JP2004196897A - Flame retardant and flameproofing method - Google Patents

Flame retardant and flameproofing method Download PDF

Info

Publication number
JP2004196897A
JP2004196897A JP2002365098A JP2002365098A JP2004196897A JP 2004196897 A JP2004196897 A JP 2004196897A JP 2002365098 A JP2002365098 A JP 2002365098A JP 2002365098 A JP2002365098 A JP 2002365098A JP 2004196897 A JP2004196897 A JP 2004196897A
Authority
JP
Japan
Prior art keywords
polymer
polymer hydrogel
clay mineral
organic material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365098A
Other languages
Japanese (ja)
Inventor
Kazutoshi Haraguchi
和敏 原口
Akira Obayashi
明 王林
Kan Takehisa
敢 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2002365098A priority Critical patent/JP2004196897A/en
Publication of JP2004196897A publication Critical patent/JP2004196897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Fireproofing Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flame retardant which has excellent flame retardance and no emission of harmful gas, is safe and has no fear of environmental pollution even if being abandoned and to provide a flameproofing method for an organic material. <P>SOLUTION: The flame retardant comprises polymer hydrogel obtained by forming the three-dimensional network of a hydrophilic organic polymer and clay mineral or a dried substance of the polymer hydrogel. The flameproofing method comprises combining the flame retardant with an organic material by blending, lamination or coating. The flameproofing method for an organic material comprises coating or impregnating the organic material with an aqueous solution containing clay mineral, a polymerization initiator and an amide group-containing polymerizable monomer, polymerizing the polymerizable monomer to combine the polymer hydrogel with the organic material in which the hydrophilic organic polymer and the clay mineral form the three-dimensional network. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、難燃剤および有機材料の難燃化方法に関する。
【0002】
【従来の技術】
有機高分子を初めとする有機材料は、塗膜、フィルム、シート、繊維、微粒子、成型品、複合体など多くの製品形態を有しており、建築・土木材料、輸送機器材料、電子・電気機器材料、化学・医療装置材料など多くの分野で広く用いられている。しかし、これら多くの用途において、火災に伴う事故や延焼を防ぐために、用いる有機材料を難燃化または不燃化することが求められている。
【0003】
有機材料の難燃化方法として、ポリブロモジフェニルオキサイド、テトラブロモビスフェノールAなどの臭素化合物や、塩素化パラフィン、パークロロシクロデカンなどのハロゲン系難燃剤、リン酸エステル、含ハロゲンリン酸エステルなどのリン系難燃剤、水酸化アルミニウム、水酸化マグネシウムなどの水和金属化合物、または三酸化アンチモン、ホウ素化合物などを有機材料に添加することが広く用いられてきた。しかし、これら難燃添加剤には燃焼時に有害ガスを発生すものが多く含まれることから、現在では、単に難燃性が優れているのみでなく、低有害性、低発煙性、低腐食性などにおいても優れた性能を有することが求められてきており、発煙性や発生ガス有害性の点からより問題のない新たな難燃化方法が求められている。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、優れた難燃性を有すると共に、有害ガスの発生がなく、安全で廃棄されても環境汚染の心配がない難燃剤、および有機材料の難燃化方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲル(以下、高分子ヒドロゲルと略称する)または該高分子ヒドロゲルの乾燥体を有機材料と複合化して用いることで有機材料を難燃化できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルまたは該高分子ヒドロゲルの乾燥体からなる難燃剤を提供する。また、本発明は、親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルまたはその乾燥体を、有機材料と混合、貼り合わせ又は被覆により複合化することを特徴とする有機材料の難燃化方法、並びに粘土鉱物、重合開始剤およびアミド基含有重合性モノマーを含む水溶液を有機材料に塗布または含浸させ、前記アミド基含有重合性モノマーを含む水溶液を重合させることにより、アミド基含有の親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルと有機材料とを複合化させることを特徴とする有機材料の難燃化方法を提供する。
