partitioning the inside of the container can be shared for introduction into the passage. In particular, when a concave stripe is formed on the end wall of the container, a special member for forming the concave stripe can be omitted, which is advantageous for cost reduction, and is not easily disturbed and is suitable for space saving of the container. It is. In addition, since the refrigerant circulation path is located at the end of the container on the discharge port side, the cooling of equipment inside the container by the refrigerant and the lubrication of sliding parts other than the compression mechanism such as the bearing by the lubricating oil contained in the refrigerant, etc. After being used, there is an advantage that the lubricating oil can be separated and discharged out of the container and supplied to an external cycle.
[0017]
The substrate and the lid member may be attached to any position of the container, or may be individually attached. However, according to the further configuration in which the substrate is attached to the container together with the lid member, the labor for attachment is reduced by half, and the cost can be reduced.
[0018]
A plurality of refrigerant introduction ports, refrigerant return ports, and liquid return ports may be respectively provided in the circumferential direction or in the axial direction of the compressor. However, it is only necessary to provide at least one in the circumferential direction, and the structure is simplified.
[0019]
A refrigerant introduction guide is provided at the refrigerant inlet to collect the refrigerant in a wider area and guide it to the refrigerant inlet. In a further configuration, the refrigerant in a wider area than the refrigerant inlet is collected and introduced into the refrigerant circuit path. By doing so, the circulation speed in the refrigerant circulation path is increased by the amount of the introduced refrigerant, so that the centrifugal effect, or the centrifugal and collision separation effects by the circulation of the refrigerant is improved.
[0020]
In a further configuration in which an electric motor for driving the compression mechanism is housed in the container, an external drive source is not required, but the size and weight are easily reduced. There is an advantage that can be achieved.
[0021]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be employed alone or in combination in various combinations as much as possible.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
A compressor according to an embodiment of the present invention will be described in detail with reference to FIGS. This embodiment shows one example of the case of a horizontal scroll compressor for a refrigerating cycle, which is installed sideways by mounting legs 2 around the body of the compressor 1 as shown in FIG. A compression mechanism 4 and a motor 5 for driving the compression mechanism 4 are built in a container 3 of the compressor 1, and a liquid storage section 6 for storing a liquid for lubricating each sliding portion including the compression mechanism 4 is provided. The refrigerant handled is a gas refrigerant, but when it contains a liquid refrigerant, it can be treated and separated as if it were liquid separated from the refrigerant. A liquid such as a lubricating oil 7 is used as a liquid provided for lubrication of each sliding portion and sealing of the sliding portion of the compression mechanism 4. Further, it is compatible with the refrigerant. However, the present invention is not limited to these. Basically, a compression mechanism 4 for sucking, compressing, and discharging the refrigerant, and a liquid storage 6 for storing a liquid for lubricating a sliding portion including the compression mechanism 4 are provided in the container 3. The following description is not intended to limit the description in the claims.
[0023]
As shown in FIG. 4, the compression mechanism 4 of the compressor 1 according to the present embodiment is formed by engaging a fixed spiral part 11 and a swirling spiral part 12 with blades rising from the fixed head 11a and the rotating head 12a. When the space 10 is caused to move in a circular orbit relative to the fixed spiral part 11 by the electric motor 5 through the drive shaft 14 by the electric motor 5, the volume changes with the movement. The suction, compression and discharge to the external cycle of the refrigerant 30 are performed through the suction port 8 and the discharge port 9 shown in FIG.
[0024]
At the same time, the lubricating oil 7 stored in the liquid storage section 6 of the container 3 drives the positive displacement pump 13 or the like with the drive shaft 14 or utilizes the differential pressure in the container 3 to drive the drive shaft 14. The liquid is supplied to the liquid pool 21 or the liquid pool 22 on the back surface of the swirling spiral part 12 with the swirling drive of the swirling spiral part 12, the liquid pool 21 in the example shown in the drawing, and the lubricating oil 7 supplied to the liquid pool 21 is further The lubricating oil 7 is swirled through the swirl spiral part 12 while supplying the lubricating oil 7 to the back side of the outer periphery of the swirl spiral part 12 through the swirl spiral part 12 under a predetermined restriction such as an aperture 23 to back up the swirl spiral part 12. The tip of the blade of the component 12 is supplied to a holding groove 25 for holding a tip seal 24 which is an example of a seal member between the fixed spiral component 11 at the tip and fixed and revolved. Reduce the fine lubrication.
