JP2004197009A - Thermosetting resin, method for producing the same, and its product - Google Patents

Thermosetting resin, method for producing the same, and its product Download PDF

Info

Publication number
JP2004197009A
JP2004197009A JP2002369159A JP2002369159A JP2004197009A JP 2004197009 A JP2004197009 A JP 2004197009A JP 2002369159 A JP2002369159 A JP 2002369159A JP 2002369159 A JP2002369159 A JP 2002369159A JP 2004197009 A JP2004197009 A JP 2004197009A
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin
epoxy resin
resin composition
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369159A
Other languages
Japanese (ja)
Inventor
Masahiro Suzuki
正博 鈴木
Akio Takahashi
昭雄 高橋
Ken Takahashi
研 高橋
Mamoru Onda
護 御田
Takashi Sato
隆 佐藤
Yuzo Ito
雄三 伊藤
Toyoharu Koizumi
豊張 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002369159A priority Critical patent/JP2004197009A/en
Publication of JP2004197009A publication Critical patent/JP2004197009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solventless thermosetting resin composition, which is excellent in workability such as casting because it is liquid of low viscosity at room temperature(25°C) and gives, after curing, a cured resin product excellent in heat resistance, especially in mechanical properties at a higher temperature, a method for producing the same and its product. <P>SOLUTION: Essential components of the thermosetting resin composition are an epoxy resin(a), a reaction product(b) of water and an organic silicon compound shown by formula (1) (wherein R is an organic group containing a functional group which makes addition reaction with the epoxy resin and R' is a methyl or ethyl group), a bismaleimide compound(c) shown by formula (2) (wherein A is a bivalent organic group having at least two carbon atoms) and a curing agent(d). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子,電気機器分野で広く使用されている絶縁材料に適用するものであり、耐熱性特に、高温での力学物性の優れた特性を有する熱硬化性樹脂に関する。
【0002】
【従来の技術】
携帯端末を中心に電子機器の高性能化が急速に進められており、半導体実装の高密度化がこの進展を支えており、さらなる高密度化が要求されている。半導体の高密度実装のため、基板,接着材料,封止材料には高温でのリフローソルダやそのリペア作業に耐える高温での力学物性が要求されている。これに加えて、環境対策の面から、鉛フリーの方向にあり、半導体実装の温度は現状の220℃付近から20〜30℃高くなる方向にある。
【0003】
従来、基板,接着材料,封止材料にはコストパフォーマンスの面で最適であるエポキシ樹脂が使用されている。上記の要求に応えるため汎用のエポキシ樹脂でできるだけ高いガラス転移温度を得るための検討がなされてきた。しかし、この方法では限界に達したため、特殊なエポキシ樹脂、例えば多官能型のエポキシ樹脂を開発して硬化後の架橋密度をあげる方法が適用されている。ナフタレンやアントラセンのような耐熱骨格を有するエポキシ樹脂や液晶性を示すエポキシ樹脂の検討がなされている。いずれも全くの新しい樹脂であるため、硬化性から多くの性能面での検討が必要となりコストを含めて大きな制約が発生する。
【0004】
このような制約のない方法として汎用のエポキシ樹脂と有機ケイ素化合物からなるハイブリッド樹脂が開発されている。このエポキシ/有機ケイ素ハイブリッド樹脂は、従来の汎用エポキシ樹脂と全く同じ条件で硬化させることができ、硬化物は優れた高温物性を示す。この方法によれば剛直な無機骨格を主体とする有機ケイ素オリゴマーがエポキシ樹脂中に均一に分散し、かつエポキシ樹脂と反応しているために高温での力学物性の低下が小さくなる(例えば、特許文献1,2参照)。
【0005】
しかしながら、半導体実装材料へ適用する場合、成形性,接着性他、多岐に亘る特性が要求されるため、更なる高温での優れた特性が必要とされる。即ち、高温での力学物性面での余裕があれば、他の特性とのバランスを保つための変性も容易となる。
【0006】
【特許文献1】
特開2000−109709号公報([0007]〜[0010]段落)
【特許文献2】
特開2001−291804号公報([0007]〜[0013]段落)
【0007】
【発明が解決しようとする課題】
本発明の課題は、汎用のエポキシ樹脂と同様の条件で作業ができ、かつ硬化後の樹脂物性、特に高温での力学物性の低下が極めて小さい熱硬化性樹脂とその応用製品を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、エポキシ樹脂及びシラン化合物と水の反応物とビスマレイミド化合物と硬化剤からなる熱硬化性樹脂に関する。
【0009】
即ち、本発明はエポキシ樹脂にシラン化合物と水及び加水分解触媒の混合溶液を添加して熱処理を施し、副生成物として発生する水やアルコールを除去した後、ビスマレイミド化合物と硬化剤を加え、加熱することにより得られる高温での力学物性の優れた樹脂硬化物を提供することにある。
【0010】
上記、シラン化合物と水及び加水分解触媒の混合溶液は、エポキシ樹脂中で加熱することにより反応し、液状のオリゴマーを形成する。この液状のオリゴマーがエポキシ樹脂と良く相溶し、無色透明の樹脂となる。シラン化合物と水を、別に反応し、加熱して副生成物として発生する水やアルコールを除去した後、エポキシ樹脂に溶かし込んで、良く撹拌しても同様な無色透明の樹脂を得ることができる。この後、ビスマレイミド化合物と硬化剤、必要に応じて硬化促進剤を加えて本発明の熱硬化性樹脂組成物を得る。
【0011】
上記オリゴマー状シラン化合物は力学物性的に安定なSiO2 骨格を有し、且つエポキシ樹脂と共通の硬化剤と反応する官能基を有する。従って、上記の熱硬化性樹脂組成物を加熱硬化するとオリゴマー状シラン化合物がエポキシ樹脂と硬化剤を介して相互に反応し分子レベルでの均質な樹脂硬化物が形成される。そのため、高温での力学物性の優れた樹脂硬化物が得られる。上記、樹脂組成物は硬化剤を加える前の加熱処理により、オリゴマーの形成と共に、副生成物である水及びアルコールが除去されているため、樹脂硬化物に欠陥の原因となるボイドやクラックの発生がない。さらに、ビスマレイミド化合物を加えることにより、その加熱して得られる樹脂硬化物の高温力学物性は大きく向上し、動的粘弾性(DMA)特性では300℃まで全くガラス転移温度(Tg)を示すtanδ のピークが認められなくなる。即ち、300℃までTgに起因する力学物性の低下がなくなる。その効果は、ビスマレイミド化合物の添加量で5wt%付近から顕著に表れる。これは、ビスマレイミド化合物がエポキシ樹脂とオリゴマー状シラン化合物の相溶性を高め、且つ、オリゴマー状シラン化合物,エポキシ樹脂とビスマレイミド化合物が共通の硬化剤で硬化するため相互に堅固なネットワーク構造を形成するためと推定される。しかし、わずか5wt%で大きな効果を示す理由については、十分に解明できていない。
【0012】
本発明の要旨は以下のとおりである。
【0013】
エポキシ樹脂(a)、及び
【0014】
【化1】

Figure 2004197009
【0015】
の有機けい素化合物(ただし、Rは該エポキシ樹脂と付加反応を起こす官能基を含む有機基であり、かつ、R′はメチル基またはエチル基である)と水との反応物(b)、及び
【0016】
【化2】
Figure 2004197009
【0017】
のビスマレイミド化合物(式中Aは少なくとも2個の炭素原子を有する2価の有機基を表す)(c)と硬化剤(d)を必須成分とする熱硬化性樹脂組成物である。その製造方法は、上記のシラン化合物と水を予め反応させることが特徴であり、具体的には60℃〜160℃で1〜10時間反応される。ここで、水は、シラン化合物に対してモル比で3〜0.02 倍量が好ましい。この反応はエポキシ樹脂の存在下で行われるが、上記ゾルゲル反応の後、エポキシ樹脂を加えても同様の効果が得られる。
【0018】
マレイミド化合物及び硬化剤を添加する前に、エポキシ樹脂,シラン化合物、および、水を含む混合物に熱処理を施し、水やアルコールの反応副生成物が除去されている。従って、硬化する際に、水やアルコールなどの副生成物の発生はほとんどなく、金属,セラミックまたは樹脂などの基材とともに用いて複合材を製造しても、基材と樹脂との界面で膨れが生じたり、成形品にクラックや剥離が生じたりすることがない。上記のシラン化合物と水の反応物は力学物性的に安定なSiO2 骨格を有し、且つエポキシ樹脂と共通の硬化剤と反応する官能基を有する。また、マレイミド化合物の添加によりエポキシ樹脂とシラン化合物の相溶性がさらに改善されると推定される。さらに、マレイミド化合物もシラン化合物及びエポキシ樹脂と共通の硬化剤で硬化し且つ、単独でも二重結合によりラジカル重合する。その結果、本発明の熱硬化性樹脂組成物を硬化させた樹脂は、相互に堅固に反応したネットワーク構造を形成するため、耐熱性が高く、高温における弾性率の変化が極めて小さい。そのため、熱応力が生じにくく、クラックが入りにくい。高温でも高弾性率を維持できるため外部からの力の負荷による熱硬化性樹脂材料の変形が抑えられる。
【0019】
本発明は、有機シラン化合物と併用してテトラエトキシシランやテトラメトキシシランまたはその多量体であるシリケートオリゴマーを用いることもできる。
【0020】
エポキシ樹脂としては、特に制限されるものではなく、公知のものが使用できる。例えば、ビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂,ノボラック型エポキシ樹脂,グリシジルアミン型エポキシ樹脂,脂環型エポキシ樹脂などが挙げられる。その硬化剤として通常一般に用いられている公知の化合物を用いることができる。例えば、カルボン酸無水物、第1級,第2級,第3級のアミン系化合物,第4級アンモニウム塩,ジシアンジアミド,三沸化ホウ素−アミンコンプレックス,有機酸ヒドラジド,イミダゾール系化合物,フェノール,クレゾール,キシリノールを基本骨格とする化合物及びその誘導体と重縮合物,チオコール系化合物等があり、目的と用途に応じ適宜選択できる。
【0021】
また、公知の硬化促進剤,離型剤,カップリング剤,着色剤,可塑剤,希釈剤,可とう化剤,各種のゴム状物,光感光剤等を目的と用途に応じて添加して用いることができる。また、フェノール樹脂としては、例えば、ノボラック型フェノール樹脂,レゾール型フェノール樹脂,クレゾールノボラック型フェノール樹脂,アリル化ポリフェノール樹脂等が挙げられる。
【0022】
また、本発明において、(一般式1)で示されるシラン化合物の例として、次の(化学式3)〜(化学式12)の重付加型官能基を有するシラン化合物がある。
【0023】
【化3】
Figure 2004197009
【0024】
【化4】
Figure 2004197009
【0025】
【化5】
Figure 2004197009
【0026】
【化6】
Figure 2004197009
【0027】
【化7】
Figure 2004197009
【0028】
【化8】
Figure 2004197009
【0029】
【化9】
Figure 2004197009
【0030】
【化10】
Figure 2004197009
【0031】
【化11】
Figure 2004197009
【0032】
【化12】
Figure 2004197009
【0033】
本発明でいう(一般式2)のビスマレイミド化合物としてはビス(4−マレイミドフェニル)メタン,ビス(4−マレイミドフェニル)エーテル,ビス(4−マレイミドフェニル)スルフォン、m−フェニレンビスマレイミド、p−フェニレンビスマレイミド,ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,2−ビス〔(4−マレイミドフェノキシ)フェニル〕プロパン、2,2−ビス〔(4−マレイミドフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(2−トリフルオロメチル−4−マレイミドフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン等が挙げられる。
【0034】
ビスマレイミド化合物の二重結合のラジカル重合開始剤として、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、t−ブチルパーオキシベンゾエート等が使用される。
【0035】
本発明において、適用目的により有機溶剤を添加して用いることも可能である。溶剤を用いた場合、更なるワニスの低粘度化が達成され作業性等に優位となる。
【0036】
有機溶剤としては、N−メチル−ピロリドン、N,N−ジメチルアセトアミド,メチルエチルケトン,メチルセロソルブ,セロソルブアセテート,メタノール,エタノールイソプロパノール等が掲げられるがこれ以外の有機溶剤の使用も可能である。
【0037】
【発明の実施の形態】
本発明の発明者らは、硬化反応の際に水やアルコールなどの副生成物の発生を極力抑えた熱硬化性樹脂組成物を得るために、エポキシ樹脂,シラン化合物および水の混合物を、硬化剤の添加前に、予め熱処理を施すことが有効であることを利用した。ここで、シラン化合物はエポキシ樹脂の硬化剤と付加反応を起こす官能基を有するものである。
【0038】
このような熱処理を施すと、シラン化合物の分散性が高く、かつオリゴマー程度のシラン化合物が生成する。このオリゴマー程度のシラン化合物は、エポキシ樹脂との相溶性に優れており、無色あるいは淡黄色透明である。これに、ビスマレイミド化合物と硬化剤及びラジカル重合開始剤を均一混合して本発明の熱硬化性樹脂組成物を得る。ビスマレイミド化合物は上記のエポキシ樹脂,シラン化合物との相溶性に優れ、かつ、エポキシ樹脂と共通の硬化剤で硬化するため相互の硬化剤を介して架橋構造を形成し、高耐熱性樹脂となる。
【0039】
また、シリカやアルミナ等の無機フィラーを多量に混合できることが可能であり、かつ混合後も室温で流動性を保つこともできる。同様に金属粉も混合可能であり、導電性ペーストとしても流動性に優れている。従って、基板材料,接着材料,封止材料,ダイボンディング材料,導電性接着材料として適用した場合、作業性に優れ、かつ、信頼性の高い半導体装置あるいはプリント配線板を得ることができる。
【0040】
以下に、本発明の熱硬化性樹脂組成物を具体的に説明する。
【0041】
(実施例1)
本実施例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてビスフェノールA型エポキシ樹脂EP−828((株)油化シェル)及びビス(4−マレイミドフェニル)メタン(ケイ.アイ化成(株)社製)を、硬化剤としてジシアンジアミド(和光純薬工業(株)製),ビスマレイミドの二重結合のラジカル重合開始剤として、2,5−ジメチル−2,5−ジ(t−ブチルパ−オキシン)ヘキシン−3(日本油脂(株)製)を用いた。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水とジブチルジラウリン酸錫をそれぞれ2.0g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−828を180g加えて攪拌した後、120℃で4時間の熱処理をする。
(3)(2)の混合液に、(4−マレイミドフェニル)メタンを42.3g 加えて撹拌した後、120℃で1時間の熱処理をする。
(4)室温まで冷却して得られた液状樹脂組成物の25℃での粘度は0.4Pa.sであり、低粘度化されており、作業性に優れている。
(5)(4)混合液に、室温でジシアンジアミドを7g、2,5−ジメチル−2,5−ジ(t−ブチルパ−オキシン)ヘキシン−3を0.42g 加えて攪拌しながら溶解させる。
【0042】
(5)でできた溶液が本実施例の熱硬化性樹脂組成物である。これを加熱すれば、硬化した樹脂を得ることができる。この溶液は固形の(4−マレイミドフェニル)メタンを加えたにも関わらず、低粘度で、成形型枠に注入して用いることができる。
【0043】
次に、(5)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(5)の溶液を80℃,130℃,180℃,200℃で各2時間加熱し、硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0044】
この樹脂板から物性測定用の試験片を作成し、動的粘弾性測定用の試験片とした。動的粘弾性の測定条件は、レオロジー(株)製のPVEレオスペクトラ装置を用いて、昇温速度:2℃/分周波数:10Hzチャック間距離:20mm,変位振幅:2μmとした。この時のガラス転移温度(Tg)と、50℃,250℃における貯蔵弾性率を表1に示す。
【0045】
【表1】
Figure 2004197009
【0046】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0047】
(実施例2)
本発明の第2の実施例である熱硬化性樹脂組成物を以下に説明する。本実施例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、樹脂成分としてビスフェノールF型エポキシ樹脂EP−4900E
((株)旭電化製)及び2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパン(ケイ.アイ化成(株)製)を、硬化剤としてジシアンジアミド(和光純薬工業(株)製),ビスマレイミドの二重結合のラジカル重合開始剤としてジクミルパーオキサイド(日本油脂(株)製)を用いた。
【0048】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシプロピルトリメトキシシラン225gに、水とジブチルジラウリン酸錫をそれぞれ2.3g 加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−4900Eを190g加えて攪拌する。
(3)(2)の混合液に、150℃で2時間の熱処理をする。
(4)(3)に、2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパンを46.1g加えて撹拌した後、120℃で1時間の熱処理をする。