【0007】
【発明の実施の形態】
本発明で難燃剤として用いる高分子ヒドロゲルは、水溶性モノマーの重合物からなる親水性有機高分子と少なくとも一部が層状に剥離した粘土鉱物が水中で三次元網目を形成してなるヒドロゲルである。該高分子ヒドロゲルは親水性有機高分子と粘土鉱物が水中で橋架けして複合化し三次元網目が形成されているため、優れた力学物性、例えば、優れた破断強度、破断伸び、含水性、伸縮性などを示し、且つ、他材料との接着性にも優れる。
【0008】
本発明の高分子ヒドロゲルからなる難燃剤は、含まれる高分子ヒドロゲルが加熱された際に水を放出すること、および該高分子ヒドロゲル不揮発分中に不燃性で、且つ酸素透過性を抑制する微細分散した層状粘土鉱物が高い含有比率で含まれていることの少なくとも一種により、優れた難燃性を示す。特に、相転移温度以上において該高分子ヒドロゲルが含有する水を急激に放出する下限臨界共溶温度(Lower Critical Solution Temperature、以下、LCSTと略称する)を有する高分子ヒドロゲルを用いる場合は、周囲温度がLCST以上の温度に上昇することを効果的に防止する。
【0009】
高分子ヒドロゲルを構成する親水性有機高分子は、水に膨潤または溶解する性質を有し、水に均一分散可能な水膨潤性の粘土鉱物と相互作用を有するものが好ましく、例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する親水性有機高分子としては、具体的には、アミド基、アミノ基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する親水性有機高分子が挙げられ、なかでもアミド基を有する親水性有機高分子が好ましく用いられる。
【0010】
また、かかる親水性有機高分子としては、温度変化に対して安定なもののほか、温度上昇により相転移を生じ、相転移温度以上で含む水を急激に放出するような性質を有するものも用いられる。かかる加熱により相転移を示す親水性高分子としては、例えば下限臨界共溶温度(Lower Critical Solution Temperature、以下LCSTと略称する)を有するポリ(N−イソプロピルアクリルアミド)、ポリ(N、N−ジエチルアクリルアミド)などが挙げられ、LCSTは重合性モノマーの種類や他モノマーとの共重合により変えることができる。
【0011】
アミド基を有する親水性有機高分子の具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類の中から選択される一つ又は複数の水溶性モノマーを重合して得られる親水性有機高分子が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく用いられる。
【0012】
より具体的には、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(アクリロイルモルフォリン)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)、ポリ(アクリルアミド)等が例示される。
【0013】
用いる親水性有機高分子としては、力学物性、含水率、接着性などを改良するために、単一の水溶性モノマーからの重合体の他、複数の異なる水溶性モノマーを重合して得られる共重合体を用いることもできる。また上記水溶性モノマーと有機溶媒可溶性モノマーとの共重合体も、得られた重合体が水に膨潤または溶解し、水に均一分散可能な水膨潤性の粘土鉱物と相互作用を有するものであれば使用することができる。
【0014】
本発明で用いる高分子ヒドロゲルの製造に用いる粘土鉱物は、水に膨潤性を有するものであり、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。
【0015】
本発明では、用いる高分子ヒドロゲルの含水率は、広い範囲で設定できるが、難燃化の点から、30〜99質量%、好ましくは50〜99質量%、より好ましくは80〜95質量%である。高分子ヒドロゲルの含水率が30質量%以下では難燃性が低くなり、99質量%以上では力学物性が低下する傾向がある。しかし、本発明における高分子ヒドロゲルは、含水率がゼロに近い乾燥物においても、層状に微細剥離した粘土鉱物が高比率で親水性高分子の中に含まれているため、親水性高分子のみと比べて優れた難燃性を示す。従って、難燃剤として水を含まないことが好ましい場合は、用いる高分子ヒドロゲルの含水率は0〜30質量%の含水率であっても有効に用いられる。
【0016】
本発明で用いる高分子ヒドロゲルを構成する親水性有機高分子と粘土鉱物との比率は、親水性有機高分子と粘土鉱物とからなる三次元網目を有するゲル構造体が調製されれば良く、また用いる親水性有機高分子や粘土鉱物の種類によっても異なり一概に規定できないが、ゲル合成が容易であること、均一性に優れること、難燃性などの点から、高分子ヒドロゲルの不揮発分(すなわち、親水性有機高分子と粘土鉱物)中の粘土鉱物の比率が1〜90質量%であることが好ましく、より好ましくは5〜90質量%、特に好ましくは10〜80質量%である。
【0017】
高分子ヒドロゲルの不揮発分中の粘土鉱物の比率が1質量%未満では、十分な力学物性を持つゲルが得られにくく、また、不揮発分中の粘土鉱物の比率が90質量%を超えると、得られるゲルが不均一になったり、脆くなりやすい。一方、高分子ヒドロゲルを乾燥した高分子ヒドロゲル乾燥体を用いる場合は、難燃性を高くするために、不揮発分中の粘土鉱物の比率が5〜90質量%であるものを用いる。用いる高分子ヒドロゲル乾燥体の不揮発分中の粘土鉱物の比率は、より好ましくは10〜90質量%、特に好ましくは20〜90質量%である。
【0018】
本発明で用いられる高分子ヒドロゲルは、例えば、前述の水溶性モノマーと粘土鉱物を含む均一混合溶液を調製し、重合開始剤および/または触媒の存在下、加熱または紫外線照射など慣用の方法を用いたラジカル重合により行わせることができる。重合開始剤および触媒は、慣用のラジカル重合開始剤および触媒のうちから適宜選択して用いる。重合開始剤および触媒は、水に分散性を有し、系全体に均一に含まれるものが好ましく用いられ、層状に剥離した粘土鉱物と強い相互作用を有するカチオン系ラジカル重合開始剤が特に好ましい。
【0019】
具体的には、重合開始剤として水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。
【0020】
また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。重合温度は、用いる水溶性モノマー、粘土鉱物、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定する。重合時間も触媒、開始剤、重合温度、最終ゲル形状などの重合条件によって異なり、一概に規定できないが、一般に数十秒〜十数時間の間で行う。