[0025]
In particular, the compressor 1 of the present embodiment has a refrigerant circulating passage for circulating the refrigerant 30 discharged into the container 3 from the discharge port 31 of the compression mechanism 4 around the axis X of the compressor 1 as shown in FIG. 34 are provided. The refrigerant circulation passage 34 introduces the refrigerant 30 from the refrigerant inlet 32 as shown by a broken arrow in FIGS. 1 and 4 and around the axis X of the compressor 1 as shown by a broken arrow in FIGS. 2 and 3. By causing the lubricating oil 7 to be mixed with and mixed with the refrigerant 30 by being circulated, the lubricating oil 7 is centrifuged or centrifugally separated as shown by a solid line arrow in FIGS. Return from the refrigerant return port 33. In the coolant circulation path 34, a liquid return port 35 for returning the lubricating oil 7 to be centrifugally separated into the container 3 is provided on the passage wall in a direction having a gravity direction component and deviating from the circulation direction of the refrigerant. .
[0026]
As shown in FIG. 1 and FIG. 2, the refrigerant circulation passage 34 has a large curved portion 34 a having a substantially concentric large curvature close to the inside of the container 3 having an axis X common to the compression mechanism 4 and the electric motor 5. At both ends, and between them, a small curved portion 34b having a smaller radius of curvature than the large curved portion 34a and a substantially linear portion 34c are alternately connected to form a passage form. The lubricating oil 7 therein is mainly centrifuged. However, when the lubricating oil 7 enters the small curved portion 34b from the large curved portion 34a, or enters the small curved portion 34b from the straight portion 34c, the refrigerant 30 is caused to pass through the passage wall in accordance with the sharpness of the change in the circulation direction of the refrigerant 30. The lubricating oil 7 can collide and separate by this collision action.
[0027]
Such collision separation becomes stronger as the circulation direction of the refrigerant 30 changes rapidly, and the separation effect increases. For this purpose, a bent portion or a collision wall may be provided in the middle of the refrigerant circulation passage 34. In the example shown by the phantom line in FIG. 2, the collision wall 36 is provided on the downstream side of the liquid return port 35 of the refrigerant circulation path 34, and the collision wall 36 collides with the refrigerant 30 that is going to be returned into the container 3 through the liquid return port 35. Thus, the lubricating oil 7 can be finally separated. When such a collision wall 36 is provided immediately downstream of the liquid return port 35 as shown by a broken line in FIG. 2, the refrigerant that passes through the liquid return port 35 collides to further separate the lubricating oil 7. While promoting, it is possible to prevent the lubricating oil 7 separated from the refrigerant 30 up to that point and to prevent the lubricating oil 7 from moving downstream, and to increase the recovery rate into the container 3 through the liquid return port 35. However, if there is a portion for separating the lubricating oil 7 downstream of the collision wall 36, an escape path that does not hinder the separated lubricating oil 7 from returning to the liquid return port 35, or downstream of the collision wall 36. It is necessary to provide another liquid return port 35 so that the liquid can be returned into the container 3. Such a collision wall 36 also forms a so-called throttle portion in which the passage of the refrigerant circulation passage 34 is narrowed between the wall and the opposing wall of the refrigerant circulation passage 34. Gas-liquid separation can be performed. However, the throttle portion for gas-liquid separation can be provided irrespective of the presence or absence of the collision wall 36, and the opposing wall of the refrigerant circulation path 34 is cut so that the projecting wall 36 does not form the above-described throttle portion. A relief part can be formed.