(5)(4)で得られた液状樹脂組成物にジシアンジアミド5g、ジクミルパーオキサイドを0.46g加えて撹拌する。
【0049】
これを加熱すれば、硬化した樹脂を得ることができる。上述のように、この溶液は2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパンを加えたにも関わらず、低粘度でそのまま成形型枠に注入して用いることができる。
【0050】
次に、(6)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(5)の溶液を成形型枠に注入して80℃,130℃,180℃で各2時間加熱し、硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0051】
この樹脂板を用いて実施例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表1に示す。
【0052】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0053】
(実施例3)
本発明の第3の実施例である熱硬化性樹脂組成物を以下に説明する。本実施例では、シラン化合物として2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてエポキシ樹脂DEN438(ダウケミカル製、エポキシ当量179)と2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパン(ケイ.アイ化成(株)製)を、硬化剤としてジシアンジアミド(和光純薬(株)製)を、さらにエポキシ樹脂の硬化促進剤としてベンジルジメチルアミン(和光純薬(株)製),ビスマレイミドの二重結合のラジカル重合開始剤としてt−ブチルハイドロパーオキサイド(日本油脂(株)製)を用いる。
【0054】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン170gに、水8.4gとジブチルジラウリン酸錫1.7gとを加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂DEN438を180g加えて攪拌する。
(3)(2)の混合液に、140℃で3時間の熱処理をする。
(4)(3)の混合液に、2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパン38.9g加えて110℃,1時間加熱撹拌する。
【0055】
得られた溶液が本実施例の無溶剤型熱硬化性樹脂組成物であり、室温での作業性に優れている。
(5)(4)で得られた樹脂組成物を約80℃に加温し、ジシアンジアミド13gとベンジルジメチルアミン0.6g を均一混合した後、25℃まで冷却して、t−ブチルハイドロパーオキサイドを0.389g 加え均一に撹拌して熱硬化性樹脂組成物を得た。これを成型枠に注入して、加熱すれば、硬化した樹脂を得ることができる。
【0056】
次に、(5)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(5)の溶液を成型枠に注入して130℃と180℃で2時間加熱し、硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0057】
この樹脂板を用いて、実施例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表1に示す。
【0058】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0059】
(実施例4)
本発明の第4の実施例である熱硬化性樹脂材料を以下に説明する。本実施例では、シラン化合物として2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてエポキシ樹脂DER332(ダウケミカル日本(株)製),(4−マレイミドフェニル)スルホン(三井化学(株)製)を、硬化剤として無水メチルハイミック酸MHACP(日立化成工業(株)製)を、さらにエポキシ樹脂硬化促進剤としてイミダゾール系のキュアゾールCN(四国化成(株)製),ビスマレイミドの二重結合のラジカル重合開始剤として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3(日本油脂(株)製)を用いる。
【0060】
本実施例の熱硬化性樹脂材料の製造方法を説明する。
(1)2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン170gに、水3.4gとジブチルジラウリン酸錫1.7gとを加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂DER332を100g加えて攪拌する。
(3)(2)の混合液に、150℃で4時間の熱処理をする。
(4)(3)の混合液に、(4−マレイミドフェニル)スルホン30gを加えて110℃,1時間加熱撹拌する。
(5)熱処理後、室温まで冷却してから無水メチルハイミック酸MHACPを
100gとキュアゾールCNを1.2g 、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3を0.3g 加えて液状の無溶剤型熱硬化性樹脂組成物を得た。この本実施例の樹脂組成物は、室温で成形型枠に注入して用いることができる。
【0061】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(4)の溶液を成形型枠に注入して80℃,150℃,180℃で各2時間ずつ加熱し、熱硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0062】
この樹脂板を用いて、実施例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表1に示す。
【0063】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3から1/4を保持しており、高温での熱安定性が大きいものであった。
【0064】
(実施例5)
本発明の第5の実施例である熱硬化性樹脂組成物を以下に説明する。本実施例では、シラン化合物として3−グリシドキシトリメトキシシラン(チッソ(株)製)を、樹脂成分としてクレゾールノボラック型エポキシ樹脂ESCN190−2(住友化学(株)製),ビスマレイミド化合物(4−マレイミドフェニル)メタン(ケイ.アイ化成(株)製)を、硬化剤としてフェノールノボラック樹脂(日立化成工業(株)製)、硬化触媒として2−エチル−4−メチルイミダゾール(四国化成製),ビスマレイミドの二重結合のラジカル重合開始剤として、ジクミルパーオキサイド(日本油脂(株)製)を用いた。
【0065】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、クレゾールノボラック型エポキシ樹脂ESCN190−2を100g加えて攪拌する。
(3)(2)の混合液に、120℃で2時間の熱処理をする。
(4)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(5)(4)の混合液に、フェノールノボラック樹脂を100g加えて、120℃で2時間の熱処理をする。
(6)(1)と(5)の樹脂組成物を室温で混合した後、(4−マレイミドフェニル)メタン23gを加え110℃,1時間加熱撹拌して、本発明の25℃で液状の無溶剤型熱硬化性樹脂組成物を得た。本実施例の樹脂組成物は、室温で成形型枠に注入して用いることができる。
(7)(6)で得た樹脂組成物にエポキシ樹脂の硬化剤2−エチル−4−メチルイミダゾールを3g、ビスマレイミドの二重結合のラジカル重合開始剤として、ジクミルパ−オキサイド0.23g 加えて攪拌する。
【0066】
これを加熱すれば、硬化した樹脂を得ることができる。次に、(7)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(7)の溶液を成形型枠に注入して80℃,130℃,150℃,180℃で2時間加熱し、硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0067】
この樹脂板を用いて実施例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表1に示す。
【0068】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0069】
(実施例6)
本実施例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、樹脂成分としてナフタレン型エポキシ樹脂EPICLON4032(大日本インキ製)とビスフェノールA型エポキシ樹脂エピコートEP828((株)油化シェル製)、2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパン(ケイ.アイ化成(株)製)を、硬化剤としてメタフェニレンジアミン(和光純薬工業(株)製),ビスマレイミドの二重結合のラジカル重合開始剤として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3(日本油脂(株)製)を用いた。
【0070】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水4gとジブチルジラウリン酸錫をそれぞれ2g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EPICLON4032を80gとエピコートEP828を100g加えて攪拌する。
(3)(2)の混合液に、120℃で4時間の熱処理をする。これを室温まで冷却してビスマレイミド化合物の2,2′−ビス〔4−(4マレイミドフェノキシ)フェニル〕プロパン42.22g を加え110℃,1時間加熱撹拌して、得られた本実施例の液状樹脂組成物は、室温で成形型枠に注入して用いることができる。
(4)80℃に加温し、メタフェニレンジアミンを41g加えて攪拌しながら溶解させる。
【0071】
更に、室温に冷却した後2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3を0.43g 加え均一に撹拌する。これを加熱すれば、硬化した樹脂を得ることができる。
【0072】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(4)の溶液を成形型枠に注入して80℃,130℃,180℃で2時間ずつ加熱し、熱硬化させたものである。硬化の際には、水やアルコールなどの副生成物の発生は殆ど確認されなかった。
【0073】
この樹脂板を用いて実施例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表1に示す。
【0074】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0075】
以上の実施例1〜6の熱硬化性樹脂組成物は、無溶剤で液状でも得られるため、注型用,フィラーを混合したペースト用,コンポジット用材料,液状封止材料等にも用いることができる。
【0076】
そのうえ、実施例1〜6の熱硬化性樹脂材料を硬化させた樹脂は、耐熱性が高く、高温における弾性率の変化が極めて小さいので、熱応力が生じにくく、クラックが入りにくい。また、硬化する際に水やアルコールなどの副生成物が殆ど発生しないため、金属,セラミックスまたは樹脂などの基材とともに用いて複合材を作製しても基材と樹脂との界面で膨れが生じたり、成形品にクラックや剥離が生じたりすることがない。
【0077】
これから、比較例を用いてさらに説明する。
【0078】
(比較例1)
本比較例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてビスフェノールA型エポキシ樹脂EP−828((株)油化シェル)を、硬化剤としてジシアンジアミド(和光純薬工業(株)製)を用いる。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水とジブチルジラウリン酸錫をそれぞれ2.0g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−828を180g加えて攪拌した後、120℃で4時間の熱処理をする。
(3)室温まで冷却して得られた液状樹脂組成物の25℃での粘度は0.2Pa.sであり、エポキシ樹脂EP−828の4Pa.sと比較して大幅な低減が認められた。
(4)(3)混合液に、室温でジシアンジアミドを7g加えて攪拌しながら溶解させる。
(5)でできた溶液が比較例1の熱硬化性樹脂組成物である。
【0079】
次に、(5)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(5)の溶液を成形型枠に注入して80℃,130℃,180℃,200℃で各2時間加熱し、硬化させたものである。
【0080】
この樹脂板から物性測定用の試験片を作成し、動的粘弾性測定用の試験片とした。動的粘弾性の測定条件は、レオロジー(株)製のPVEレオスペクトラ装置を用いて、昇温速度:2℃/分,周波数:10Hzチャック間距離:20mm,変位振幅:2μmとした。この時のガラス転移温度(Tg)と、50℃,250℃における貯蔵弾性率を表2に示す。
【0081】
【表2】
Figure 2004197009
【0082】
(比較例2)
本比較例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、樹脂成分としてビスフェノールF型エポキシ樹脂EP−4900E((株)旭電化製)を、硬化剤としてジシアンジアミド(和光純薬工業(株)製)を用いた。
【0083】
比較例2の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシプロピルトリメトキシシラン225gに、水とジブチルジラウリン酸錫をそれぞれ2.3g 加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−4900Eを190g加えて攪拌する。
(3)(2)の混合液に、150℃で2時間の熱処理をする。
(4)(3)の混合液に、ジシアンジアミド5gを加え撹拌しながら溶解させる。
これを加熱すれば、硬化した樹脂を得ることができる。
【0084】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(5)の溶液を成形型枠に注入して80℃,130℃,180℃で各2時間加熱し、硬化させたものである。
【0085】
この樹脂板を用いて比較例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表2に示す。
【0086】
(比較例3)
比較例3は、シラン化合物として2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてエポキシ樹脂DEN438(ダウケミカル製,エポキシ当量179)を、硬化剤としてジシアンジアミド(和光純薬(株)製)を、さらにエポキシ樹脂の硬化促進剤としてベンジルジメチルアミン(和光純薬(株)製)を用いた。
【0087】
比較例3の熱硬化性樹脂組成物の製造方法を説明する。
(1)2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン170gに、水8.4g とジブチルジラウリン酸錫1.7g とを加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂DEN438を180g加えて攪拌する。
(3)(2)の混合液に、140℃で3時間の熱処理をする。
得られた溶液が比較例3の無溶剤型熱硬化性樹脂組成物である。
(4)(3)で得られた樹脂組成物を約80℃に加温し、ジシアンジアミド13gとベンジルジメチルアミン0.6g を均一混合し熱硬化性樹脂組成物を得た。これを成型枠に注入し、加熱すれば、硬化した樹脂を得ることができる。
【0088】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(4)の溶液を成型枠に注入し130℃と180℃で2時間加熱し、硬化させたものである。
【0089】
この樹脂板を用いて、比較例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表2に示す。
【0090】
(比較例4)
本発明の第4の実施例である熱硬化性樹脂材料を以下に説明する。シラン化合物として2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてエポキシ樹脂DER332(ダウケミカル日本(株)製)を、硬化剤として無水メチルハイミック酸MHACP(日立化成工業(株)製)、さらにエポキシ樹脂硬化促進剤としてイミダゾール系のキュアゾールCN(四国化成(株)製)を用いた。
【0091】
比較例4の熱硬化性樹脂材料の製造方法を説明する。
(1)2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン170gに、水3.4gとジブチルジラウリン酸錫1.7gとを加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂DER332を100g加えて攪拌する。
(3)(2)の混合液に、150℃で4時間の熱処理をする。
(4)室温まで冷却してから無水メチルハイミック酸MHACPを100gとキュアゾールCNを1.2g加えて液状の無溶剤型熱硬化性樹脂組成物を得た。
【0092】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(4)の溶液を成型枠に注入して130℃と180℃で2時間加熱し、硬化させたものである。
【0093】
この樹脂板を用いて、比較例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表2に示す。
【0094】
(比較例5)
比較例5は、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、樹脂成分としてクレゾールノボラック型エポキシ樹脂ESCN190−2(住友化学(株)製)を、硬化剤としてフェノールノボラック樹脂(日立化成工業(株)製),硬化触媒として2−エチル−4−メチルイミダゾール(四国化成製)を用いた。
【0095】
比較例5の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、クレゾールノボラック型エポキシ樹脂を100g加えて攪拌する。
(3)(2)の混合液に、120℃で2時間の熱処理をする。
(4)3−グリシドキシプロピルトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(5)(4)の混合液に、フェノールノボラック樹脂を100g加えて、120℃で2時間の熱処理をする。
(6)(1)と(5)の樹脂組成物を室温で混合し、無溶剤型熱硬化性樹脂組成物を得た。
(7)(6)で得た樹脂組成物にエポキシ樹脂の硬化剤2−エチル−4−メチルイミダゾールを3gを加えて攪拌する。
【0096】
次に、(7)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(7)の溶液を成型枠に注入して80℃,130℃,150℃,180℃で2時間加熱し、硬化させたものである。
【0097】
この樹脂板を用いて比較例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表2に示す。
【0098】
(比較例6)
比較例6は、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、樹脂成分としてナフタレン型エポキシ樹脂EPICLON4032(大日本インキ製)とビスフェノールA型エポキシ樹脂エピコートEP828((株)油化シェル製)を、硬化剤としてメタフェニレンジアミン(和光純薬工業(株)製)を用いた。
【0099】