【0021】
本発明における難燃化方法としては、親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルを、▲1▼有機材料と混合・分散させる、▲2▼有機材料同士または有機材料と無機材料を高分子ヒドロゲルにより貼り合わせる、あるいは、▲3▼高分子ヒドロゲルを有機材料で覆ったり、有機材料を高分子ヒドロゲルで覆ったりする種々の方法によって、有機材料と複合化させることにより、有機材料を難燃化する方法が挙げられる。
【0022】
また、粘土鉱物、重合開始剤およびアミド基含有重合性モノマーを含む水溶液を有機材料に塗布または含浸させ、前記アミド基含有重合性モノマーを含む水溶液を重合させることにより、アミド基含有の親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルと有機材料とを複合化させ、有機材料を難燃化する方法が挙げられる。
【0023】
より具体的には、例えば、▲1▼前記アミド基含有重合性モノマーを含む水溶液を有機材料に塗布したり、▲2▼繊維状または多孔質の有機材料に前記アミド基含有重合性モノマーを含む水溶液を含浸させたり、または▲3▼前記アミド基含有重合性モノマーを含む水溶液を有機材料の粉体に混合させた後に、前記高分子ヒドロゲルの重合前の水溶液を重合させることにより、アミド基含有の親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルと有機材料とを複合化させ、有機材料を難燃化させることができる。
【0024】
また、更に、これらの有機材料と複合化された高分子ヒドロゲルを乾燥させることにより、高分子ヒドロゲル乾燥体による有機材料の有機材料の難燃化が達成される。
【0025】
高分子ヒドロゲルにより難燃化される有機材料は、高分子ヒドロゲルと接着性を有する可燃性の有機高分子であり、ポリエステル、ポリアミド、ポリイミド、ポリオレフィン、ポリウレタン、アクリル樹脂、ポリカーボネート、ABS樹脂などの熱可塑性樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア樹脂などの熱硬化性樹脂、それらの発泡体などが挙げられる。その他の有機材料としては顔料や添加剤などが挙げられる。
【0026】
本発明における難燃剤としての高分子ヒドロゲルや高分子ヒドロゲル乾燥体は、単独もしくは他の有機材料や無機材料と組み合わせて用いられる。また本発明の難燃剤と共に、他の既存の難燃剤やヒドロゲルに対する防かび剤などを併用してもよい。他の材料と複合して用いられる高分子ヒドロゲルまたは高分子ヒドロゲル乾燥体の割合は、使用目的や目標とする難燃化のレベルにより任意に選択でき、特に制限されない。用いる高分子ヒドロゲルや高分子ヒドロゲル乾燥体の組成や割合を適切に設定し、単独もしくは他の有機材料や無機材料と組み合わせることにより、建築、土木、機械、電気・電子、化学、医療などの広い分野で有用な、優れた難燃性または不燃性を有する材料を提供できる。
【0027】
【実施例】
次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
【0028】
(実施例1)
粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na0.66 の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)を100℃で2時間真空乾燥して用いた。有機水溶性モノマーとして、N−イソプロピルアクリルアミド(NIPA:興人株式会社製)をトルエンとヘキサンの混合溶媒を用いて再結晶し無色針状結晶に精製してから用いた。
【0029】
重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.192/10(g/g)の割合で純水で希釈し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA:関東化学株式会社製)をそのまま使用した。水はイオン交換水を蒸留した純水を用いた。水は全て高純度窒素を用いて含有酸素を除去してから使用した。
【0030】
純水18.96gを入れたガラス容器に攪拌しながら0.662gのラポナイトXLGを加え、無色透明の水溶液を調製した。これにNIPA2.0gを撹拌しながら添加して無色透明水溶液を得た。次いで、氷浴にてTMEDA16μlとKPS水溶液1.06gを攪拌して加え無色透明水溶液を得た。得られた水溶液を厚み1mmの容器に注入して、20℃で重合を行い、厚み1mmのシート状高分子ヒドロゲルを得た。得られた高分子ヒドロゲルの88質量%が水であり、高分子ヒドロゲル固形分の内の25質量%が粘土鉱物であった。高分子ヒドロゲルは均一、透明で800%までの延伸及び90%までの圧縮で破壊しないタフネスを有する材料であった。
【0031】
得られた高分子ヒドロゲルシートの両面を厚み50μmのポリエチレンフィルムで貼り合わせ、末端を溶融させて封をし、幅12.5mm、長さ300mm、厚み1.1mmのポリエチレン/高分子ヒドロゲル/ポリエチレンの層構造を有する柔軟性のある複合体シートを調製した。
【0032】
UL−94規格に基づく評価(ガスバーナーの先端に材料を10秒間あてることを2回行い、着火の有無または着火後の消火時間を測定する。検体数は5個)を行った結果、全ての検体試験で着火することはなかった。
【0033】
(実施例2)
有機水溶性モノマーとして、N,N−ジメチルアクリルアミド(DMAA:和光純薬工業株式会社)を1.76g用いること、及び、無機粘土を0.93g用いることを除くと、実施例1と同様にして重合前の無色透明水溶液を得た。表面を親水処理した厚み500μmのポリエチレンテレフタレート(PET)シートに、厚み400μmになるように重合前の水溶液を塗布し重合を行い、高分子ヒドロゲルを塗布した幅12.5mm、長さ300mmのポリエチレンテレフタレート/高分子ヒドロゲル複合シートを作製した。塗布した高分子ヒドロゲルの88質量%が水であり、高分子ヒドロゲル固形分の内の35質量%が粘土鉱物であった。得られた複合シートを用いて実施例1と同様にして難燃性の評価を行った結果、着火することはなかった。
【0034】
(実施例3)
実施例2で得た重合前の無色透明水溶液を用いて厚み500μmの高分子ヒドロゲルシートを合成し、これを切断して、一片が約500μmの粒子を調製した。得られた高分子ヒドロゲル粒子50質量部を室温硬化型エポキシ樹脂100質量部中に分散させ、高分子ヒドロゲル粒子とエポキシ樹脂の複合体を調製した。得られた複合体を用いて実施例1と同様にして難燃性の評価を行った結果、着火することはなかった。
【0035】
(実施例4)