[0028]
The refrigerant circulation path 34 as described above introduces the refrigerant 30 discharged from the compression mechanism 4 into the container 3 and on the way to the discharge port 9 of the container 3 from the refrigerant introduction port 32 to restrict the refrigerant 30 so that the axis X of the compressor 1 After being circulated around as shown by the dashed arrows in FIGS. 1 and 2, the refrigerant is returned from the refrigerant return port 33 to the discharge port 9 side of the container 3. At this time, the refrigerant circulating passage 34 separates the lubricating oil 7 contained in the circulated refrigerant 30 by centrifugal force or centrifugal force and collision action according to the above-described passage form, and on the centrifugal side of the refrigerant circulating passage 34 or The refrigerant advances while returning to the vessel 3 from the refrigerant return port 33 while remaining on the wall surface of the passage in the direction of gravity, and the separated lubricating oil 7 is removed from the circulation direction of the refrigerant 30 through the liquid return port 35 provided in the middle wall of the path. In addition, the refrigerant is returned into the container 3 without seeing the blowing of the refrigerant due to the direction having the gravity direction component. Such recovery of the lubricating oil 7 separated from the refrigerant 30 into the container 3 through the liquid return port 35 is performed in such a manner that the liquid return port 35 is directed at an acute angle equal to or less than a right angle with respect to the circumferential direction of the refrigerant 30 and in the direction of gravity. The more the direction matches, the smoother the operation and the higher the recovery rate.
[0029]
As a result, the refrigerant circulation path 34 can separate the refrigerant 30 and the lubricating oil 7 only by circulating the refrigerant 30 discharged from the compression mechanism unit 4 in one direction, so that the refrigerant circulation path 34 is different from a swirl flow like a cyclone system. It is not necessary to have a wide passage as in the case of securing the flow, and a long orbital distance close to the perimeter can be obtained inside the container 3 and the separation performance can be exhibited in proportion thereto. As the width in the direction of the axis X is extremely small, the compressor 1 can be further reduced in size and weight by increasing the lubricating oil 7 without deteriorating the separation performance. In the example shown in FIG. 4, the dimension in the axis X direction is about 1/24 of the length in the axis X direction of the compressor 1 having the compression mechanism 4 and the electric motor 5.
[0030]
In the case where the refrigerant circulation path 34 as described above is provided, there is also a special case where the axis X is oblique from a more specific viewpoint in consideration of the fact that the present embodiment is the horizontal compressor 1. The refrigerant 30 discharged from the compression mechanism 4 into the container 3 is introduced through the refrigerant inlet 32 at the upper part of the container 3 shown in FIGS. 1, the refrigerant shown in FIGS. 1, 2 and 4 in the upper part of the container 3 on the discharge port 9 side of the container 3 while being centrifuged or centrifugally separated by collision by rotating the lubricating oil 7 as shown by the dashed arrow in FIG. A coolant circulation path 34 is provided so as to return from the return port 33, and a liquid return port 35 for returning the centrifugally separated lubricating oil 7 into the container 3 is at a lower position as shown in FIGS. 1, 2, and 4. A direction that has a gravity direction component on the way wall and deviates from the circulation direction of the refrigerant 30 It is provided. In the illustrated example, the liquid return port 35 coincides with the direction of gravity.
[0031]
Such a refrigerant circulation passage 34 is located around an oblique or horizontal axis X of the compressor 1 as shown in FIGS. 1, 2, and 4, and is discharged from the compression mechanism 4 into the container 3 and The refrigerant 30 on the way to the discharge port 9 of the container 3 is introduced without being affected by the stored lubricating oil 7 from the refrigerant inlet 32 located in the upper part of the container 3 remote from the lubricating oil 7 stored in the container 3. After rotating around the axis X, the refrigerant is returned to the discharge port 9 side of the container 3 from the refrigerant return port 33 in the upper part of the container 3 away from the lubricating oil 7 stored in the container 3 without affecting the stored lubricating oil 7. be able to.
[0032]
At this time, the refrigerant circulation path 34 separates the lubricating oil 7 contained in the refrigerant 30 to be circulated by the centrifugal force or the centrifugal force according to the path form and the collision action as described above, or on the centrifugal side of the refrigerant circulation path 34 or In addition, the refrigerant 30 is advanced while leaving it on the passage wall surface on the gravity direction side and returned into the container 3 from the refrigerant return port 33 in the upper part of the container 3, and the separated lubricating oil 7 is lowered to the lower position of the refrigerant circulation path 34 in FIG. By using the gathering as shown by the arrow, through the liquid return port 35 provided in the lower halfway passage wall, the refrigerant 30 is blown out by being deviated from the circumferential direction of the refrigerant and having a gravitational direction component. The lubricating oil 7 can be returned to the vicinity of or within the lubricating oil 7 without seeing.