比較例6の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水4gとジブチルジラウリン酸錫をそれぞれ2g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EPICLON4032を80gとエピコートEP828を100g加えて攪拌する。
(3)(2)の混合液に、120℃で4時間の熱処理し、比較例6の液状樹脂組成物を得る。
(4)80℃に加温し、メタフェニレンジアミンを41g加えて攪拌しながら溶解させる。
【0100】
次に、(4)の溶液から得られた樹脂板の動的粘弾性について説明する。樹脂板は、(4)の溶液を成型枠に注入して80℃,130℃,180℃で2時間加熱し、硬化させたものである。
【0101】
この樹脂板を用いて、比較例1と同様な方法で動的粘弾性測定を行った。この時のTgと、50℃,250℃における貯蔵弾性率を表2に示す。
【0102】
表1と表2から明らかなように実施例1−6の樹脂組成物では固形のビスマレイミド化合物を加えたにも関わらず、室温(25℃)での粘度はビスマレイミド化合物を加えない比較例1−6の樹脂組成物と殆ど変わらず、低粘度の液状樹脂組成物が得られた。更に、全く同じ条件で加熱硬化された樹脂の高温での物性がはるかに優れており、高温熱処理プロセスを用いる製品には適した材料といえる。
【0103】
(実施例7)
本実施例では、シラン化合物として3−グリシドキシトリメトキシシラン(チッソ(株)製)を、樹脂成分としてクレゾールノボラック型エポキシ樹脂ESCN190−2(住友化学(株)製)、ビスマレイミド化合物(4−マレイミドフェニル)メタン(ケイ.アイ化成(株)製)を、硬化剤としてフェノールノボラック樹脂(日立化成工業(株)製),硬化触媒として2−エチル−4−メチルイミダゾール(四国化成製),ビスマレイミドの二重結合のラジカル重合開始剤として、ジクミルパーオキサイド(日本油脂(株)製),有機溶剤としてメチルセロソルブ
(和光純薬(株)製)を用いた。
【0104】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、クレゾールノボラック型エポキシ樹脂ESCN190−2を100g加えて攪拌する。
(3)(2)の混合液に、120℃で2時間の熱処理をする。
(4)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(5)(4)の混合液に、フェノールノボラック樹脂を100g加えて、120℃で2時間の熱処理をする。
(6)(1)と(5)の樹脂組成物と有機溶剤のメチルセロソルブ181gを室温で混合した後、(4−マレイミドフェニル)メタン23gを加え110℃,1時間加熱撹拌した後、室温まで冷却する。
(7)(6)で得た樹脂組成物にエポキシ樹脂の硬化剤2−エチル−4−メチルイミダゾールを3g,ビスマレイミドの二重結合のラジカル重合開始剤として、ジクミルパーオキサイド0.23g 加えて攪拌し本発明の25℃で液状の有機溶剤型熱硬化性樹脂組成物を得た。
【0105】
本実施例の樹脂組成物は、室温でポリイミドフィルム等の有機フィルムや銅箔等の金属箔塗布した後加熱乾燥し、有機溶剤除去することにより接着剤等の用途に用いることができる。
【0106】
(7)で得られた有機溶剤型熱硬化性樹脂組成物を厚さ50μmのポリイミドフィルム(宇部興産(株)製,ユーピレックス−50S)に塗布し、乾燥機中で130℃,20分加熱処理し有機溶剤を除去した後、130℃,150℃,180℃で2時間加熱し、ポリイミドフィルムから剥がし、約60μm厚の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物から試験片を切り出し、実施例1と同様な方法で動的粘弾性測定を行った。その結果を図1,図2に示す。
【0107】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して250℃での値は1/3程度を保持しており、高温での熱安定性が大きいものであった。
【0108】
(実施例8)
本実施例では、シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてビスフェノールA型エポキシ樹脂EP−828((株)油化シェル)及びビス(4−マレイミドフェニル)メタン(ケイ.アイ化成(株)社製)を、硬化剤としてジシアンジアミド(和光純薬工業(株)製),ビスマレイミドの二重結合のラジカル重合開始剤として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3(日本油脂(株)製),有機溶剤として、メチルエチルケトン(和光純薬(株)製)とメチルセロソルブ(和光純薬(株)製)を用いた。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水とジブチルジラウリン酸錫をそれぞれ2.0g 加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−828を180g加えて攪拌した後、120℃で4時間の熱処理をする。
(3)(2)の混合液に、(4−マレイミドフェニル)メタンを42.3g 加えて撹拌した後、120℃で1時間の熱処理をする。
(4)室温まで冷却して得られた液状樹脂組成物に有機溶剤のメチルエチルケトンを90gとメチルセロソルブ(91g)を加え撹拌した。
(5)(4)混合液に、室温でジシアンジアミドを7g、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3を0.42g 加えて攪拌しながら溶解させる。
(5)でできた溶液が本実施例の熱硬化性樹脂組成物である。これを加熱すれば、硬化した樹脂を得ることができる。この溶液は固形の(4−マレイミドフェニル)メタンを加えたにも関わらず低粘度で、作業性に優れている。
【0109】
次に、(5)の溶液を厚さ50μmのポリイミドフィルム(宇部興産(株)製、ユーピレックス−50S)に塗布し、乾燥機中で130℃,20分加熱処理し有機溶剤を除去した後、130℃,180℃,200℃で各2時間加熱し、ポリイミドフィルムから剥がし、約60μm厚の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物から試験片を切り出し、実施例1と同様な方法で動的粘弾性測定を行った。その結果を図1,図2に示す。
【0110】
本実施例の熱硬化性樹脂組成物から得られた硬化物は、300℃までガラス転移温度によるtanδ のピークは観察されなかった。また、貯蔵弾性率は、室温の値に対して1/4程度を保持しており、高温での熱安定性が大きいものであった。
【0111】
以上の実施例7,8の有機溶剤熱硬化性樹脂組成物は、低粘度であることから、フィラーを混合したペースト用,ガラスグロスや有機繊維等へ含漬した複合材料,導電性微粉末を混合した導電性材料等多くの分野に適用が可能である。
【0112】
そのうえ、実施例7,8の熱硬化性樹脂材料を硬化させた樹脂は、耐熱性が高く、高温における弾性率の変化が極めて小さいので、熱応力が生じにくく、クラックが入りにくい。また、硬化する際に水やアルコールなどの副生成物が殆ど発生しないため、金属,セラミックスまたは樹脂などの基材とともに用いて複合材を作製しても基材と樹脂との界面で膨れが生じたり、成形品にクラックや剥離が生じたりすることがない。
【0113】
これから、比較例7,8を用いてさらに説明する。
【0114】
(比較例7)
シラン化合物として3−グリシドキシトリメトキシシラン(チッソ(株)製)を、樹脂成分としてクレゾールノボラック型エポキシ樹脂ESCN190−2(住友化学(株)製)、硬化剤としてフェノールノボラック樹脂(日立化成工業(株)製),硬化触媒として2−エチル−4−メチルイミダゾール(四国化成製),有機溶剤としてメチルセロソルブ(和光純薬(株)製)を用いた。
【0115】
本実施例の熱硬化性樹脂組成物の製造方法を説明する。
(1)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、クレゾールノボラック型エポキシ樹脂ESCN190−2を100g加えて攪拌する。
(3)(2)の混合液に、120℃で2時間の熱処理をする。
(4)3−グリシドキシトリメトキシシラン100gに、水とジブチルジラウリン酸錫をそれぞれ1g加えて攪拌した後、1日以上室温で放置する。
(5)(4)の混合液に、フェノールノボラック樹脂を100g加えて、120℃で2時間の熱処理をする。
(6)(1)と(5)の樹脂組成物と有機溶剤のメチルセロソルブ181gを室温で混合した後、室温まで冷却する。
(7)(6)で得た樹脂組成物にエポキシ樹脂の硬化剤2−エチル−4−メチルイミダゾールを3gを加えて攪拌し25℃で液状の有機溶剤型熱硬化性樹脂組成物を得た。
(7)で得られた有機溶剤型熱硬化性樹脂組成物を厚さ50μmのポリイミドフィルム(宇部興産(株)製,ユーピレックス−50S)に塗布し、乾燥機中で130℃,20分加熱処理し有機溶剤を除去した後、130℃,150℃,180℃で2時間加熱し、ポリイミドフィルムから剥がし、約60μm厚の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物から試験片を切り出し、実施例1と同様な方法で動的粘弾性測定を行った。その結果を図1,図2に示す。
【0116】
(比較例8)
シラン化合物として3−グリシドキシプロピルトリメトキシシラン(チッソ(株)製)を、加水分解触媒としてジブチルジラウリン酸錫(和光純薬工業(株)製)を、樹脂成分としてビスフェノールA型エポキシ樹脂EP−828((株)油化シェル)、硬化剤としてジシアンジアミド(和光純薬工業(株)製)、有機溶剤として、メチルエチルケトン(和光純薬(株)製)とメチルセロソルブ(和光純薬(株)製)を用いた。
(1)3−グリシドキシプロピルトリメトキシシラン200gに、水とジブチルジラウリン酸錫をそれぞれ2.0g 加えて攪拌した後、1日以上室温で放置する。
(2)(1)の混合液に、エポキシ樹脂EP−828を180g加えて攪拌した後、120℃で4時間の熱処理をする。
(3)室温まで冷却して得られた液状樹脂組成物に有機溶剤のメチルエチルケトンを90gとメチルセロソルブ(91g)を加え撹拌した。
(4)(3)混合液に、室温でジシアンジアミドを7g加えて攪拌しながら溶解させる。
【0117】
次に、(4)の溶液を厚さ50μmのポリイミドフィルム(宇部興産(株)製、ユーピレックス−50S)に塗布し、乾燥機中で130℃,20分加熱処理し有機溶剤を除去した後、130℃,180℃,200℃で各2時間ずつ加熱し、ポリイミドフィルムから剥がし、約60μm厚の熱硬化性樹脂組成物を得た。この熱硬化性樹脂組成物から試験片を切り出し、実施例1と同様な方法で動的粘弾性測定を行った。その結果を図1,図2に示す。
【0118】
(実施例9)
外形10mm角のシリコンチップの電極に直径80μmの半田電極を中心間隔160μ mで形成したものを用いた。また配線基板にはFR−5のガラスエポキシ基板2層品を用いた。図3のようにベアチップ1の半田バンプ電極2をガラスエポキシ基板3のパッド5に位置合わせし赤外線リフローにより半田接続した後、電子部品とガラスエポキシ基板3の約50μmの間隙に以下の方法で調整した熱硬化性樹脂組成物4を充填した。充填は、ガラスエポキシ基板3を60℃に加熱した状態でベアチップ1の一辺にデイスペンサーを用いて熱硬化性樹脂組成物4を塗布後、30分の時間で毛細管現象を利用した浸透法により行った。その後、80℃と180℃で4時間ずつ加熱し、熱硬化して半導体装置を作製した。
【0119】
熱硬化性樹脂組成物は実施例2と全く同様にして作成した樹脂組成物47gと平均粒径4μmの球形シリカを70wt%になるように加え攪拌した。実施例2の樹脂組成物は室温(25℃)で液状で粘度が0.5Pa.sと低いため上記球形シリカを70wt%加えても十分な流動性を保っている。従って、ボイドやクラック等の欠陥を発生することなく、封止することができる。
【0120】
最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとに半田及び熱硬化性樹脂材料中の内部クラックを超音波探傷装置により調べた。5つの半導体装置について温度サイクルを行った結果、500サイクル以上でも半田及び熱硬化性樹脂材料中に内部クラックの発生はなく、温度サイクルに対する信頼性は高かった。
【0121】
(比較例9)
比較例2の熱硬化性樹脂組成物を用いた以外は実施例7と全く同様にして5つの半導体装置を作成した。
【0122】
実施例9と同じ条件で温度サイクルを行った結果、300サイクルでは2つの半導体装置の半田部にクラックが発生し、500サイクルでは4つにクラックが発生していた。
【0123】
(実施例9)と(比較例9)から、本発明では極めて信頼性の高い封止構造を有する半導体装置を得た。これは液状熱硬化性樹脂が低粘度であるため、球形シリカの混合が容易でありかつ、室温(25℃)で作業ができる。従って、ボイドフリーの均一な封止構造が可能となる。さらに、硬化物も高温での力学物性が高くなるため信頼性の高い半導体装置が実現したものと判断している。
【0124】
(実施例10)
半導体チップ9とリードフレームダイパッド7を接着材料(ダイボンディング材)8で固着させた後、金属細線10でリード部6と結線し、全体を封止材料11で封止した半導体装置の作成について図4を用いて説明する。
【0125】
粒径10μm以下のフレーク状銀粉100重量部と実施例3の液状熱硬化性樹脂組成物100重量部を3本ロールミルで50分間混練してペースト状接着材料を作成した。
【0126】
銅リードフレームのダイパッド部に約100mgの上記ペースト状接着材料をデイスペンサーにより塗布し、10mm角のチップを500gの加重下、250℃で5秒間圧着させた後、チップ反りを測定した。さらに、250℃,180秒加熱時の引き剥がし強度を測定した。なお、チップ反りは表面粗さ計を用い直線状に10mmスキャンした時のベースラインからの最大高さ(μm)の測定値とした。
【0127】
最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとに半田及び熱硬化性樹脂材料中の内部クラックを超音波探傷装置により調べた。5つの半導体装置について温度サイクルを行った結果、500サイクル以上でも半田及び熱硬化性樹脂材料中に内部クラックの発生はなく、温度サイクルに対する信頼性は高かった。
【0128】
250℃,5秒間圧着後のチップの反り量:27μm
250℃,180秒加熱時の引き剥がし強度:1.1kg/mm2
初期値のチップ接着強度:1.2kg/mm2
温度サイクル500サイクル後のチップ接着強度:1.0kg/mm2
(比較例10)
粒径10μm以下のフレーク状銀粉100重量部と実施例3に相当する比較例3の熱硬化性樹脂組成物100重量部を用いてペースト状接着材料の作成し、実施例8と同様の方法で半導体装置を試作し同様の評価を行った。
【0129】
初期値においては、比較例10の樹脂組成物を用いた方がチップ接着強度が高い値を示しており優れているが、温度サイクル500サイクル後では、チップにクラックが発生し、1つの半導体装置においては剥離が生じた。更に、チップ接着強度は1/2に低下することが確認された。これは、高温の力学特性の違いによるものと考える。
【0130】
250℃,5秒間圧着後のチップの反り量:54μm
250℃,180秒加熱時の引き剥がし強度:0.5kg/mm2
初期値のチップ接着強度:1.2kg/mm2
温度サイクル500サイクル後のチップ接着強度:0.6kg/mm2
(実施例11)
図5を用いて説明する。半導体チップ19と銅/ニッケル/金で形成された厚さ20μmの電極17を有する配線基板(FR−5)にシリンジ16を用いてニッケル粒子18を含有するペースト状接着材料15を約50μm厚に塗布した後、厚さ20μmの金バンプ20を有する半導体チップ19を200℃,30kg/cm2 の加熱,加圧下,20秒間接着,固定させた。さらに、オーブン中で180℃,60分加熱して接着材料を硬化させた。なお、80μm径のバンプ184個を有する約10mm角の半導体チップを用いた。
【0131】
接着材料は平均粒径5μmのニッケル粉100重量部を実施例1の液状熱硬化性樹脂組成物45重量部に加えて、3本ロールミルで50分間混練してペースト状接着材料を作成した。
【0132】
最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとに半田及び熱硬化性樹脂材料中の内部クラックを超音波探傷装置により調べた。5つの半導体装置について温度サイクルを行った結果、500サイクル以上でも上記接着材料中に内部クラックは発生せず、接触抵抗も初期値の1mmΩ以下を保持しており、温度サイクルに対する信頼性が高かった。尚、初期値は121,3atm,96時間後の値である。
【0133】
初期値
チップと基板の接着強度:2.5kg/mm2
温度サイクル500サイクル後
チップと基板の接着強度:2.1kg/mm2
(比較例11)
比較例1の熱硬化性樹脂組成物を用いて、実施例11と全く同様にして半導体装置の製造を試みた。
【0134】
最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとに半田及び熱硬化性樹脂材料中の内部クラックを超音波探傷装置により調べた。5つの半導体装置について温度サイクル試験を行った結果、300サイクルで2サンプルにクラックと剥離が発生し、500サイクルでは3サンプルでクラックと剥離が認められた。接触抵抗も初期値の1mmΩ以下から1Ω以上と高い値となった。なお、初期値は121℃,3atm,96時間後の値である。
【0135】
初期値
チップと基板の接着強度:3.0kg/mm2
温度サイクル500サイクル後
チップと基板の接着強度:1.4kg/mm2
(実施例11)と(比較例11)から明らかなように本発明ではチップと基板の接続信頼性と接着特性に優れた半導体装置を得た。これは液状熱硬化性樹脂組成物の粘度が低いため得られるペースト状接着材料も粘度が低く作業性に優れている。従って、室温(25℃)で作業ができ、ボイドフリーの均一な接着層が形成できる。更に、硬化物は高温物性に優れているため上記高信頼性の半導体装置が得られたと判断している。
【0136】
(実施例12)
平均粒径10μmのフレーク状銅粉100重量部に対し、実施例2の液状熱硬化性樹脂組成物25重量部を添加し、3本ロールミルで50分間混練してペースト状導電性接着材料を作成した。これをスクリーン印刷して170℃,60分加熱して比抵抗を求めたところ、3×10-5Ω/cmを示した。
【0137】
以下、図6を用いて説明する。
【0138】
上記導電性ペースト24をサイズ300mm角,厚さ0.2mmのガラスエポキシ積層板(FR−5相当)22に、設けた0.2mm 径のスルーホール用貫通孔23に印刷により充填した後、170℃で60分間加熱して硬化させた。バフ研磨により表面を平坦に仕上げた後、両面に無電解めっきと電解めっきにより厚さ18μmの導体層を形成し、配線パターン25をエッチングにより形成し、両面プリント配線板を得た。
【0139】
上記と同様にして作成した両面プリント配線板3枚(ただし、最外層となる面はベタ銅のままとし)を厚さ0.1mm の多層化接着用プリプレグ(ガラスエポキシ)26を介して170℃,90分,30kg/cm2 の加熱,加圧下,接着して配線6層の多層板とした。0.3mm のスルーホール27をドリルにより穴あけし、上記導電性ペースト24を同様に印刷により充填し、170℃で60分加熱して硬化させた。この後、バフ研磨により表面を平坦に仕上げた後、最外層の配線28をエッチングにより形成して6層の多層プリント配線板とした。
【0140】
多層プリント配線板の温度サイクル試験は、最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとにビアとスルーホールそれぞれ50個について導電性接着材料中の内部クラックと剥離発生の有無を超音波探傷装置により調べた。その結果、500サイクル以上でも上記接着材料中の内部クラックは発生せず、温度サイクルに対する信頼性が高かった。
【0141】
(比較例12)
上記の実施例10と同じエポキシ樹脂と硬化剤を使用している比較例2の熱硬化性樹脂組成物25重量部を用いた以外は実施例10と同様にして6層の多層プリント配線板を作成した。
【0142】
次に、ペースト状接着材料をスクリーン印刷して170℃,60分加熱して比抵抗を求めたところ、3×10-5Ω/cmを示した。
【0143】