実施例2で得た重合前の無色透明水溶液を用いて、連続気孔を有するポリウレタン発泡材料に該水溶液を気孔の約1/3の体積を占めるように含浸した後、重合させることで、高分子ヒドロゲルとポリウレタン発泡材料の複合体を調製した。得られた複合体を用いて実施例1と同様にして難燃性の評価を行った結果、着火することは無かった。
【0036】
(実施例5)
DMAAの量を0.44g用いること以外は実施例2と同様にして、重合前の無色透明水溶液を調製した。得られた水溶液を厚み4mmの容器に注入して、20℃で重合を行い、厚み4mmのシート状高分子ヒドロゲルを得た。得られた高分子ヒドロゲルを直交する二軸方向に3倍ずつ延伸して、固定した状態で乾燥し、厚み約30μmの高分子ヒドロゲル乾燥体(フィルム)を得た。高分子ヒドロゲル乾燥体に含まれる水分含有率は5質量%であった。また高分子ヒドロゲル乾燥体固形分の内の68質量%が粘土鉱物であった。得られた高分子ヒドロゲル乾燥体と厚み50μmの銅箔をエポキシ樹脂(成分:ビスフェノールA型エポキシ樹脂と脂肪族ポリアミン硬化剤:接着層厚み50μm)を接着剤として用いて、圧縮成形し積層板を得た。得られた積層板(幅12.5mm、長さ30cm)を用い、実施例1と同様にして難燃性の評価を行った結果、粘土鉱物を含まないDMAA重合物のフィルムを用いて同様に調製した積層板と比べて、著しく難燃性が向上した。
【0037】
【発明の効果】
本発明の高分子ヒドロゲルからなる難燃剤は、外部からの加熱に際して、内包する水を放出することや、それ自体が不燃性で酸素透過抑制効果を有する微細分散した層状粘土鉱物を多く含有することにより優れた難燃性を示す。
特に、前記高分子ヒドロゲルを構成する有機高分子がLCSTを有する場合は、外部からの加熱により、該温度になると急激に高分子ヒドロゲルから水を放出し、温度上昇を抑制する効果がある。本発明の難燃剤は、有害な燃焼ガスを発生せず、また廃棄時に有害となる物質を含まず、地中に戻しても安全なことなど環境に優しい利点を有する。
また、本発明の難燃化方法は、高分子ヒドロゲルまたは高分子ヒドロゲル乾燥体を既存の有機材料と複合化させることにより、様々な形態の有機材料を難燃化することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame retardant and a method for flame retarding an organic material.
[0002]
[Prior art]
Organic polymers and other organic materials have many product forms such as coatings, films, sheets, fibers, fine particles, molded products, and composites. It is widely used in many fields such as equipment materials and chemical and medical device materials. However, in many of these applications, it is required to make the organic material used flame-retardant or non-flammable in order to prevent fire-related accidents and fire spread.
[0003]
Examples of the method for flame retarding organic materials include bromine compounds such as polybromodiphenyl oxide and tetrabromobisphenol A, halogenated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphate esters, and halogen-containing phosphate esters. It has been widely used to add phosphorus-based flame retardants, hydrated metal compounds such as aluminum hydroxide and magnesium hydroxide, or antimony trioxide and boron compounds to organic materials. However, since many of these flame-retardant additives generate harmful gases during combustion, they now have not only excellent flame retardancy, but also low toxicity, low smoke emission, and low corrosiveness. In addition, there is a demand for excellent performance, and a new flame-retarding method that does not cause any problem in terms of smoke generation and harmful generated gas is demanded.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a flame retardant which has excellent flame retardancy, does not generate harmful gas, is safe and has no concern for environmental pollution even when disposed, and a method for flame retarding organic materials. To provide.
[0005]
[Means for Solving the Problems]
The present inventors have made a polymer hydrogel (hereinafter abbreviated as polymer hydrogel) formed by forming a three-dimensional network of a hydrophilic organic polymer and a clay mineral or a dried product of the polymer hydrogel into a complex with an organic material. It was found that the organic material could be made flame-retardant by using it, and the present invention was completed.