[0033]
As a result, the refrigerant circulation path 34 can separate the refrigerant 30 and the lubricating oil 7 only by circulating the refrigerant 30 discharged from the compression mechanism unit 4 in one direction, so that the refrigerant 30 and the lubricating oil 7 are separated from the swirling flow of the cyclone system. It is not necessary to use a wide passage as in the case where the compressor 1 is secured, and it is possible to obtain a long circling distance close to the circumferential length inside the container 3 and to exert a separating performance in proportion thereto, so that the axis of the compressor 1 is elongated in the circumferential direction. As the width in the X direction is extremely small, the lubricating oil 7 can be increased in size without deteriorating the separation performance, and the compressor 1 can be further reduced in size and weight.
[0034]
Here, the coolant circulation path 34 can be provided in a spiral shape to extend the circulation distance. However, in this embodiment, they are provided on the same plane as shown in FIG. 1, FIG. 2, and FIG. Thereby, the space around the axis X of the compressor 1 occupied by the refrigerant circulation passage 34 is minimized to fit within the width of the single refrigerant circulation passage 34, and it is easy to contribute to the reduction in size and weight of the compressor 1. In addition, as shown in FIGS. 1 and 2, the coolant circulation passage 34 has a spiral overlapping portion 34e so that the refrigerant circulation passage 34 has a length exceeding the circumferential dimension inside the container 3 without increasing the space in the axis X direction. The function of separating the lubricating oil 7 can be further enhanced.
[0035]
Further, the refrigerant circulation path 34 may be provided at any part between the discharge position from the compression mechanism 4 in the container 3 and the discharge port 9 of the container 3. However, in the present embodiment, as shown in FIG. 1 and FIG. 4, it is provided in the end of the container 3 on the discharge port 9 side. Thereby, it can be easily provided with a high degree of freedom by using a wider plane area in the direction perpendicular to the axis except for the compression mechanism section 4 and the electric motor 5 which are installed in the container 3 particularly in the direction of the axis X. In addition, since the refrigerant circulation passage 34 is located at the end of the container 3 on the discharge port 9 side, the cooling of the electric motor 5 and the like in the container 3 by the refrigerant 30 and the auxiliary bearing portion 41 by the lubricating oil 7 contained in the refrigerant 30 After the lubricating oil 7 is separated and discharged to the outside of the container 3, the lubricating oil 7 is advantageously supplied to an external cycle after being used for lubrication of sliding parts other than the compression mechanism unit 4. The lubricating oil 7 supplied to the compression mechanism 4 is supplied to the main bearing 42 and the eccentric bearing 43 on the compression mechanism 4 side through the liquid pools 21 and 22.
[0036]
The refrigerant circulation path 34 can be formed in any manner, for example, by bending a ready-made tube. However, a groove 45 formed on the end wall 3a of the container 3 as shown in FIG. 4 or the substrate 44 as shown in FIGS. 1, 2 and 4 attached to the container 3, and a view covering the groove 45 1, the cover member 46 as shown in FIGS. 3 and 4, and the cover member 46 covers and closes the concave streak 45 formed by molding or engraving the end wall 3a or the substrate 44. Thereby, any shape can be easily and accurately formed. In particular, when the recesses 45 are formed in the end wall 3a of the container 3, a special member for forming the recesses 45 can be omitted, which is advantageous for cost reduction, and is less likely to interfere with other objects and saves space in the container. It is also suitable for conversion. Even when the groove 45 formed on the substrate 44 is closed by the lid member 46 as in the present embodiment shown in the drawing, by mounting the substrate 44 on the container 3 together with the lid member 46, the labor for mounting is reduced by half and the cost is reduced. Can be achieved. In any case, as in this embodiment, the lid member 46 is used to introduce the refrigerant 30 discharged from the compression mechanism unit 4 from the refrigerant inlet 32 into the refrigerant circulation passage 34 into the container 3. This is convenient because the partition wall for partitioning with the discharge port 9 side of No. 3 can be shared. Dispersion holes 48 for dispersing the lubricating oil 7 separated and returned into the container 3 into the liquid reservoir 6 are provided at the lowermost portions of the substrate 44 and the lid member 46. Since it is submerged, the partition function as described above is not impaired. Of course, the substrate 44 and the lid member 46 may be attached to any position of the container 3, or may be individually attached in some cases.