多層プリント配線板の温度サイクル試験は、最高温度250℃のリフロー炉で30分の加熱後、温度サイクル試験は−65℃,10分と150℃,10分を1サイクルとして行い、50サイクルごとにビアとスルーホールそれぞれ50個について導電性接着材料中の内部クラックと剥離発生の有無を超音波探傷装置により調べた。その結果、300サイクルで10%(5個)のスルーホール部の導電性接着材料中にクラックが発生、500サイクルでは20%(10個)のスルーホール部の導電性接着材料中にクラックが発生した。
【0144】
(実施例12)と(比較例12)からわかるように本発明のペースト状導電性接着材料は粘度が低く室温で作業できかつ硬化後の信頼性を含む特性に優れている。これはペーストが低粘度であるためスルーホール内に均一かつボイドレスで充填されていることと、硬化物の高温物性が優れているためと判断している。従って、スルーホールの接続信頼性が優れた多層プリント板が得られた。
【0145】
以上説明した実施例によれば、熱硬化性樹脂組成物は、室温(25℃)で液状かつ低粘度であるため、そのまま成型枠に流し込み加熱することにより硬化させる注型用として使用できる。さらに、シリカ,アルミナ等の無機フィラーやアラミド繊維等の有機フィラー及び銀粉,銅粉等を容易に高充填することができ、樹脂材料の高性能化を容易に実現できる。しかも、低粘度化のために、反応性希釈剤,脂環式液状樹脂の併用あるいは液状無水酸との併用を必要としないため、硬化物の耐熱性低下の問題や使用上の制約に関する問題が全くない。
【0146】
さらに、樹脂硬化物は重付加型熱硬化性樹脂中に耐熱骨格をベースとするシリコン化合物のオリゴマーが均一に分散し、かつ、該重付加型熱硬化性樹脂と共通の硬化剤を介して相互に反応している。また、ビスマレイミド化合物を添加することによりエポキシ樹脂とシリコン化合物のオリゴマーの相溶性に寄与しているためと考える。以上のことからマトリックスを形成している重付加型熱硬化性樹脂を硬化剤で硬化させて得られる樹脂硬化物より優れた耐熱特性が得られる。即ち、本発明の熱硬化性樹脂組成物の硬化前の室温(25℃)での粘度はその成分として使用される重付加型熱硬化性樹脂の粘度より大幅に低く、且つ、樹脂硬化物の高温での力学物性は優れた特性を示す。
【0147】
また、シリコン化合物のオリゴマーを形成する際に、加熱することにより、反応副生成物であるアルコールや水が除去されているために、樹脂硬化物へのボイドやクラックの発生する問題も全くない。
【0148】
従って、シリカ,アルミナ等の無機系フィラーを混合した液状封止材料あるいはダイボンディング材料,金属粉を混合した導電性ペースト材料を適用した半導体装置やプリント配線板は、その製造工程で作業性に優れるばかりでなく、硬化後、均一かつボイドフリーで高温での力学物性の優れた材料となるため、信頼性が極めて高くなる。
【0149】
【発明の効果】
室温(25℃)で液状且つ低粘度であるため注型等の作業性に優れ、硬化後、耐熱性、特に高温での力学特性に優れた樹脂硬化物となる無溶剤型熱硬化性樹脂組成物を得ることができる。
【図面の簡単な説明】
【図1】熱硬化性樹脂硬化物の温度と貯蔵弾性率の関係を示す図である。
【図2】熱硬化性樹脂硬化物の温度とtanδの関係を示す図である。
【図3】本実施例の半導体装置を説明する図である。
【図4】本実施例の半導体装置を説明する図である。
【図5】本実施例の半導体装置を説明する図である。
【図6】本実施例の多層プリント配線板を説明する図である。
【符号の説明】
1…ベアチップ、2…半田バンプ電極、3…ガラスエポキシ基板、4…熱硬化性樹脂組成物、5…パッド、6…リードフレームリード部、7…リードフレームダイパッド、8…接着材料(ダイボンディング材)、9,19…半導体チップ、10…金属細線、11…封止材料、12…はんだ、13…プリント配線板、14…基板、15…ペースト状接着材料、16…シリンジ、17…電極、18…ニッケル粒子、20…金バンプ、21…硬化後の接着材料、22…ガラスエポキシ積層板、23…ドリル穴、24…導電性ペースト、25…配線パターン、26…多層化接着用プリプレグ、27…スルーホール、28…最外層配線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applied to an insulating material widely used in the field of electronic and electric devices, and relates to a thermosetting resin having excellent heat resistance, particularly excellent mechanical properties at high temperatures.
[0002]
[Prior art]
2. Description of the Related Art Higher performance of electronic devices, mainly mobile terminals, is being rapidly promoted, and higher density of semiconductor mounting is supporting this progress, and further higher density is required. For high-density mounting of semiconductors, substrates, adhesive materials, and sealing materials are required to have high-temperature reflow soldering and mechanical properties at high temperatures that can withstand the repair work. In addition, from the viewpoint of environmental measures, there is a tendency to be lead-free, and the temperature of semiconductor mounting tends to be higher by 20 to 30 ° C. than near 220 ° C. at present.
[0003]
Conventionally, an epoxy resin, which is optimal in terms of cost performance, has been used for a substrate, an adhesive material, and a sealing material. In order to meet the above requirements, studies have been made to obtain the highest possible glass transition temperature of general-purpose epoxy resins. However, since this method has reached its limit, a method of developing a special epoxy resin, for example, a polyfunctional epoxy resin and increasing the crosslink density after curing has been applied. An epoxy resin having a heat-resistant skeleton such as naphthalene and anthracene and an epoxy resin having liquid crystallinity have been studied. Since both are completely new resins, many performance considerations are required due to their curability, and there are great restrictions including cost.
[0004]
As a method without such restrictions, a hybrid resin comprising a general-purpose epoxy resin and an organosilicon compound has been developed. This epoxy / organosilicon hybrid resin can be cured under exactly the same conditions as conventional general-purpose epoxy resins, and the cured product exhibits excellent high-temperature properties. According to this method, since the organosilicon oligomer mainly composed of a rigid inorganic skeleton is uniformly dispersed in the epoxy resin and reacts with the epoxy resin, a decrease in mechanical properties at high temperatures is reduced (for example, see Patent References 1 and 2).
[0005]
However, when applied to a semiconductor mounting material, various properties such as moldability, adhesiveness, etc. are required, so that further excellent properties at high temperatures are required. That is, if there is a margin in terms of mechanical properties at a high temperature, modification for maintaining a balance with other characteristics becomes easy.
[0006]
[Patent Document 1]
JP-A-2000-109709 (paragraphs [0007] to [0010])
[Patent Document 2]
JP 2001-291804 A (paragraphs [0007] to [0013])
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a thermosetting resin which can be operated under the same conditions as a general-purpose epoxy resin, and has a very small decrease in physical properties of a cured resin, particularly a mechanical property at a high temperature, and an applied product thereof. is there.
[0008]
[Means for Solving the Problems]
The present invention relates to a thermosetting resin comprising a reaction product of an epoxy resin, a silane compound, water, a bismaleimide compound, and a curing agent.
[0009]
That is, the present invention adds a mixed solution of a silane compound and water and a hydrolysis catalyst to an epoxy resin, performs heat treatment, removes water and alcohol generated as by-products, and then adds a bismaleimide compound and a curing agent, It is an object of the present invention to provide a resin cured product having excellent mechanical properties at a high temperature obtained by heating.
[0010]
The mixed solution of the silane compound, water and the hydrolysis catalyst reacts by heating in the epoxy resin to form a liquid oligomer. This liquid oligomer is well compatible with the epoxy resin and becomes a colorless and transparent resin. After the silane compound and water are separately reacted and heated to remove water and alcohol generated as by-products, the resulting mixture is dissolved in an epoxy resin, and a similar colorless and transparent resin can be obtained even with good stirring. . Thereafter, a bismaleimide compound, a curing agent and, if necessary, a curing accelerator are added to obtain the thermosetting resin composition of the present invention.
[0011]
The oligomeric silane compound is a mechanically stable SiO 2Two It has a skeleton and has a functional group that reacts with the epoxy resin and a common curing agent. Therefore, when the above-mentioned thermosetting resin composition is heat-cured, the oligomeric silane compound reacts with the epoxy resin via the curing agent to form a homogeneous cured resin at the molecular level. Therefore, a resin cured product having excellent mechanical properties at high temperatures can be obtained. The above resin composition is subjected to heat treatment before the addition of a curing agent, thereby forming oligomers and removing water and alcohol, which are by-products, so that voids and cracks which cause defects in the cured resin are generated. There is no. Further, by adding the bismaleimide compound, the high temperature mechanical properties of the resin cured product obtained by heating are greatly improved, and the dynamic viscoelasticity (DMA) characteristic shows a completely glass transition temperature (Tg) up to 300 ° C. No peak is observed. That is, up to 300 ° C., there is no decrease in mechanical properties due to Tg. The effect is remarkable when the amount of the bismaleimide compound added is around 5 wt%. This is because the bismaleimide compound enhances the compatibility between the epoxy resin and the oligomeric silane compound, and the oligomeric silane compound, the epoxy resin and the bismaleimide compound are cured with a common curing agent, so that a mutually solid network structure is formed. It is estimated to be. However, the reason why a large effect is exhibited with only 5 wt% has not been sufficiently elucidated.
[0012]
The gist of the present invention is as follows.
[0013]
Epoxy resin (a), and
[0014]
Embedded image
Figure 2004197009
[0015]
(Where R is an organic group containing a functional group that causes an addition reaction with the epoxy resin, and R ′ is a methyl group or an ethyl group) and water (b), as well as
[0016]
Embedded image
Figure 2004197009
[0017]
(Wherein A represents a divalent organic group having at least two carbon atoms) (c) and a curing agent (d) as essential components. The production method is characterized in that the above-mentioned silane compound is reacted with water in advance, and specifically, the reaction is carried out at 60 ° C to 160 ° C for 1 to 10 hours. Here, the amount of water is preferably 3 to 0.02 times the molar amount of the silane compound. Although this reaction is performed in the presence of an epoxy resin, the same effect can be obtained by adding an epoxy resin after the sol-gel reaction.