[0006]
That is, the present invention provides a flame retardant comprising a polymer hydrogel in which a hydrophilic organic polymer and a clay mineral form a three-dimensional network or a dried product of the polymer hydrogel. In addition, the present invention is characterized in that a polymer hydrogel formed by forming a three-dimensional network of a hydrophilic organic polymer and a clay mineral or a dried product thereof is mixed with an organic material, and then composited by bonding or coating. Flame retardation method of the organic material, and clay mineral, a polymerization initiator and an aqueous solution containing an amide group-containing polymerizable monomer is applied or impregnated to the organic material, by polymerizing the aqueous solution containing the amide group-containing polymerizable monomer, Provided is a method for flame retarding an organic material, which comprises forming a composite of a polymer hydrogel formed by forming a three-dimensional network of a hydrophilic organic polymer containing an amide group and a clay mineral with an organic material.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The polymer hydrogel used as a flame retardant in the present invention is a hydrogel in which a hydrophilic organic polymer composed of a polymer of a water-soluble monomer and a clay mineral at least partially exfoliated in a layer form a three-dimensional network in water. . Because the polymer hydrogel is formed by forming a three-dimensional network by forming a hydrophilic organic polymer and clay mineral in a bridge in water, excellent mechanical properties, for example, excellent breaking strength, breaking elongation, water content, It shows elasticity and the like, and also has excellent adhesiveness with other materials.
[0008]
The flame retardant comprising the polymer hydrogel of the present invention is capable of releasing water when the polymer hydrogel contained therein is heated, and a non-flammable and non-flammable fine particle that suppresses oxygen permeability in the nonvolatile portion of the polymer hydrogel. Due to at least one of the fact that the dispersed layered clay mineral is contained in a high content ratio, excellent flame retardancy is exhibited. In particular, when using a polymer hydrogel having a lower critical solution temperature (hereinafter abbreviated as LCST) at which the water contained in the polymer hydrogel is rapidly released at or above the phase transition temperature, the ambient temperature is lower. Is effectively prevented from rising to a temperature equal to or higher than the LCST.
[0009]
The hydrophilic organic polymer constituting the polymer hydrogel has a property of swelling or dissolving in water, and preferably has an interaction with a water-swellable clay mineral that can be uniformly dispersed in water. Those having a functional group capable of forming a hydrogen bond, an ionic bond, a coordinate bond, a covalent bond, and the like are preferable. Specific examples of the hydrophilic organic polymer having these functional groups include hydrophilic organic polymers having an amide group, an amino group, a hydroxyl group, a tetramethylammonium group, a silanol group, an epoxy group, and the like. However, a hydrophilic organic polymer having an amide group is preferably used.
[0010]
Further, as such a hydrophilic organic polymer, in addition to those stable against temperature change, those having a property of causing a phase transition due to a rise in temperature and rapidly releasing water containing the phase transition temperature or more are used. . Examples of the hydrophilic polymer that exhibits a phase transition by heating include poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide) having a lower critical solution temperature (hereinafter abbreviated as LCST). ), Etc., and the LCST can be changed by the type of polymerizable monomer or copolymerization with another monomer.
[0011]
Specific examples of the hydrophilic organic polymer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, acrylamide, N-alkylmethacrylamide, N, N-dialkylmethacrylamide, and methacryl. Examples include hydrophilic organic polymers obtained by polymerizing one or more water-soluble monomers selected from methacrylamides such as amides. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably used.
[0012]
More specifically, poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), poly (acryloylmorpholine), poly (methacrylamide) ), Poly (N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide) ), Poly (N-methyl-N-ethylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (N-methyl-Nn-propylacrylamide), poly (N, N-diethylacrylamide), Poly (N-acryloylpyrrolidin) Poly (N- acryloyl Lupi peri Din), poly (N- acryloyl methyl homo piperazinyl Laden), poly (N- acryloyl-methylpiperazinyl Laden), poly (acrylamide), and the like.
[0013]
As the hydrophilic organic polymer to be used, a polymer obtained by polymerizing a plurality of different water-soluble monomers in addition to a polymer from a single water-soluble monomer in order to improve mechanical properties, water content, adhesiveness, etc. Polymers can also be used. Further, the copolymer of the water-soluble monomer and the organic solvent-soluble monomer is also one in which the obtained polymer swells or dissolves in water and has an interaction with a water-swellable clay mineral that can be uniformly dispersed in water. Can be used.
[0014]
The clay mineral used in the production of the polymer hydrogel used in the present invention has a swelling property in water, and preferably has a property of swelling between layers by water. More preferably, at least a part of the layered clay mineral can be exfoliated and dispersed in water, and particularly preferably, a layered clay mineral which can be exfoliated and uniformly dispersed in water in a layer having a thickness of 1 to 10 layers or less. For example, water-swellable smectite or water-swellable mica is used, and more specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Is mentioned.
[0015]
In the present invention, the water content of the polymer hydrogel used can be set in a wide range, but from the viewpoint of flame retardancy, it is 30 to 99% by mass, preferably 50 to 99% by mass, more preferably 80 to 95% by mass. is there. If the water content of the polymer hydrogel is 30% by mass or less, the flame retardancy tends to be low, and if it is 99% by mass or more, the mechanical properties tend to be low. However, in the polymer hydrogel of the present invention, even in a dried product having a water content close to zero, the clay mineral that has been finely exfoliated in layers is contained in the hydrophilic polymer in a high ratio. Shows superior flame retardancy compared to. Therefore, when it is preferable that water is not contained as a flame retardant, even if the water content of the polymer hydrogel used is 0 to 30% by mass, it is effectively used.