[0037]
In this embodiment, as shown in FIGS. 1 and 4, the substrate 44 is applied to an annular step 71 formed near the end wall 3 a on the inner periphery of the container 3, and is attached together with the lid member 46 by screws 47. is there. A radial rib 72 slightly lower than the step 71 is provided around the housing 55 inside the end wall 3a. The rib 72 reinforces the end wall 3 a and the housing 55, and is used when the pump 7 sucks the lubricating oil 7 in the liquid storage 6 between the end wall 3 a and the substrate 44 through the suction passage 54. The movement is restricted to prevent the lubricating oil 7 from being excessively sucked up and consumed by the pump 13.
[0038]
A plurality of the refrigerant introduction ports 32, the refrigerant return ports 33, and the liquid return ports 35 may be provided in the circumferential direction of the refrigerant circulation passage 34 or in the axis X direction of the compressor 1, respectively. However, it is only necessary to provide at least one in the turning direction, and the structure is simplified. In the present embodiment, two refrigerant inlets 32 are provided in the circumferential direction as shown in FIGS. Thus, while preventing the refrigerant 30 from blowing back as in the case of providing one large refrigerant inlet 32, more refrigerant 30 is introduced into the refrigerant circulation path 34 and the introduced refrigerant 30 circulates. By increasing the speed, the effect of centrifugal separation, centrifugation and collision separation of the lubricating oil 7 is enhanced.
[0039]
Alternatively or additionally, the refrigerant inlet 32 may be provided with a refrigerant guide (not shown) such as a funnel that collects refrigerant in a wider area and guides the refrigerant to the refrigerant inlet 32. By collecting the refrigerant 30 in a wide area beyond the inlet 32 and introducing it into the refrigerant circulation path 34, the circulation speed in the refrigerant circulation path 34 is increased by the increased amount of the refrigerant 30 to be introduced. The effect of centrifugal separation, or the effect of centrifugal separation and collision separation is improved.
[0040]
The compressor 1 of the present embodiment will be described in further detail. As shown in FIG. 4, a pump 13 and a sub-bearing portion are placed in a main case 3b having the end wall 3a at the end from the end wall 3a side. 41, an electric motor 5, a main bearing member 51 having the main bearing portion 42 and an eccentric bearing portion 43 are arranged, and the pump 13 is housed from the outer surface of the end wall 3a and held between the pump 13 and the lid 52. At the same time, a pump chamber 53 communicating with the liquid storage 6 is formed inside the lid 52 so as to communicate with the liquid storage 6 through the suction passage 54. The auxiliary bearing portion 41 is supported by a housing portion 55 integrally formed inside a portion of the end wall 3a that accommodates the pump 13, so that the side of the drive shaft 14 connected to the pump 13 is supported. is there. The electric motor 5 has the rotor 5a fixed to the inner periphery of the main case 3b by shrink fitting or the like so that the drive shaft 14 can be rotated by the rotor 5b fixed around the drive shaft 14. The main bearing member 51 is fixed to the inner periphery of the main case 3b by shrink fitting or the like, and the fixed spiral component 11 is attached to the outer surface thereof with bolts 56 or the like. The compression mechanism 4 is configured with the swirling spiral part 12 interposed therebetween. Between the main bearing member 51 and the swirling spiral part 12, a rotation restraining part 57 for preventing the swirling spiral part 12 such as an Oldham ring from rotating and performing a circular motion is restrained, and the drive shaft 14 is connected to the eccentric bearing 43. The rotating spiral component 12 is connected to the rotating spiral component 12 via a circular path.
[0041]
The exposed portion of the compression mechanism 4 from the main case 3b is covered by a sub-case 3c whose opening is abutted with the main case 3b and fixed with bolts 58 or the like, and the end wall 3d of the sub-case 3c and the fixed spiral part 11 are fixed. A suction chamber 61 or a passage leading from the suction port 8 to the suction port 59 of the compression mechanism section 4 between the suction port 8 and the back section, and discharge from the discharge port 31 of the compression mechanism section 4 via the reed valve 31a to be guided to the electric motor 5 side. A chamber 62 or passage is formed.