[0018]
Before adding the maleimide compound and the curing agent, a mixture containing an epoxy resin, a silane compound, and water is subjected to a heat treatment to remove reaction by-products of water and alcohol. Therefore, when hardened, by-products such as water and alcohol are hardly generated, and even when a composite material is manufactured using a base material such as metal, ceramic or resin, it swells at the interface between the base material and the resin. No cracking or peeling occurs in the molded product. The reaction product of the above silane compound and water is SiO 2 which is mechanically and physically stable.Two It has a skeleton and has a functional group that reacts with the epoxy resin and a common curing agent. It is also presumed that the addition of the maleimide compound further improves the compatibility between the epoxy resin and the silane compound. Further, the maleimide compound is also cured with a curing agent common to the silane compound and the epoxy resin, and radically polymerizes alone even by a double bond. As a result, the resin obtained by curing the thermosetting resin composition of the present invention forms a network structure reacting firmly with each other, and therefore has high heat resistance and a very small change in elastic modulus at high temperatures. Therefore, thermal stress is hardly generated, and cracks are hardly generated. Since a high elastic modulus can be maintained even at a high temperature, deformation of the thermosetting resin material due to an external force load can be suppressed.
[0019]
In the present invention, tetraethoxysilane, tetramethoxysilane or a silicate oligomer which is a multimer thereof can be used in combination with the organic silane compound.
[0020]
The epoxy resin is not particularly limited, and a known epoxy resin can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, glycidylamine type epoxy resin, alicyclic type epoxy resin and the like can be mentioned. Known compounds that are generally used as the curing agent can be used. For example, carboxylic anhydride, primary, secondary, and tertiary amine compounds, quaternary ammonium salts, dicyandiamide, boron trifluoride-amine complex, organic acid hydrazide, imidazole compounds, phenol, cresol , Xylinol as a basic skeleton and its derivatives and polycondensates, thiochol-based compounds, and the like, which can be appropriately selected depending on the purpose and use.
[0021]
Also, known curing accelerators, release agents, coupling agents, coloring agents, plasticizers, diluents, plasticizers, various rubber-like substances, photosensitizers, etc. are added according to the purpose and application. Can be used. Examples of the phenol resin include a novolak phenol resin, a resol phenol resin, a cresol novolak phenol resin, and an allylated polyphenol resin.
[0022]
In the present invention, examples of the silane compound represented by (general formula 1) include a silane compound having a polyaddition type functional group represented by the following (formula 3) to (formula 12).
[0023]
Embedded image
Figure 2004197009
[0024]
Embedded image
Figure 2004197009
[0025]
Embedded image
Figure 2004197009
[0026]
Embedded image
Figure 2004197009
[0027]
Embedded image
Figure 2004197009
[0028]
Embedded image
Figure 2004197009
[0029]
Embedded image
Figure 2004197009
[0030]
Embedded image
Figure 2004197009
[0031]
Embedded image
Figure 2004197009
[0032]
Embedded image
Figure 2004197009
[0033]
Examples of the bismaleimide compound represented by (general formula 2) in the present invention include bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, m-phenylenebismaleimide, and p-maleimide. Phenylenebismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis [(4-maleimidophenoxy) phenyl] propane, 2,2-bis [(4-maleimidophenoxy) phenyl -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (2-trifluoromethyl-4-maleimidophenoxy) phenyl] -1,1,1,3,3 , 3-hexafluoropropane and the like.
[0034]
Dicumyl peroxide, t-butyl hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butyl diperoxide is used as a radical polymerization initiator for the double bond of the bismaleimide compound. Butyl peroxybenzoate and the like are used.
[0035]
In the present invention, an organic solvent can be added and used depending on the purpose of application. When a solvent is used, the viscosity of the varnish is further reduced, and the workability is superior.
[0036]
Examples of the organic solvent include N-methyl-pyrrolidone, N, N-dimethylacetamide, methyl ethyl ketone, methyl cellosolve, cellosolve acetate, methanol, ethanol isopropanol, and the like, but other organic solvents can also be used.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors of the present invention cure a mixture of an epoxy resin, a silane compound and water in order to obtain a thermosetting resin composition which minimizes the generation of by-products such as water and alcohol during the curing reaction. Utilizing that it is effective to perform a heat treatment before adding the agent. Here, the silane compound has a functional group that causes an addition reaction with a curing agent of the epoxy resin.
[0038]
When such a heat treatment is performed, a silane compound having a high dispersibility of the silane compound and about an oligomer is generated. The silane compound of this oligomer order is excellent in compatibility with the epoxy resin and is colorless or pale yellow transparent. Then, the bismaleimide compound, the curing agent and the radical polymerization initiator are uniformly mixed to obtain the thermosetting resin composition of the present invention. The bismaleimide compound has excellent compatibility with the above-mentioned epoxy resin and silane compound, and is cured with a common curing agent with the epoxy resin, so that a cross-linked structure is formed via a mutual curing agent, and the resin becomes a highly heat-resistant resin. .
[0039]
In addition, it is possible to mix a large amount of an inorganic filler such as silica or alumina, and to maintain fluidity at room temperature after mixing. Similarly, metal powder can be mixed, and it has excellent fluidity as a conductive paste. Therefore, when applied as a substrate material, an adhesive material, a sealing material, a die bonding material, and a conductive adhesive material, a semiconductor device or a printed wiring board having excellent workability and high reliability can be obtained.
[0040]
Hereinafter, the thermosetting resin composition of the present invention will be specifically described.
[0041]
(Example 1)
In this example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrolysis catalyst, and a resin component as Bisphenol A type epoxy resin EP-828 (Yuika Shell Co., Ltd.) and bis (4-maleimidophenyl) methane (produced by K. I. Kasei Co., Ltd.) are used as curing agents in dicyandiamide (Wako Pure Chemical Industries, Ltd.). 2,5-dimethyl-2,5-di (t-butylperoxin) hexine-3 (manufactured by NOF Corporation) as a radical polymerization initiator for the double bond of bismaleimide.
(1) To 200 g of 3-glycidoxypropyltrimethoxysilane, 2.0 g of water and 2.0 g of tin dibutyl dilaurate were added, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 180 g of epoxy resin EP-828 is added to the mixed solution of (1), and the mixture is stirred, and then heat-treated at 120 ° C. for 4 hours.
(3) 42.3 g of (4-maleimidophenyl) methane is added to the mixture of (2), and the mixture is stirred and then heat-treated at 120 ° C. for 1 hour.
(4) The viscosity at 25 ° C. of the liquid resin composition obtained by cooling to room temperature is 0.4 Pa.s, the viscosity is reduced, and the workability is excellent.
(5) (4) 7 g of dicyandiamide and 0.42 g of 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 are added to the mixture at room temperature and dissolved with stirring.
[0042]
The solution prepared in (5) is the thermosetting resin composition of this example. If this is heated, a cured resin can be obtained. This solution has a low viscosity, despite the addition of solid (4-maleimidophenyl) methane, and can be used by pouring it into a mold.
[0043]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (5) will be described. The resin plate was obtained by heating the solution of (5) at 80 ° C., 130 ° C., 180 ° C., and 200 ° C. for 2 hours each for curing. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0044]
A test piece for measuring physical properties was prepared from this resin plate and used as a test piece for measuring dynamic viscoelasticity. The measurement conditions of the dynamic viscoelasticity were as follows: using a PVE Rheospectra device manufactured by Rheology Co., Ltd., a temperature rising rate: 2 ° C./min, a frequency: 10 Hz, a distance between chucks: 20 mm, and a displacement amplitude: 2 μm. Table 1 shows the glass transition temperature (Tg) and the storage elastic modulus at 50 ° C. and 250 ° C. at this time.
[0045]
[Table 1]
Figure 2004197009
[0046]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0047]
(Example 2)
A thermosetting resin composition according to a second embodiment of the present invention will be described below. In this example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) was used as a silane compound, and bisphenol F type epoxy resin EP-4900E was used as a resin component.
(Manufactured by Asahi Denka Co., Ltd.) and 2,2'-bis [4- (4 maleimidophenoxy) phenyl] propane (manufactured by K. I. Kasei Co., Ltd.) as a curing agent, dicyandiamide (Wako Pure Chemical Industries, Ltd.) Dicumyl peroxide (manufactured by NOF CORPORATION) as a radical polymerization initiator for the double bond of bismaleimide.
[0048]
A method for producing the thermosetting resin composition of this example will be described.
(1) To 225 g of 3-glycidoxypropyltrimethoxysilane, 2.3 g of water and 2.3 g of tin dibutyl dilaurate are added, and the mixture is stirred and left at room temperature for 1 day or more.
(2) 190 g of epoxy resin EP-4900E is added to the mixed solution of (1) and the mixture is stirred.
(3) The mixture of (2) is heat-treated at 150 ° C. for 2 hours.
(4) 46.1 g of 2,2'-bis [4- (4 maleimidophenoxy) phenyl] propane is added to (3), and the mixture is stirred and then heat-treated at 120 ° C. for 1 hour.
(5) 5 g of dicyandiamide and 0.46 g of dicumyl peroxide are added to the liquid resin composition obtained in (4), followed by stirring.
[0049]
If this is heated, a cured resin can be obtained. As described above, this solution has a low viscosity and can be used as it is by injecting it into a mold even though 2,2'-bis [4- (4maleimidophenoxy) phenyl] propane is added.
[0050]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (6) will be described. The resin plate was prepared by injecting the solution of (5) into a mold, heating the resin at 80 ° C., 130 ° C., and 180 ° C. for 2 hours each, and curing the resin. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0051]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Example 1. Table 1 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0052]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0053]
(Example 3)
A thermosetting resin composition according to a third embodiment of the present invention will be described below. In this example, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso Corporation) was used as a silane compound, and tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a hydrolysis catalyst. And epoxy resin DEN438 (manufactured by Dow Chemical Co., Ltd., epoxy equivalent: 179) and 2,2'-bis [4- (4 maleimidophenoxy) phenyl] propane (manufactured by Keiai Kasei Co., Ltd.) as resin components. Dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.), benzyldimethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator for epoxy resin, and t-butyl hydroper as a radical polymerization initiator for a double bond of bismaleimide Oxide (manufactured by NOF Corporation) is used.
[0054]
A method for producing the thermosetting resin composition of this example will be described.
(1) 8.4 g of water and 1.7 g of tin dibutyl dilaurate were added to 170 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 180 g of epoxy resin DEN438 is added to the mixed solution of (1), and the mixture is stirred.
(3) The mixed solution of (2) is heat-treated at 140 ° C. for 3 hours.
(4) To the mixture of (3), 38.9 g of 2,2'-bis [4- (4 maleimidophenoxy) phenyl] propane is added, and the mixture is heated and stirred at 110 ° C. for 1 hour.
[0055]
The obtained solution is the solventless thermosetting resin composition of this example, and has excellent workability at room temperature.
(5) The resin composition obtained in (4) was heated to about 80 ° C., and 13 g of dicyandiamide and 0.6 g of benzyldimethylamine were uniformly mixed. After cooling to 25 ° C., t-butyl hydroperoxide was added. Was added and stirred uniformly to obtain a thermosetting resin composition. If this is poured into a molding frame and heated, a cured resin can be obtained.
[0056]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (5) will be described. The resin plate was obtained by injecting the solution of (5) into a molding frame and heating and curing at 130 ° C. and 180 ° C. for 2 hours. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0057]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Example 1. Table 1 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0058]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0059]
(Example 4)
A thermosetting resin material according to a fourth embodiment of the present invention will be described below. In this example, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso Corporation) was used as a silane compound, and tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a hydrolysis catalyst. As a resin component, an epoxy resin DER332 (manufactured by Dow Chemical Japan Co., Ltd.) and (4-maleimidophenyl) sulfone (manufactured by Mitsui Chemicals, Inc.). As a curing agent, methylhymic anhydride MHACP (Hitachi Chemical Industry Co., Ltd.) )), And imidazole-based cure sol CN (manufactured by Shikoku Chemicals Co., Ltd.) as an epoxy resin curing accelerator, and 2,5-dimethyl-2,5-diamine as a radical polymerization initiator for bismaleimide double bond. (T-Butylperoxin) hexine-3 (manufactured by NOF Corporation) is used.
[0060]
A method for producing the thermosetting resin material of this embodiment will be described.
(1) 3.4 g of water and 1.7 g of tin dibutyl dilaurate were added to 170 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 100 g of epoxy resin DER332 is added to the mixed solution of (1), and the mixture is stirred.
(3) The mixed solution of (2) is subjected to a heat treatment at 150 ° C. for 4 hours.
(4) 30 g of (4-maleimidophenyl) sulfone is added to the mixed solution of (3), and the mixture is heated and stirred at 110 ° C. for 1 hour.
(5) After the heat treatment, the mixture is cooled to room temperature, and then methylhymic anhydride MHACP is added.
100 g, 1.2 g of Cureazole CN and 0.3 g of 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 were added to obtain a liquid solventless thermosetting resin composition. . The resin composition of the present example can be used by being injected into a mold at room temperature.
[0061]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was obtained by injecting the solution of (4) into a mold, heating the resin at 80 ° C., 150 ° C., and 180 ° C. for 2 hours each, and thermally curing the resin. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0062]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Example 1. Table 1 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0063]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. The storage modulus at 250 ° C. of the value at room temperature maintained 1/3 to 1/4, indicating that the thermal stability at high temperatures was large.
[0064]
(Example 5)
A thermosetting resin composition according to a fifth embodiment of the present invention will be described below. In this example, 3-glycidoxytrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, cresol novolac type epoxy resin ESCN190-2 (manufactured by Sumitomo Chemical Co., Ltd.) and a bismaleimide compound (4- Maleimidophenyl) methane (K. I. Kasei Co., Ltd.) as a curing agent, phenol novolak resin (Hitachi Chemical Co., Ltd.), 2-ethyl-4-methylimidazole (Shikoku Kasei) as a curing catalyst, bis Dicumyl peroxide (manufactured by NOF Corporation) was used as a radical polymerization initiator for maleimide double bond.
[0065]
A method for producing the thermosetting resin composition of this example will be described.
(1) 1 g of water and 1 g of tin dibutyldilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(2) To the mixed solution of (1), 100 g of cresol novolak type epoxy resin ESCN190-2 is added and stirred.
(3) The mixture of (2) is heat-treated at 120 ° C. for 2 hours.
(4) 1 g of water and 1 g of tin dibutyl dilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(5) 100 g of phenol novolak resin is added to the mixed solution of (4), and heat treatment is performed at 120 ° C. for 2 hours.