[0016]
The ratio of the hydrophilic organic polymer and the clay mineral constituting the polymer hydrogel used in the present invention may be such that a gel structure having a three-dimensional network composed of the hydrophilic organic polymer and the clay mineral is prepared, and It differs depending on the type of hydrophilic organic polymer or clay mineral used and cannot be specified unconditionally. However, from the viewpoints of easy gel synthesis, excellent uniformity, flame retardancy, etc., the non-volatile content of the polymer hydrogel (ie, (Hydrophilic organic polymer and clay mineral) is preferably 1 to 90% by mass, more preferably 5 to 90% by mass, and particularly preferably 10 to 80% by mass.
[0017]
If the proportion of the clay mineral in the non-volatile content of the polymer hydrogel is less than 1% by mass, it is difficult to obtain a gel having sufficient mechanical properties. The resulting gel is likely to be uneven or brittle. On the other hand, when a dried polymer hydrogel obtained by drying the polymer hydrogel is used, a material having a clay mineral ratio of 5 to 90% by mass in the non-volatile content is used in order to increase the flame retardancy. The proportion of the clay mineral in the nonvolatile content of the dried polymer hydrogel used is more preferably 10 to 90% by mass, and particularly preferably 20 to 90% by mass.
[0018]
The polymer hydrogel used in the present invention is prepared, for example, by preparing a homogeneous mixed solution containing the above-mentioned water-soluble monomer and clay mineral, and using a conventional method such as heating or ultraviolet irradiation in the presence of a polymerization initiator and / or a catalyst. Can be carried out by radical polymerization. The polymerization initiator and the catalyst are appropriately selected and used from conventional radical polymerization initiators and catalysts. As the polymerization initiator and the catalyst, those having dispersibility in water and uniformly contained in the whole system are preferably used, and a cationic radical polymerization initiator having strong interaction with the clay mineral exfoliated in a layer is particularly preferable.
[0019]
Specifically, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate as a polymerization initiator, a water-soluble azo compound, for example, VA-044, V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 and the like are preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used.
[0020]
As the catalyst, tertiary amine compounds such as N, N, N ', N'-tetramethylethylenediamine and β-dimethylaminopropionitrile are preferably used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. in accordance with the type of the water-soluble monomer, clay mineral, polymerization catalyst and initiator to be used. The polymerization time also varies depending on the polymerization conditions such as the catalyst, the initiator, the polymerization temperature, the final gel shape and the like, and cannot be specified unconditionally.
[0021]
As the flame retarding method in the present invention, a polymer hydrogel formed by forming a three-dimensional network of a hydrophilic organic polymer and a clay mineral is mixed and dispersed in (1) an organic material, (2) two organic materials or Bonding an organic material and an inorganic material with a polymer hydrogel, or (3) forming a composite with an organic material by various methods such as covering the polymer hydrogel with an organic material or covering the organic material with a polymer hydrogel. To make the organic material flame-retardant.
[0022]
Further, an aqueous solution containing a clay mineral, a polymerization initiator and an amide group-containing polymerizable monomer is applied to or impregnated with an organic material, and the aqueous solution containing the amide group-containing polymerizable monomer is polymerized, whereby an amide group-containing hydrophilic organic compound is polymerized. There is a method in which a polymer hydrogel in which a polymer and a clay mineral form a three-dimensional network is combined with an organic material to make the organic material nonflammable.
[0023]
More specifically, for example, (1) an aqueous solution containing the amide group-containing polymerizable monomer is applied to an organic material, or (2) a fibrous or porous organic material containing the amide group-containing polymerizable monomer. After the aqueous solution containing the amide group-containing polymerizable monomer is mixed with an organic material powder, and then the aqueous solution before the polymerization of the polymer hydrogel is polymerized, The organic material can be made flame-retardant by compounding a polymer hydrogel formed by forming a three-dimensional network of the hydrophilic organic polymer and the clay mineral with the organic material.
[0024]
Further, by drying the polymer hydrogel compounded with these organic materials, the flame retardation of the organic material of the organic material by the dried polymer hydrogel is achieved.
[0025]
The organic material that is made flame-retardant by the polymer hydrogel is a flammable organic polymer that has adhesiveness to the polymer hydrogel, and is made of heat, such as polyester, polyamide, polyimide, polyolefin, polyurethane, acrylic resin, polycarbonate, and ABS resin. Thermosetting resins such as a plastic resin, an epoxy resin, an unsaturated polyester resin, a phenol resin, and a urea resin, and foams thereof are exemplified. Other organic materials include pigments and additives.
[0026]
The polymer hydrogel or the dried polymer hydrogel as the flame retardant in the present invention is used alone or in combination with another organic material or inorganic material. Further, together with the flame retardant of the present invention, other existing flame retardants and fungicides against hydrogels may be used in combination. The ratio of the polymer hydrogel or the dried polymer hydrogel used in combination with other materials can be arbitrarily selected depending on the purpose of use and the target level of flame retardancy, and is not particularly limited. By appropriately setting the composition and ratio of the polymer hydrogel and dried polymer hydrogel used alone and in combination with other organic and inorganic materials, it can be used in a wide range of fields such as construction, civil engineering, machinery, electricity / electronics, chemistry, medicine, etc. A material having excellent flame retardancy or nonflammability useful in the field can be provided.