[0042]
The discharge chamber 62 communicates with the electric motor 5 through the fixed spiral part 11 and the main bearing member 51 or a passage 63 formed between the main member 51 and the container 3. The substrate 44 of the coolant circulation path 34 has a cover portion 44 a that covers the housing portion 55 of the end wall 3 a of the container 3, and is directed toward the outer periphery of the housing portion 55, and extends along the axis X between the body portion and the container 3. The refrigerant circulation path 34 is formed using a wide donut-shaped plane space having a right angle. A power supply terminal 64 for the motor 5 is provided in the middle of the body of the container 3 to prevent the compressor 1 from increasing in the direction of the axis X.
[0043]
【The invention's effect】
According to the compressor of the present invention, the refrigerant that has been discharged from the compression mechanism into the container and is on its way to the discharge port of the container is confined by introducing the refrigerant circulation passage from the refrigerant introduction port and circulates around the axis of the compressor. After that, in order to return the refrigerant from the refrigerant return port to the discharge port side of the container, the refrigerant circulation path simply centrifugs the refrigerant discharged from the compression mechanism in one direction and performs centrifugal separation or centrifugation according to the path form. It is not necessary to use a wide passage as in the case of securing the reverse flow of the refrigerant as in the cyclone type, and it is possible to obtain a long circulation distance inside the container and obtain a separation performance proportional to it, Since the compressor is elongated in the circumferential direction and has a very small width in the axial direction of the compressor, the compressor can be further reduced in size and weight without lowering the liquid separation performance.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing one example of a separation mechanism of a refrigerant and a lubricating oil of a compressor according to an embodiment of the present invention.
FIGS. 2A and 2B show a substrate having a concave streak forming a refrigerant circulation path of the separation mechanism unit in FIG. 1, wherein FIG. 2A is a front view, and FIG. c) is a sectional view seen from another angle.
3A and 3B show a lid member forming a refrigerant circulation passage together with the substrate of FIG. 2, wherein FIG. 3A is a front view and FIG. 3B is a cross-sectional view.
FIG. 4 is a cross-sectional view of the entire compressor having the separation mechanism of FIG.
[Explanation of symbols]
1 compressor
3 containers
3a End wall
4 Compression mechanism
5 Electric motor
6 Reservoir
7 Lubricating oil
8 Container inlet
9 Container outlet
13 pump
14 Drive shaft
30 refrigerant
31 Discharge port of compression mechanism
32 refrigerant inlet
33 Refrigerant return port
34 Refrigerant circulation path
34a Large bend
34b small bending part
34c straight section
35 Liquid return port
X axis

Claims (9)

容器内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部と、この圧縮機構部を含む摺動部への潤滑などを図る液を貯留する貯液部とを少なくとも有した圧縮機において、
圧縮機構部から容器内に吐出される冷媒を冷媒導入口から導入して圧縮機の軸線まわりに周回させ液を遠心分離または遠心、衝突分離しながら容器の吐出口側に冷媒戻し口から戻す冷媒周回通路を容器内に設けるとともに、前記遠心分離される液を容器内に戻す液戻し口を途中通路壁に重力方向成分を持ちかつ前記冷媒の周回方向から外れた向きに設けたことを特徴とする圧縮機。
In a container, a compressor having at least a compression mechanism for performing suction, compression and discharge of the refrigerant, and a liquid storage for storing a liquid for lubricating a sliding part including the compression mechanism,
The refrigerant discharged from the compression mechanism into the container is introduced from the refrigerant inlet and circulates around the axis of the compressor, and the liquid is returned from the refrigerant return port to the container outlet while the liquid is centrifuged or centrifugally separated by collision. A circulation path is provided in the container, and a liquid return port for returning the liquid to be centrifuged into the container has a gravity direction component in the passage wall in the middle and is provided in a direction deviating from the circulation direction of the refrigerant. Compressor.