(6) After mixing the resin compositions of (1) and (5) at room temperature, 23 g of (4-maleimidophenyl) methane is added, and the mixture is heated and stirred at 110 ° C for 1 hour to obtain a liquid non-liquid at 25 ° C of the present invention. A solvent type thermosetting resin composition was obtained. The resin composition of the present embodiment can be used by being injected into a mold at room temperature.
(7) To the resin composition obtained in (6) was added 3 g of a curing agent for epoxy resin, 2-ethyl-4-methylimidazole, and 0.23 g of dicumyl peroxide as a radical polymerization initiator for bismaleimide double bond. Stir.
[0066]
If this is heated, a cured resin can be obtained. Next, the dynamic viscoelasticity of the resin plate obtained from the solution (7) will be described. The resin plate was prepared by injecting the solution of (7) into a mold, heating the resin at 80 ° C., 130 ° C., 150 ° C., and 180 ° C. for 2 hours, and curing the resin. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0067]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Example 1. Table 1 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0068]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0069]
(Example 6)
In this example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, a naphthalene-type epoxy resin EPICLON4032 (manufactured by Dainippon Ink) and a bisphenol A-type epoxy resin Epicoat EP828 (( Yuka Shell Co., Ltd.) and 2,2'-bis [4- (4maleimidophenoxy) phenyl] propane (K. I. Kasei Co., Ltd.) as a curing agent, metaphenylenediamine (Wako Pure Chemical Industries, Ltd.) )) And 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 (manufactured by NOF Corporation) as a radical polymerization initiator for bismaleimide double bond.
[0070]
A method for producing the thermosetting resin composition of this example will be described.
(1) 4 g of water and 2 g of tin dibutyldilaurate are added to 200 g of 3-glycidoxypropyltrimethoxysilane, and the mixture is stirred and left at room temperature for one day or more.
(2) To the mixed solution of (1), 80 g of the epoxy resin EPICLON 4032 and 100 g of Epicoat EP828 are added and stirred.
(3) The mixture of (2) is heat-treated at 120 ° C. for 4 hours. The mixture was cooled to room temperature, 42.22 g of bismaleimide compound 2,2'-bis [4- (4maleimidophenoxy) phenyl] propane was added, and the mixture was stirred with heating at 110 ° C. for 1 hour. The liquid resin composition can be used by injecting it into a mold at room temperature.
(4) Heat to 80 ° C., add 41 g of metaphenylenediamine, and dissolve with stirring.
[0071]
Further, after cooling to room temperature, 0.43 g of 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 is added, and the mixture is stirred uniformly. If this is heated, a cured resin can be obtained.
[0072]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was obtained by injecting the solution of (4) into a mold, heating the resin at 80 ° C., 130 ° C., and 180 ° C. for 2 hours, and thermally curing the resin. At the time of curing, generation of by-products such as water and alcohol was hardly confirmed.
[0073]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Example 1. Table 1 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0074]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0075]
Since the thermosetting resin compositions of Examples 1 to 6 described above can be obtained in a liquid state without a solvent, they can be used for casting, for a paste mixed with a filler, for a composite material, a liquid sealing material, and the like. it can.
[0076]
In addition, the resin obtained by curing the thermosetting resin materials of Examples 1 to 6 has high heat resistance and a very small change in elastic modulus at high temperatures, so that thermal stress is hardly generated and cracks are hardly generated. In addition, since hardly any by-products such as water and alcohol are generated during curing, swelling occurs at the interface between the base material and the resin even when a composite material is produced using the base material such as metal, ceramics or resin. No cracking or peeling occurs in the molded product.
[0077]
This will be further described with reference to a comparative example.
[0078]
(Comparative Example 1)
In this comparative example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrolysis catalyst, and a resin component as Dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a curing agent for bisphenol A type epoxy resin EP-828 (Yukaka Shell Co., Ltd.).
(1) To 200 g of 3-glycidoxypropyltrimethoxysilane, 2.0 g of water and 2.0 g of tin dibutyl dilaurate were added, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 180 g of epoxy resin EP-828 is added to the mixed solution of (1), and the mixture is stirred, and then heat-treated at 120 ° C. for 4 hours.
(3) The viscosity at 25 ° C. of the liquid resin composition obtained by cooling to room temperature is 0.2 Pa.s, and the viscosity of the epoxy resin EP-828 is 4 Pa.s. A significant reduction was observed as compared with s.
(4) (3) 7 g of dicyandiamide is added to the mixture at room temperature and dissolved with stirring.
The solution obtained in (5) is the thermosetting resin composition of Comparative Example 1.
[0079]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (5) will be described. The resin plate was prepared by injecting the solution of (5) into a mold, heating the resin at 80 ° C., 130 ° C., 180 ° C., and 200 ° C. for 2 hours, and curing the resin plate.
[0080]
A test piece for measuring physical properties was prepared from this resin plate and used as a test piece for measuring dynamic viscoelasticity. The measurement conditions for the dynamic viscoelasticity were as follows: a PVE Rheospectra device manufactured by Rheology Co., Ltd., was set to a temperature rising rate of 2 ° C./min, a frequency of 10 Hz, a distance between chucks: 20 mm, and a displacement amplitude: 2 μm. Table 2 shows the glass transition temperature (Tg) and the storage elastic modulus at 50 ° C. and 250 ° C. at this time.
[0081]
[Table 2]
Figure 2004197009
[0082]
(Comparative Example 2)
In this comparative example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, bisphenol F type epoxy resin EP-4900E (manufactured by Asahi Denka) as a resin component, and a curing agent Dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
[0083]
A method for producing the thermosetting resin composition of Comparative Example 2 will be described.
(1) To 225 g of 3-glycidoxypropyltrimethoxysilane, 2.3 g of water and 2.3 g of tin dibutyl dilaurate are added, and the mixture is stirred and left at room temperature for 1 day or more.
(2) 190 g of epoxy resin EP-4900E is added to the mixed solution of (1) and the mixture is stirred.
(3) The mixture of (2) is heat-treated at 150 ° C. for 2 hours.
(4) 5 g of dicyandiamide is added to the mixed solution of (3) and dissolved with stirring.
If this is heated, a cured resin can be obtained.
[0084]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was prepared by injecting the solution of (5) into a mold, heating the resin at 80 ° C., 130 ° C., and 180 ° C. for 2 hours each, and curing the resin.
[0085]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Comparative Example 1. Table 2 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0086]
(Comparative Example 3)
In Comparative Example 3, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso Corporation) was used as a silane compound, and tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a hydrolysis catalyst. As a resin component, an epoxy resin DEN438 (manufactured by Dow Chemical, epoxy equivalent: 179), a dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent, and benzyldimethylamine (Wako Pure Chemical Co., Ltd.) as a curing accelerator for the epoxy resin. Co., Ltd.) was used.
[0087]
A method for producing the thermosetting resin composition of Comparative Example 3 will be described.
(1) 8.4 g of water and 1.7 g of tin dibutyl dilaurate are added to 170 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the mixture is stirred and left at room temperature for one day or more.
(2) 180 g of epoxy resin DEN438 is added to the mixed solution of (1), and the mixture is stirred.
(3) The mixed solution of (2) is heat-treated at 140 ° C. for 3 hours.
The obtained solution is the solventless thermosetting resin composition of Comparative Example 3.
(4) The resin composition obtained in (3) was heated to about 80 ° C., and 13 g of dicyandiamide and 0.6 g of benzyldimethylamine were uniformly mixed to obtain a thermosetting resin composition. If this is poured into a molding frame and heated, a cured resin can be obtained.
[0088]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was obtained by injecting the solution of (4) into a molding frame and heating and curing at 130 ° C. and 180 ° C. for 2 hours.
[0089]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Comparative Example 1. Table 2 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0090]
(Comparative Example 4)
A thermosetting resin material according to a fourth embodiment of the present invention will be described below. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrolysis catalyst, and a resin component Epoxy resin DER 332 (manufactured by Dow Chemical Japan Co., Ltd.) is used as a curing agent, methylhymic anhydride MHACP (manufactured by Hitachi Chemical Co., Ltd.), and an imidazole-based cureazole CN (Shikoku Chemicals Co., Ltd.) is used as an epoxy resin curing accelerator. )) Was used.
[0091]
A method for producing the thermosetting resin material of Comparative Example 4 will be described.
(1) 3.4 g of water and 1.7 g of tin dibutyl dilaurate were added to 170 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 100 g of epoxy resin DER332 is added to the mixed solution of (1), and the mixture is stirred.
(3) The mixed solution of (2) is subjected to a heat treatment at 150 ° C. for 4 hours.
(4) After cooling to room temperature, 100 g of methylhymic anhydride MHACP and 1.2 g of Curesol CN were added to obtain a liquid solventless thermosetting resin composition.
[0092]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was obtained by injecting the solution of (4) into a molding frame and heating and curing at 130 ° C. and 180 ° C. for 2 hours.
[0093]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Comparative Example 1. Table 2 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0094]
(Comparative Example 5)
Comparative Example 5 used 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, cresol novolac type epoxy resin ESCN190-2 (manufactured by Sumitomo Chemical Co., Ltd.) as a resin component, and a curing agent. A phenol novolak resin (manufactured by Hitachi Chemical Co., Ltd.) and 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemicals) were used as a curing catalyst.
[0095]
A method for producing the thermosetting resin composition of Comparative Example 5 will be described.
(1) 1 g of water and 1 g of tin dibutyldilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(2) To the mixed solution of (1), 100 g of a cresol novolak type epoxy resin is added and stirred.
(3) The mixture of (2) is heat-treated at 120 ° C. for 2 hours.
(4) To 100 g of 3-glycidoxypropyltrimethoxysilane, 1 g of water and 1 g of tin dibutyldilaurate are added, and the mixture is stirred and left at room temperature for one day or more.
(5) 100 g of phenol novolak resin is added to the mixed solution of (4), and heat treatment is performed at 120 ° C. for 2 hours.
(6) The resin compositions of (1) and (5) were mixed at room temperature to obtain a solventless thermosetting resin composition.
(7) To the resin composition obtained in (6), 3 g of a curing agent for epoxy resin, 2-ethyl-4-methylimidazole, is added and stirred.
[0096]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (7) will be described. The resin plate was prepared by injecting the solution of (7) into a molding frame and heating at 80 ° C., 130 ° C., 150 ° C., and 180 ° C. for 2 hours to cure.
[0097]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Comparative Example 1. Table 2 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0098]
(Comparative Example 6)
In Comparative Example 6, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, naphthalene-type epoxy resin EPICLON4032 (manufactured by Dainippon Ink) and bisphenol A-type epoxy resin Epicoat EP828 (( And a metaphenylene diamine (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent.
[0099]
A method for producing the thermosetting resin composition of Comparative Example 6 will be described.
(1) 4 g of water and 2 g of tin dibutyldilaurate are added to 200 g of 3-glycidoxypropyltrimethoxysilane, and the mixture is stirred and left at room temperature for one day or more.
(2) To the mixed solution of (1), 80 g of the epoxy resin EPICLON 4032 and 100 g of Epicoat EP828 are added and stirred.
(3) The liquid mixture of (2) is heat-treated at 120 ° C. for 4 hours to obtain a liquid resin composition of Comparative Example 6.
(4) Heat to 80 ° C., add 41 g of metaphenylenediamine, and dissolve with stirring.
[0100]
Next, the dynamic viscoelasticity of the resin plate obtained from the solution (4) will be described. The resin plate was obtained by injecting the solution of (4) into a molding frame, heating the resin at 80 ° C., 130 ° C., and 180 ° C. for 2 hours, and curing the resin.
[0101]
Using this resin plate, dynamic viscoelasticity was measured in the same manner as in Comparative Example 1. Table 2 shows the Tg at this time and the storage elastic modulus at 50 ° C. and 250 ° C.
[0102]
As is clear from Tables 1 and 2, the viscosity at room temperature (25 ° C.) of the resin composition of Example 1-6 does not include the bismaleimide compound despite the addition of the solid bismaleimide compound. Almost no difference from the resin composition of 1-6, a low-viscosity liquid resin composition was obtained. Furthermore, the properties of the resin cured by heating under exactly the same conditions at high temperatures are far superior, and can be said to be suitable materials for products using a high-temperature heat treatment process.
[0103]
(Example 7)
In this example, 3-glycidoxytrimethoxysilane (manufactured by Chisso) as a silane compound, cresol novolac epoxy resin ESCN190-2 (manufactured by Sumitomo Chemical Co., Ltd.) and a bismaleimide compound (4- Maleimidophenyl) methane (produced by K. I. Kasei Co., Ltd.), phenol novolak resin (produced by Hitachi Chemical Co., Ltd.) as a curing agent, 2-ethyl-4-methylimidazole (produced by Shikoku Chemicals) as a curing catalyst, bis Dicumyl peroxide (manufactured by NOF Corporation) as a radical polymerization initiator for maleimide double bond, methylcellosolve as organic solvent
(Manufactured by Wako Pure Chemical Industries, Ltd.).
[0104]
A method for producing the thermosetting resin composition of this example will be described.
(1) 1 g of water and 1 g of tin dibutyldilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(2) To the mixed solution of (1), 100 g of cresol novolak type epoxy resin ESCN190-2 is added and stirred.
(3) The mixture of (2) is heat-treated at 120 ° C. for 2 hours.
(4) 1 g of water and 1 g of tin dibutyl dilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(5) 100 g of phenol novolak resin is added to the mixed solution of (4), and heat treatment is performed at 120 ° C. for 2 hours.
(6) After mixing the resin compositions of (1) and (5) with 181 g of methylcellosolve as an organic solvent at room temperature, 23 g of (4-maleimidophenyl) methane was added, and the mixture was heated and stirred at 110 ° C for 1 hour, and then heated to room temperature. Cooling.
(7) To the resin composition obtained in (6) was added 3 g of a curing agent for epoxy resin, 2-ethyl-4-methylimidazole, and 0.23 g of dicumyl peroxide as a radical polymerization initiator for a double bond of bismaleimide. Then, the organic solvent type thermosetting resin composition of the present invention which was liquid at 25 ° C. was obtained.
[0105]
The resin composition of this example can be used for applications such as adhesives by applying an organic film such as a polyimide film or a metal foil such as a copper foil at room temperature, drying by heating, and removing the organic solvent.
[0106]
The organic solvent-type thermosetting resin composition obtained in (7) is applied to a 50 μm-thick polyimide film (UPIREX-50S, manufactured by Ube Industries, Ltd.), and heat-treated in a dryer at 130 ° C. for 20 minutes. After removing the organic solvent, the mixture was heated at 130 ° C., 150 ° C., and 180 ° C. for 2 hours and peeled off from the polyimide film to obtain a thermosetting resin composition having a thickness of about 60 μm. A test piece was cut out from this thermosetting resin composition, and dynamic viscoelasticity was measured in the same manner as in Example 1. The results are shown in FIGS.