[0027]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples described below.
[0028]
(Example 1)
As the clay mineral, a water-swellable synthetic hectorite (trade name: Laponite XLG, manufactured by Nippon Silica Co., Ltd.) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na 0.66 + is used. Vacuum dried at 100 ° C. for 2 hours before use. As an organic water-soluble monomer, N-isopropylacrylamide (NIPA: manufactured by Kojin Co., Ltd.) was recrystallized using a mixed solvent of toluene and hexane to be purified into colorless needle crystals before use.
[0029]
As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Ltd.) was diluted with pure water at a ratio of KPS / water = 0.192 / 10 (g / g) and used as an aqueous solution. As the catalyst, N, N, N ', N'-tetramethylethylenediamine (TMEDA: manufactured by Kanto Chemical Co., Ltd.) was used as it was. As the water, pure water obtained by distilling ion-exchanged water was used. All water was used after removing the contained oxygen using high-purity nitrogen.
[0030]
0.662 g of Laponite XLG was added to a glass container containing 18.96 g of pure water with stirring to prepare a colorless and transparent aqueous solution. 2.0 g of NIPA was added thereto with stirring to obtain a colorless and transparent aqueous solution. Next, 16 μl of TMEDA and 1.06 g of a KPS aqueous solution were stirred and added in an ice bath to obtain a colorless and transparent aqueous solution. The obtained aqueous solution was poured into a container having a thickness of 1 mm, and polymerization was carried out at 20 ° C. to obtain a sheet-like polymer hydrogel having a thickness of 1 mm. 88% by mass of the obtained polymer hydrogel was water, and 25% by mass of the solid content of the polymer hydrogel was clay mineral. The polymeric hydrogel was a homogeneous, transparent, tough material that did not break upon stretching to 800% and compressing to 90%.
[0031]
Both sides of the obtained polymer hydrogel sheet are laminated with a polyethylene film having a thickness of 50 μm, the ends are melted and sealed, and a 12.5 mm wide, 300 mm long, 1.1 mm thick polyethylene / polymer hydrogel / polyethylene mixture is used. A flexible composite sheet having a layer structure was prepared.
[0032]
As a result of the evaluation based on the UL-94 standard (the material is applied to the tip of the gas burner twice for 10 seconds, and the presence or absence of ignition or the fire extinguishing time after ignition is measured. There was no ignition in the sample test.
[0033]
(Example 2)
As in Example 1, except that 1.76 g of N, N-dimethylacrylamide (DMAA: Wako Pure Chemical Industries, Ltd.) was used as the organic water-soluble monomer, and 0.93 g of inorganic clay was used. A colorless and transparent aqueous solution before polymerization was obtained. An aqueous solution before polymerization is applied to a 500 μm-thick polyethylene terephthalate (PET) sheet having a hydrophilic surface and polymerized to a thickness of 400 μm, and a polymer hydrogel is applied to the polyethylene terephthalate having a width of 12.5 mm and a length of 300 mm. / A polymer hydrogel composite sheet was prepared. 88% by mass of the applied polymer hydrogel was water, and 35% by mass of the solid content of the polymer hydrogel was clay mineral. The flame retardancy was evaluated in the same manner as in Example 1 using the obtained composite sheet. As a result, no ignition occurred.
[0034]
(Example 3)
A 500 μm-thick polymer hydrogel sheet was synthesized using the colorless and transparent aqueous solution before polymerization obtained in Example 2, and cut to prepare particles each having a size of about 500 μm. 50 parts by mass of the obtained polymer hydrogel particles were dispersed in 100 parts by mass of an epoxy resin cured at room temperature to prepare a composite of the polymer hydrogel particles and the epoxy resin. The flame retardancy was evaluated in the same manner as in Example 1 using the obtained composite. As a result, no ignition occurred.
[0035]
(Example 4)
Using the colorless and transparent aqueous solution before polymerization obtained in Example 2, a polyurethane foam material having continuous pores is impregnated with the aqueous solution so as to occupy about 1/3 of the pore volume, and then polymerized, whereby a polymer is obtained. A composite of hydrogel and polyurethane foam was prepared. The flame retardancy was evaluated in the same manner as in Example 1 using the obtained composite. As a result, no ignition occurred.
[0036]
(Example 5)
A colorless and transparent aqueous solution before polymerization was prepared in the same manner as in Example 2 except that the amount of DMAA was 0.44 g. The obtained aqueous solution was poured into a container having a thickness of 4 mm, and polymerization was performed at 20 ° C. to obtain a sheet-like polymer hydrogel having a thickness of 4 mm. The obtained polymer hydrogel was stretched three times in biaxial directions orthogonal to each other and dried in a fixed state to obtain a dried polymer hydrogel (film) having a thickness of about 30 μm. The water content of the dried polymer hydrogel was 5% by mass. Also, 68% by mass of the solid content of the dried polymer hydrogel was clay mineral. The obtained dried polymer hydrogel and a copper foil having a thickness of 50 μm were compression-molded using an epoxy resin (component: bisphenol A type epoxy resin and an aliphatic polyamine curing agent: adhesive layer thickness of 50 μm) as an adhesive to form a laminate. Obtained. Using the obtained laminated plate (12.5 mm in width and 30 cm in length), the flame retardancy was evaluated in the same manner as in Example 1. As a result, a film of a DMAA polymer containing no clay mineral was used. The flame retardancy was remarkably improved as compared with the prepared laminate.