容器内に、冷媒の吸入、圧縮および吐出を行う圧縮機構部と、この圧縮機構部を含む摺動部への潤滑などを図る液を貯留する貯液部とを少なくとも有し、斜めまたは横向きにして設置される横設型の圧縮機において、
圧縮機構部から容器内に吐出される冷媒を容器内上部の冷媒導入口から導入して圧縮機の軸線まわりに周回させ液を遠心分離または遠心、衝突分離しながら容器の吐出口側に容器内上部の冷媒戻し口から戻す冷媒周回通路を設けるとともに、前記遠心分離される液を容器内に戻す戻し口を低位側となる途中通路壁に重力方向成分を持ちかつ前記冷媒の周方向から外れた向きに設けたことを特徴とする圧縮機。
In the container, at least a compression mechanism for sucking, compressing and discharging the refrigerant, and a liquid storage for storing a liquid for lubricating a sliding part including the compression mechanism are provided. Horizontal compressor installed
The refrigerant discharged from the compression mechanism into the container is introduced from the refrigerant inlet at the top of the container and circulates around the axis of the compressor. A refrigerant circulation path for returning from the upper refrigerant return port is provided, and the return port for returning the liquid to be centrifugally separated has a gravitational direction component on the way passage wall on the lower side and deviates from the circumferential direction of the refrigerant. A compressor provided in a direction.
冷媒周回通路は、同一平面上に設ける請求項1、2のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 and 2, wherein the refrigerant circulation path is provided on the same plane. 冷媒周回通路は、容器の吐出口側の端部内に設ける請求項1〜3のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 to 3, wherein the refrigerant circulation passage is provided in an end of the container on the discharge port side. 冷媒周回通路は、容器の端部壁または容器に取り付けた基板に形成した凹条と、この凹条を覆う蓋部材とで形成する請求項1〜4のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 to 4, wherein the refrigerant circulation passage is formed by a concave line formed on an end wall of the container or a substrate attached to the container, and a lid member that covers the concave line. 基板は蓋部材とともに容器に取り付ける請求項5に記載の圧縮機。The compressor according to claim 5, wherein the substrate is attached to the container together with the lid member. 冷媒導入口、冷媒戻し口、液戻し口はそれぞれ、冷媒の周回方向に少なくとも1つ設ける請求項1〜5のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 to 5, wherein at least one refrigerant inlet, a refrigerant return port, and a liquid return port are provided in a circumferential direction of the refrigerant. 冷媒導入口に、これよりも広域の冷媒を捕集して冷媒導入口に導く冷媒導入ガイドを設けた請求項1〜7のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 to 7, wherein a refrigerant introduction guide is provided at the refrigerant introduction port to collect the refrigerant in a wider area and guide the refrigerant to the refrigerant introduction port. 容器内には圧縮機構を駆動する電動機が収容されている請求項1〜8のいずれか1項に記載の圧縮機。The compressor according to any one of claims 1 to 8, wherein a motor for driving the compression mechanism is housed in the container.
JP2002363239A 2002-12-16 2002-12-16 Compressor Pending JP2004197567A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002363239A JP2004197567A (en) 2002-12-16 2002-12-16 Compressor
US10/735,723 US7472562B2 (en) 2002-12-16 2003-12-16 Compressor and mechanism for separating lubricating liquid
CNA2003101233655A CN1508438A (en) 2002-12-16 2003-12-16 Compressor and its lubricant separation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363239A JP2004197567A (en) 2002-12-16 2002-12-16 Compressor

Publications (1)

Publication Number Publication Date
JP2004197567A true JP2004197567A (en) 2004-07-15

Family

ID=32652595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363239A Pending JP2004197567A (en) 2002-12-16 2002-12-16 Compressor

Country Status (3)

Country Link
US (1) US7472562B2 (en)
JP (1) JP2004197567A (en)
CN (1) CN1508438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001563B1 (en) 2008-07-02 2010-12-17 주식회사 두원전자 Oil separator and scroll compressor having the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624988B (en) * 2009-08-06 2011-06-08 温岭市鑫磊空压机有限公司 Air compressor device for integrated oil-gas separation