[0107]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. Further, the storage elastic modulus at 250 ° C. with respect to the value at room temperature maintained about 1 /, and the thermal stability at high temperatures was large.
[0108]
(Example 8)
In this example, 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrolysis catalyst, and a resin component as Bisphenol A type epoxy resin EP-828 (Yuika Shell Co., Ltd.) and bis (4-maleimidophenyl) methane (produced by K. I. Kasei Co., Ltd.) are used as curing agents in dicyandiamide (Wako Pure Chemical Industries, Ltd.). 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 (manufactured by NOF Corporation) as an organic solvent as a radical polymerization initiator of a double bond of bismaleimide Methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) and methyl cellosolve (manufactured by Wako Pure Chemical Industries, Ltd.) were used.
(1) To 200 g of 3-glycidoxypropyltrimethoxysilane, 2.0 g of water and 2.0 g of tin dibutyl dilaurate were added, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 180 g of epoxy resin EP-828 is added to the mixed solution of (1), and the mixture is stirred, and then heat-treated at 120 ° C. for 4 hours.
(3) 42.3 g of (4-maleimidophenyl) methane is added to the mixture of (2), and the mixture is stirred and then heat-treated at 120 ° C. for 1 hour.
(4) 90 g of methyl ethyl ketone as an organic solvent and methyl cellosolve (91 g) were added to the liquid resin composition obtained by cooling to room temperature, followed by stirring.
(5) (4) 7 g of dicyandiamide and 0.42 g of 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3 are added to the mixed solution at room temperature and dissolved with stirring.
The solution prepared in (5) is the thermosetting resin composition of this example. If this is heated, a cured resin can be obtained. This solution has low viscosity and excellent workability despite addition of solid (4-maleimidophenyl) methane.
[0109]
Next, the solution of (5) was applied to a 50 μm-thick polyimide film (UPILEX-50S, manufactured by Ube Industries, Ltd.), and heated in a dryer at 130 ° C. for 20 minutes to remove the organic solvent. It heated at 130 degreeC, 180 degreeC, and 200 degreeC each for 2 hours, and peeled off from the polyimide film, and obtained the thermosetting resin composition about 60 micrometers thick. A test piece was cut out from this thermosetting resin composition, and dynamic viscoelasticity was measured in the same manner as in Example 1. The results are shown in FIGS.
[0110]
In the cured product obtained from the thermosetting resin composition of this example, no peak of tan δ due to the glass transition temperature was observed up to 300 ° C. In addition, the storage modulus maintained about 1/4 of the value at room temperature, and the thermal stability at high temperatures was large.
[0111]
Since the organic solvent thermosetting resin compositions of Examples 7 and 8 have low viscosity, they are used for pastes mixed with fillers, composite materials impregnated in glass gloss, organic fibers, and the like, and conductive fine powders. It can be applied to many fields such as mixed conductive materials.
[0112]
In addition, the resin obtained by curing the thermosetting resin materials of Examples 7 and 8 has high heat resistance and a very small change in elastic modulus at high temperatures, so that thermal stress is hardly generated and cracks are hardly generated. In addition, since hardly any by-products such as water and alcohol are generated during curing, swelling occurs at the interface between the base material and the resin even when a composite material is produced using the base material such as metal, ceramics or resin. No cracking or peeling occurs in the molded product.
[0113]
This will be further described with reference to Comparative Examples 7 and 8.
[0114]
(Comparative Example 7)
3-glycidoxytrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, a cresol novolak type epoxy resin ESCN190-2 (manufactured by Sumitomo Chemical Co., Ltd.) as a resin component, and a phenol novolak resin (Hitachi Chemical Industries, Ltd.) as a curing agent Co., Ltd.), 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemicals) as a curing catalyst, and methylcellosolve (manufactured by Wako Pure Chemical Industries, Ltd.) as an organic solvent.
[0115]
A method for producing the thermosetting resin composition of this example will be described.
(1) 1 g of water and 1 g of tin dibutyldilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(2) To the mixed solution of (1), 100 g of cresol novolak type epoxy resin ESCN190-2 is added and stirred.
(3) The mixture of (2) is heat-treated at 120 ° C. for 2 hours.
(4) 1 g of water and 1 g of tin dibutyl dilaurate are added to 100 g of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left at room temperature for 1 day or more.
(5) 100 g of phenol novolak resin is added to the mixed solution of (4), and heat treatment is performed at 120 ° C. for 2 hours.
(6) After mixing the resin compositions of (1) and (5) with 181 g of methylcellosolve as an organic solvent at room temperature, the mixture is cooled to room temperature.
(7) To the resin composition obtained in (6) was added 3 g of a curing agent for epoxy resin, 2-ethyl-4-methylimidazole, and the mixture was stirred to obtain a liquid organic solvent-type thermosetting resin composition at 25 ° C. .
The organic solvent-type thermosetting resin composition obtained in (7) is applied to a 50 μm-thick polyimide film (UPIREX-50S, manufactured by Ube Industries, Ltd.), and heat-treated in a dryer at 130 ° C. for 20 minutes. After removing the organic solvent, the mixture was heated at 130 ° C., 150 ° C., and 180 ° C. for 2 hours and peeled off from the polyimide film to obtain a thermosetting resin composition having a thickness of about 60 μm. A test piece was cut out from this thermosetting resin composition, and dynamic viscoelasticity was measured in the same manner as in Example 1. The results are shown in FIGS.
[0116]
(Comparative Example 8)
3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation) as a silane compound, tin dibutyl dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrolysis catalyst, and bisphenol A type epoxy resin as a resin component EP-828 (Yukaka Shell Co., Ltd.), dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent, methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) and methyl cellosolve (Wako Pure Chemical Industries, Ltd.) as organic solvents. )) Was used.
(1) To 200 g of 3-glycidoxypropyltrimethoxysilane, 2.0 g of water and 2.0 g of tin dibutyl dilaurate were added, and the mixture was stirred and left at room temperature for 1 day or more.
(2) 180 g of epoxy resin EP-828 is added to the mixed solution of (1), and the mixture is stirred, and then heat-treated at 120 ° C. for 4 hours.
(3) To the liquid resin composition obtained by cooling to room temperature, 90 g of methyl ethyl ketone as an organic solvent and 91 g of methyl cellosolve were added and stirred.
(4) (3) 7 g of dicyandiamide is added to the mixture at room temperature and dissolved with stirring.
[0117]
Next, the solution of (4) was applied to a polyimide film (Upilex-50S, manufactured by Ube Industries, Ltd.) having a thickness of 50 μm, and heated in a dryer at 130 ° C. for 20 minutes to remove the organic solvent. The resultant was heated at 130 ° C., 180 ° C., and 200 ° C. for 2 hours each and peeled from the polyimide film to obtain a thermosetting resin composition having a thickness of about 60 μm. A test piece was cut out from this thermosetting resin composition, and dynamic viscoelasticity was measured in the same manner as in Example 1. The results are shown in FIGS.
[0118]
(Example 9)
An electrode of a silicon chip having an outer shape of 10 mm square and having solder electrodes with a diameter of 80 μm formed at a center interval of 160 μm was used. The wiring board used was a two-layer FR-5 glass epoxy board. As shown in FIG. 3, after the solder bump electrode 2 of the bare chip 1 is aligned with the pad 5 of the glass epoxy substrate 3 and soldered by infrared reflow, the gap is adjusted to about 50 μm between the electronic component and the glass epoxy substrate 3 by the following method. The thermosetting resin composition 4 was filled. Filling is performed by applying the thermosetting resin composition 4 to one side of the bare chip 1 using a dispenser while the glass epoxy substrate 3 is heated to 60 ° C., and then performing a permeation method utilizing a capillary phenomenon in a period of 30 minutes. Was. Thereafter, the semiconductor device was heated at 80 ° C. and 180 ° C. for 4 hours, respectively, and thermally cured to manufacture a semiconductor device.
[0119]
As the thermosetting resin composition, 47 g of the resin composition prepared in exactly the same manner as in Example 2 and spherical silica having an average particle diameter of 4 μm were added to 70 wt% and stirred. Since the resin composition of Example 2 is liquid at room temperature (25 ° C.) and has a low viscosity of 0.5 Pa.s, sufficient fluidity is maintained even when 70% by weight of the above spherical silica is added. Therefore, sealing can be performed without generating defects such as voids and cracks.
[0120]
After heating in a reflow furnace at a maximum temperature of 250 ° C for 30 minutes, the temperature cycle test is performed at -65 ° C for 10 minutes and 150 ° C for 10 minutes as one cycle, and every 50 cycles the internal temperature of the solder and thermosetting resin material Cracks were examined with an ultrasonic flaw detector. As a result of performing the temperature cycle on the five semiconductor devices, no internal crack was generated in the solder and the thermosetting resin material even after 500 cycles or more, and the reliability for the temperature cycle was high.
[0121]
(Comparative Example 9)
Five semiconductor devices were prepared in exactly the same manner as in Example 7 except that the thermosetting resin composition of Comparative Example 2 was used.
[0122]
As a result of performing the temperature cycle under the same conditions as in Example 9, cracks occurred in the solder portions of two semiconductor devices in 300 cycles, and four cracks occurred in 500 cycles.
[0123]
From (Example 9) and (Comparative Example 9), a semiconductor device having an extremely reliable sealing structure was obtained in the present invention. Since the liquid thermosetting resin has a low viscosity, it is easy to mix the spherical silica and work at room temperature (25 ° C.). Therefore, a void-free uniform sealing structure can be achieved. Furthermore, the cured product also has high mechanical properties at high temperatures, and thus it is determined that a highly reliable semiconductor device has been realized.
[0124]
(Example 10)
A semiconductor device in which a semiconductor chip 9 and a lead frame die pad 7 are fixed with an adhesive material (die bonding material) 8, connected to a lead portion 6 with a thin metal wire 10, and the whole is sealed with a sealing material 11. 4 will be described.
[0125]
100 parts by weight of flake silver powder having a particle size of 10 μm or less and 100 parts by weight of the liquid thermosetting resin composition of Example 3 were kneaded with a three-roll mill for 50 minutes to prepare a paste adhesive material.
[0126]
About 100 mg of the above paste-like adhesive material was applied to a die pad portion of a copper lead frame by a dispenser, and a 10 mm square chip was pressed at 250 ° C. for 5 seconds under a load of 500 g, and then the chip warpage was measured. Further, the peel strength at the time of heating at 250 ° C. for 180 seconds was measured. Note that the tip warpage was a measured value of the maximum height (μm) from the baseline when scanning 10 mm linearly using a surface roughness meter.
[0127]
After heating in a reflow furnace at a maximum temperature of 250 ° C for 30 minutes, the temperature cycle test is performed at -65 ° C for 10 minutes and 150 ° C for 10 minutes as one cycle, and every 50 cycles the internal temperature of the solder and thermosetting resin material Cracks were examined with an ultrasonic flaw detector. As a result of performing the temperature cycle on the five semiconductor devices, no internal crack was generated in the solder and the thermosetting resin material even after 500 cycles or more, and the reliability for the temperature cycle was high.
[0128]
Chip warpage after crimping at 250 ° C for 5 seconds: 27 µm
Peel strength when heated at 250 ° C for 180 seconds: 1.1kg / mmTwo
Initial chip bonding strength: 1.2 kg / mmTwo
Chip adhesive strength after 500 temperature cycles: 1.0 kg / mmTwo
(Comparative Example 10)
A paste-like adhesive material was prepared using 100 parts by weight of flake silver powder having a particle size of 10 μm or less and 100 parts by weight of the thermosetting resin composition of Comparative Example 3 corresponding to Example 3, and was prepared in the same manner as in Example 8. A prototype of a semiconductor device was manufactured and the same evaluation was performed.
[0129]
In the initial value, the use of the resin composition of Comparative Example 10 showed a higher value of the chip bonding strength, which was excellent, but after 500 temperature cycles, cracks occurred in the chip and one semiconductor device In, peeling occurred. Further, it was confirmed that the chip bonding strength was reduced by half. This is attributed to the difference in mechanical properties at high temperatures.
[0130]
Chip warpage after pressing at 250 ° C. for 5 seconds: 54 μm
Peel strength when heated at 250 ° C for 180 seconds: 0.5kg / mmTwo
Initial chip bonding strength: 1.2 kg / mmTwo
Chip adhesive strength after 500 temperature cycles: 0.6 kg / mmTwo
(Example 11)
This will be described with reference to FIG. A paste adhesive material 15 containing nickel particles 18 is applied to a wiring board (FR-5) having a semiconductor chip 19 and a 20 μm-thick electrode 17 made of copper / nickel / gold using a syringe 16 to a thickness of about 50 μm. After the application, the semiconductor chip 19 having the gold bump 20 having a thickness of 20 μm is placed at 200 ° C. and 30 kg / cm.Two Under heating and pressure for 20 seconds. Further, the adhesive material was cured by heating in an oven at 180 ° C. for 60 minutes. A semiconductor chip of about 10 mm square having 184 bumps with a diameter of 80 μm was used.
[0131]
As the adhesive material, 100 parts by weight of nickel powder having an average particle size of 5 μm was added to 45 parts by weight of the liquid thermosetting resin composition of Example 1, and kneaded with a three-roll mill for 50 minutes to prepare a paste-like adhesive material.
[0132]
After heating in a reflow furnace at a maximum temperature of 250 ° C for 30 minutes, the temperature cycle test is performed at -65 ° C for 10 minutes and 150 ° C for 10 minutes as one cycle, and every 50 cycles the internal temperature of the solder and thermosetting resin material Cracks were examined with an ultrasonic flaw detector. As a result of performing a temperature cycle on the five semiconductor devices, no internal crack was generated in the adhesive material even after 500 cycles or more, and the contact resistance maintained an initial value of 1 mmΩ or less, and the reliability with respect to the temperature cycle was high. . The initial values are 121, 3 atm and 96 hours later.
[0133]
initial value
Bond strength between chip and substrate: 2.5 kg / mmTwo
After 500 temperature cycles
Bond strength between chip and substrate: 2.1 kg / mmTwo
(Comparative Example 11)
Using the thermosetting resin composition of Comparative Example 1, production of a semiconductor device was attempted in exactly the same manner as in Example 11.
[0134]
After heating in a reflow furnace at a maximum temperature of 250 ° C for 30 minutes, the temperature cycle test is performed at -65 ° C for 10 minutes and 150 ° C for 10 minutes as one cycle, and every 50 cycles the internal temperature of the solder and thermosetting resin material Cracks were examined with an ultrasonic flaw detector. As a result of performing a temperature cycle test on five semiconductor devices, cracks and peeling occurred in two samples in 300 cycles, and cracks and peeling were observed in three samples in 500 cycles. The contact resistance also increased from the initial value of 1 mmΩ or less to 1 Ω or more. The initial value is a value after 96 hours at 121 ° C., 3 atm.
[0135]
initial value
Bond strength between chip and substrate: 3.0 kg / mmTwo
After 500 temperature cycles
Bond strength between chip and substrate: 1.4 kg / mmTwo
As is clear from (Example 11) and (Comparative Example 11), according to the present invention, a semiconductor device having excellent connection reliability and adhesion characteristics between a chip and a substrate was obtained. Since the viscosity of the liquid thermosetting resin composition is low, the paste adhesive material obtained is also low in viscosity and excellent in workability. Therefore, work can be performed at room temperature (25 ° C.), and a void-free uniform adhesive layer can be formed. Furthermore, since the cured product has excellent high-temperature properties, it is determined that the highly reliable semiconductor device has been obtained.
[0136]
(Example 12)
25 parts by weight of the liquid thermosetting resin composition of Example 2 was added to 100 parts by weight of the flaky copper powder having an average particle diameter of 10 μm, and kneaded with a three-roll mill for 50 minutes to prepare a paste-like conductive adhesive material. did. This was screen printed and heated at 170 ° C. for 60 minutes to determine the specific resistance.-FiveΩ / cm.
[0137]
Hereinafter, description will be made with reference to FIG.
[0138]
The conductive paste 24 is filled into a 0.2 mm diameter through-hole 23 for a through-hole formed in a glass epoxy laminate (FR-5 equivalent) 22 having a size of 300 mm square and a thickness of 0.2 mm. Cured by heating at 60 ° C. for 60 minutes. After the surface was finished flat by buffing, a conductor layer having a thickness of 18 μm was formed on both surfaces by electroless plating and electrolytic plating, and a wiring pattern 25 was formed by etching to obtain a double-sided printed wiring board.
[0139]
Three double-sided printed wiring boards prepared in the same manner as described above (however, the outermost layer is left as solid copper) are heated at 170 ° C. via a 0.1 mm thick multi-layer adhesive prepreg (glass epoxy) 26. , 90 minutes, 30kg / cmTwo Under heating and pressurization, the resultant was bonded to form a multilayer board having six wiring layers. A 0.3 mm through hole 27 was drilled, filled with the conductive paste 24 by printing in the same manner, and cured by heating at 170 ° C. for 60 minutes. Then, after the surface was finished flat by buffing, the outermost wiring 28 was formed by etching to obtain a six-layer multilayer printed wiring board.
[0140]
The temperature cycle test of the multilayer printed wiring board is performed in a reflow furnace at a maximum temperature of 250 ° C. for 30 minutes, and then the temperature cycle test is performed at −65 ° C. for 10 minutes and 150 ° C. for 10 minutes as one cycle. For each of 50 vias and through holes, the presence or absence of internal cracks and peeling in the conductive adhesive material was examined by an ultrasonic flaw detector. As a result, no internal cracks occurred in the adhesive material even after 500 cycles or more, and the reliability with respect to the temperature cycle was high.
[0141]
(Comparative Example 12)
A six-layer multi-layer printed wiring board was prepared in the same manner as in Example 10 except that 25 parts by weight of the thermosetting resin composition of Comparative Example 2 using the same epoxy resin and curing agent as in Example 10 above was used. Created.
[0142]
Next, the paste adhesive material was screen-printed and heated at 170 ° C. for 60 minutes to determine the specific resistance.-FiveΩ / cm.
[0143]
The temperature cycle test of the multilayer printed wiring board is performed in a reflow furnace at a maximum temperature of 250 ° C. for 30 minutes, and then the temperature cycle test is performed at −65 ° C. for 10 minutes and 150 ° C. for 10 minutes as one cycle. For each of 50 vias and through holes, the presence or absence of internal cracks and peeling in the conductive adhesive material was examined by an ultrasonic flaw detector. As a result, cracks occur in the conductive adhesive material of 10% (5 pieces) of the through holes in 300 cycles, and cracks occur in 20% (10 pieces) of the conductive adhesive material in the 500 cycles of 500 cycles. did.
[0144]
As can be seen from (Example 12) and (Comparative Example 12), the paste-like conductive adhesive material of the present invention has low viscosity, can be operated at room temperature, and has excellent properties including reliability after curing. This is because the paste has a low viscosity and is uniformly and voidlessly filled in the through-hole, and the cured product has excellent high-temperature physical properties. Therefore, a multilayer printed board having excellent through-hole connection reliability was obtained.
[0145]
According to the examples described above, the thermosetting resin composition is liquid at room temperature (25 ° C.) and has a low viscosity, so that it can be used as a casting material that is poured into a molding frame as it is and cured by heating. In addition, inorganic fillers such as silica and alumina, organic fillers such as aramid fibers, silver powder, copper powder, and the like can be easily and highly filled, and high performance of the resin material can be easily realized. In addition, since it is not necessary to use a reactive diluent, an alicyclic liquid resin, or a liquid anhydride for lowering the viscosity, problems such as a decrease in the heat resistance of the cured product and a restriction on the use thereof are caused. Not at all.
[0146]
Further, in the cured resin, oligomers of a silicon compound based on a heat-resistant skeleton are uniformly dispersed in the polyaddition-type thermosetting resin, and are inter-linked with the polyaddition-type thermosetting resin via a common curing agent. Is reacting to. It is also considered that the addition of the bismaleimide compound contributes to the compatibility between the epoxy resin and the oligomer of the silicon compound. From the above, superior heat resistance can be obtained as compared with a cured resin obtained by curing a polyaddition type thermosetting resin forming a matrix with a curing agent. That is, the viscosity of the thermosetting resin composition of the present invention at room temperature (25 ° C.) before curing is significantly lower than the viscosity of the polyaddition type thermosetting resin used as the component, and Mechanical properties at high temperature show excellent properties.
[0147]
In addition, when the oligomer of the silicon compound is formed, by heating, alcohol and water, which are reaction by-products, have been removed, so that there is no problem of generating voids and cracks in the cured resin.
[0148]
Therefore, a semiconductor device or a printed wiring board to which a liquid sealing material or a die bonding material in which an inorganic filler such as silica or alumina is mixed, or a conductive paste material in which metal powder is mixed has excellent workability in the manufacturing process. Not only that, after curing, the material becomes uniform, void-free, and has excellent mechanical properties at high temperatures, so that its reliability is extremely high.
[0149]
【The invention's effect】
Solvent-free thermosetting resin composition that is liquid and low viscosity at room temperature (25 ° C) and is excellent in workability such as casting, and after curing, becomes a resin cured product with excellent heat resistance, especially mechanical properties at high temperatures. You can get things.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the temperature of a cured thermosetting resin and the storage modulus.
FIG. 2 is a diagram showing the relationship between the temperature of a cured thermosetting resin and tan δ.
FIG. 3 is a diagram illustrating a semiconductor device according to the present embodiment.
FIG. 4 is a diagram illustrating a semiconductor device according to the present embodiment.
FIG. 5 is a diagram illustrating a semiconductor device according to the present embodiment.
FIG. 6 is a diagram illustrating a multilayer printed wiring board according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... bare chip, 2 ... solder bump electrode, 3 ... glass epoxy board, 4 ... thermosetting resin composition, 5 ... pad, 6 ... lead frame lead part, 7 ... lead frame die pad, 8 ... adhesive material (die bonding material) ), 9, 19: semiconductor chip, 10: thin metal wire, 11: sealing material, 12: solder, 13: printed wiring board, 14: substrate, 15: paste adhesive material, 16: syringe, 17: electrode, 18 ... nickel particles, 20 ... gold bumps, 21 ... adhesive material after curing, 22 ... glass epoxy laminate, 23 ... drill holes, 24 ... conductive paste, 25 ... wiring pattern, 26 ... prepreg for multilayer bonding, 27 ... Through hole, 28 ... outermost layer wiring.

Claims (6)

エポキシ樹脂(a)、及び、下記一般式1
Figure 2004197009
の有機けい素化合物(ただし、Rは該エポキシ樹脂と付加反応を起こす官能基を含む有機基であり、かつ、R′はメチル基またはエチル基である)と水との反応物(b)、及び、下記一般式2
Figure 2004197009
のビスマレイミド化合物(式中Aは少なくとも2個の炭素原子を有する2価の有機基を表す)(c)と硬化剤(d)を必須成分とする熱硬化性樹脂組成物。
Epoxy resin (a) and the following general formula 1
Figure 2004197009
(Where R is an organic group containing a functional group that causes an addition reaction with the epoxy resin, and R ′ is a methyl group or an ethyl group) and water (b), And the following general formula 2
Figure 2004197009
(Wherein A represents a divalent organic group having at least 2 carbon atoms) (c) and a curing agent (d) as essential components.
請求項1において、前記ビスマレイミド化合物の添加量が5wt%以上であることを特徴とする熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1, wherein the amount of the bismaleimide compound added is 5 wt% or more. エポキシ樹脂(a)の存在下、下記一般式1
Figure 2004197009
の有機けい素化合物(ただし、Rは該エポキシ樹脂と付加反応を起こす官能基を含む有機基であり、かつ、R′はメチル基またはエチル基である)と水を反応させた後、下記一般式2
Figure 2004197009
のビスマレイミド化合物(式中Aは少なくとも2個の炭素原子を有する2価の有機基を表す)(c)及び硬化剤(d)を加えることを特徴とする熱硬化性樹脂組成物の製造方法。
In the presence of the epoxy resin (a), the following general formula 1
Figure 2004197009
(Where R is an organic group containing a functional group that causes an addition reaction with the epoxy resin, and R ′ is a methyl group or an ethyl group) and water, Equation 2
Figure 2004197009
(A represents a divalent organic group having at least two carbon atoms) (c) and a curing agent (d), and a curing agent (d). .
請求項3において、エポキシ樹脂(a)の存在下、前記有機けい素化合物と水を60℃〜160℃で1〜10時間加熱反応させることを特徴とする熱硬化性樹脂組成物の製造方法。The method for producing a thermosetting resin composition according to claim 3, wherein the organic silicon compound and water are heated and reacted at 60 ° C to 160 ° C for 1 to 10 hours in the presence of the epoxy resin (a). 半導体の少なくとも一部を被覆又は封止した熱硬化性樹脂材料を有する半導体装置において、
前記熱硬化性樹脂材料が、エポキシ樹脂(a)、及び、下記一般式1
Figure 2004197009
の有機けい素化合物(ただし、Rは該エポキシ樹脂と付加反応を起こす官能基を含む有機基であり、かつ、R′はメチル基またはエチル基である)と水との反応物(b)と下記一般式2
Figure 2004197009
のビスマレイミド化合物(式中Aは少なくとも2個の炭素原子を有する2価の有機基を表す)(c)及び硬化剤(d)を必須成分とする熱硬化性樹脂組成物の硬化物であることを特徴とする半導体装置。
In a semiconductor device having a thermosetting resin material covering or sealing at least a part of a semiconductor,
The thermosetting resin material is an epoxy resin (a) and the following general formula 1
Figure 2004197009
(Where R is an organic group containing a functional group that causes an addition reaction with the epoxy resin, and R ′ is a methyl group or an ethyl group) and a reaction product (b) with water. The following general formula 2
Figure 2004197009
(Wherein A represents a divalent organic group having at least two carbon atoms) (c) and a curing agent (d), which is a cured product of a thermosetting resin composition. A semiconductor device characterized by the above-mentioned.
請求項5において、前記熱硬化性樹脂材料がフィラーを含有していることを特徴とする半導体装置。6. The semiconductor device according to claim 5, wherein the thermosetting resin material contains a filler.
JP2002369159A 2002-12-20 2002-12-20 Thermosetting resin, method for producing the same, and its product Pending JP2004197009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369159A JP2004197009A (en) 2002-12-20 2002-12-20 Thermosetting resin, method for producing the same, and its product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369159A JP2004197009A (en) 2002-12-20 2002-12-20 Thermosetting resin, method for producing the same, and its product

Publications (1)

Publication Number Publication Date
JP2004197009A true JP2004197009A (en) 2004-07-15

Family

ID=32765463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369159A Pending JP2004197009A (en) 2002-12-20 2002-12-20 Thermosetting resin, method for producing the same, and its product

Country Status (1)

Country Link
JP (1) JP2004197009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051248A (en) * 2005-08-19 2007-03-01 Kyocera Chemical Corp Electroconductive adhesive composition
JP2009120770A (en) * 2007-11-16 2009-06-04 Sekisui Chem Co Ltd Silicone compound
JPWO2008018179A1 (en) * 2006-08-11 2009-12-24 三井化学株式会社 Antenna core and antenna
WO2013018847A1 (en) * 2011-07-29 2013-02-07 Namics Corporation Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051248A (en) * 2005-08-19 2007-03-01 Kyocera Chemical Corp Electroconductive adhesive composition
JPWO2008018179A1 (en) * 2006-08-11 2009-12-24 三井化学株式会社 Antenna core and antenna
US8035569B2 (en) 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna
JP2009120770A (en) * 2007-11-16 2009-06-04 Sekisui Chem Co Ltd Silicone compound
WO2013018847A1 (en) * 2011-07-29 2013-02-07 Namics Corporation Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device
CN103717634A (en) * 2011-07-29 2014-04-09 纳美仕有限公司 Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device
JP2014521754A (en) * 2011-07-29 2014-08-28 ナミックス株式会社 Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and semiconductor manufacturing method

Similar Documents

Publication Publication Date Title
TWI416673B (en) Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
TWI609942B (en) Binder composition with high frequency characteristics and use thereof
JP3823828B2 (en) Solvent-free thermosetting resin composition, production method and product thereof
KR101316105B1 (en) Manufacturing method for printed circuit board containing flame retardant insulating layer
JP5171798B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP6716560B2 (en) Inlay substrate and manufacturing method thereof
JP6570259B2 (en) Resin composition, insulating film, and semiconductor device
JPH11255864A (en) Liquid epoxy rein composition and resin-sealed type semiconductor apparatus
JP2001234020A (en) Resin composition, adhesive film, metallic foil-adhered adhesive film using the resin composition, circuit board and mounted structure
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP5849390B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5200386B2 (en) Adhesive sheet for electronic materials
JP3921630B2 (en) Epoxy resin composite material and apparatus using the same
JP5879757B2 (en) Resin composition, prepreg and method for producing prepreg
JP2007056209A (en) Adhesive for circuit connection
JP2008244091A (en) Interlayer connection bonding sheet for multilayer wiring circuit board
JP2011068772A (en) Epoxy resin composition and adhesive film thereof
JP2009295688A (en) Method for manufacturing semiconductor device and semiconductor device
JP2001131517A (en) Thermosetting adhesive material and method for producing the same and use
JP2009194105A (en) Through-hole filler and multilayer wiring board
JP2004197009A (en) Thermosetting resin, method for producing the same, and its product
JP2004197010A (en) Heat resistant adhesive, method for producing the same, and semiconductor device using the same
JP2007246886A (en) Adhesive composition, adhesive film, and method for producing semiconductor device
JP2009246026A (en) Paste-like adhesive, and method of manufacturing substrate incorporating electronic components using the same
JP4530126B2 (en) Adhesive composition and adhesive film