JP5705702B2 (en) * 2011-10-19 2015-04-22 日立アプライアンス株式会社 Horizontal compressor
JP5510485B2 (en) * 2012-03-23 2014-06-04 株式会社豊田自動織機 Compressor
JP6477656B2 (en) * 2016-10-14 2019-03-06 トヨタ自動車株式会社 Oil passage structure of power transmission device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999A (en) * 1843-03-10 Smut-machine
US13343A (en) * 1855-07-24 And de witt
DE3207997C2 (en) * 1981-03-06 1985-11-14 Hitachi, Ltd., Tokio/Tokyo Oil separator
US5219281A (en) * 1986-08-22 1993-06-15 Copeland Corporation Fluid compressor with liquid separating baffle overlying the inlet port
JPH02230979A (en) * 1989-03-02 1990-09-13 Toyota Autom Loom Works Ltd Swash plate type compressor
JPH0494490A (en) 1990-08-09 1992-03-26 Matsushita Refrig Co Ltd Rotary pump
KR960000984B1 (en) * 1993-04-26 1996-01-15 Lg전자 주식회사 Rotary compressor
JPH07151083A (en) 1993-11-29 1995-06-13 Nippondenso Co Ltd Vane type compressor
JPH10196540A (en) 1997-01-10 1998-07-31 Toyota Autom Loom Works Ltd Compressor
JP4000634B2 (en) 1997-09-05 2007-10-31 株式会社デンソー Scroll compressor
JP2000291557A (en) 1999-04-07 2000-10-17 Sanden Corp Electric compressor
JP3709103B2 (en) 1999-07-07 2005-10-19 松下電器産業株式会社 Hermetic vertical compressor
KR100318418B1 (en) * 1999-12-30 2001-12-22 신영주 Oil separator embeded in compressor
JP2001280552A (en) 2000-03-30 2001-10-10 Bridgestone Corp Twin hose
JP2001280249A (en) 2000-03-31 2001-10-10 Matsushita Electric Ind Co Ltd Compressor and motor
JP3931574B2 (en) 2000-08-04 2007-06-20 松下電器産業株式会社 Hermetic compressor
JP2002070743A (en) 2000-08-29 2002-03-08 Sanden Corp Motor-driven compressor for refrigerant compression
JP3976512B2 (en) 2000-09-29 2007-09-19 サンデン株式会社 Electric compressor for refrigerant compression
JP2002180984A (en) 2000-12-08 2002-06-26 Sanden Corp Electric compressor for compressing refrigerant
JP4073622B2 (en) 2000-12-18 2008-04-09 サンデン株式会社 Electric compressor
DE10213252B4 (en) * 2001-03-26 2013-11-28 Kabushiki Kaisha Toyota Jidoshokki Electrically driven compressors and methods for circulating lubricating oil through these compressors
JP2002285981A (en) 2001-03-26 2002-10-03 Toyota Industries Corp Scroll-type compressor and method of feeding lubrication oil for the same
JP3685091B2 (en) 2001-06-08 2005-08-17 松下電器産業株式会社 Compressor with built-in electric motor and mobile vehicle equipped with it
JP4777541B2 (en) 2001-06-08 2011-09-21 パナソニック株式会社 Compressor with built-in electric motor and mobile vehicle equipped with this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001563B1 (en) 2008-07-02 2010-12-17 주식회사 두원전자 Oil separator and scroll compressor having the same

Also Published As

Publication number Publication date
US7472562B2 (en) 2009-01-06
CN1508438A (en) 2004-06-30
US20040126252A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
EP2687726B1 (en) Compressor
EP2309132B1 (en) Horizontal scroll compressor
JPS58117378A (en) Scroll compressor
KR20060024200A (en) Scroll compressor with oil discharge reduction function
US9651047B2 (en) Compressor having a partitioned discharge chamber
US7018185B2 (en) Liquid recovery method and system for compression mechanism
JP2004197567A (en) Compressor
JPH076514B2 (en) Electric compressor
WO2004092587A1 (en) Enclosed compressor
CN114787518B (en) Compressor
JPH0565718B2 (en)
JP2006348928A (en) Compressor
JPH07158569A (en) Scroll fluid machinery
JP3747999B2 (en) Scroll compressor
JP2001050162A (en) Closed type compressor
JP6090169B2 (en) Compressor
JP2553717B2 (en) Scroll compressor
CN111182975A (en) Oil separator
CN109477474B (en) Compressor with a compressor housing having a plurality of compressor blades
JP2706516B2 (en) Compressor
JP2000205157A (en) Scroll compressor
WO2006129617A1 (en) Scroll compressor
JP2005163637A (en) Scroll compressor
JP2600378B2 (en) Scroll compressor
JP6120173B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317