[0037]
【The invention's effect】
The flame retardant comprising the polymer hydrogel of the present invention releases a contained water upon external heating, and contains a large amount of a finely dispersed layered clay mineral which itself is nonflammable and has an oxygen permeation suppressing effect. Shows better flame retardancy.
In particular, when the organic polymer constituting the polymer hydrogel has an LCST, water is rapidly released from the polymer hydrogel when the temperature reaches the temperature due to external heating, thereby suppressing the temperature rise. The flame retardant of the present invention does not generate harmful combustion gas, does not contain harmful substances at the time of disposal, and has environmentally friendly advantages such as being safe when returned to the ground.
Further, the flame retarding method of the present invention can make various forms of organic materials flame-retardant by compounding a polymer hydrogel or a dried polymer hydrogel with an existing organic material.

Claims (6)

親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルまたは該高分子ヒドロゲルの乾燥体からなる難燃剤。A flame retardant comprising a polymer hydrogel in which a hydrophilic organic polymer and a clay mineral form a three-dimensional network or a dried product of the polymer hydrogel. 前記高分子ヒドロゲルの30〜99質量%が水であり、且つ高分子ヒドロゲルを構成する不揮発分の1〜90質量%が粘土鉱物である請求項1に記載の難燃剤。The flame retardant according to claim 1, wherein 30 to 99% by mass of the polymer hydrogel is water, and 1 to 90% by mass of nonvolatile components constituting the polymer hydrogel is a clay mineral. 前記高分子ヒドロゲル乾燥体の水分含有率が30質量%以下であり、且つ高分子ヒドロゲル乾燥体を構成する不揮発分の5〜90質量%が粘土鉱物である請求項1に記載の難燃剤。2. The flame retardant according to claim 1, wherein the moisture content of the dried polymer hydrogel is 30% by mass or less, and 5 to 90% by mass of nonvolatile components constituting the dried polymer hydrogel are clay minerals. 3. 前記高分子ヒドロゲルを構成する親水性有機高分子がアミド基を有する親水性有機高分子である請求項1に記載の難燃剤。The flame retardant according to claim 1, wherein the hydrophilic organic polymer constituting the polymer hydrogel is a hydrophilic organic polymer having an amide group. 親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルまたはその乾燥体を、有機材料と混合、貼り合わせ又は被覆により複合化することを特徴とする有機材料の難燃化方法。Flame retardation of organic materials characterized by combining a polymer hydrogel formed by forming a three-dimensional network of a hydrophilic organic polymer and a clay mineral or a dried product thereof with an organic material, and bonding or laminating or coating the same. Method. 粘土鉱物、重合開始剤およびアミド基含有重合性モノマーを含む水溶液を有機材料に塗布または含浸させ、前記アミド基含有重合性モノマーを含む水溶液を重合させることにより、アミド基含有の親水性有機高分子と粘土鉱物が三次元網目を形成してなる高分子ヒドロゲルと有機材料とを複合化させることを特徴とする有機材料の難燃化方法。An aqueous solution containing a clay mineral, a polymerization initiator and an amide group-containing polymerizable monomer is applied or impregnated to an organic material, and the aqueous solution containing the amide group-containing polymerizable monomer is polymerized, whereby an amide group-containing hydrophilic organic polymer is obtained. A method for making an organic material flame-retardant, comprising: forming a composite of a polymer hydrogel formed by forming a three-dimensional network with a clay mineral and an organic material.
JP2002365098A 2002-12-17 2002-12-17 Flame retardant and flameproofing method Pending JP2004196897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365098A JP2004196897A (en) 2002-12-17 2002-12-17 Flame retardant and flameproofing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365098A JP2004196897A (en) 2002-12-17 2002-12-17 Flame retardant and flameproofing method

Publications (1)

Publication Number Publication Date
JP2004196897A true JP2004196897A (en) 2004-07-15

Family

ID=32762748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365098A Pending JP2004196897A (en) 2002-12-17 2002-12-17 Flame retardant and flameproofing method

Country Status (1)

Country Link
JP (1) JP2004196897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125762A (en) * 2005-11-02 2007-05-24 Kawamura Inst Of Chem Res Polymer gel laminate and its manufacturing method
CN110180508A (en) * 2019-04-26 2019-08-30 自然资源部第三海洋研究所 A kind of three-dimensional porous oil suction hydrogel and its preparation method and application
CN111549530A (en) * 2020-05-29 2020-08-18 南京信息工程大学 Fireproof fabric/hydrogel composite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125762A (en) * 2005-11-02 2007-05-24 Kawamura Inst Of Chem Res Polymer gel laminate and its manufacturing method
CN110180508A (en) * 2019-04-26 2019-08-30 自然资源部第三海洋研究所 A kind of three-dimensional porous oil suction hydrogel and its preparation method and application
CN111549530A (en) * 2020-05-29 2020-08-18 南京信息工程大学 Fireproof fabric/hydrogel composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH08208856A (en) Thermosetting composition based on polybutadiene and polyisoprene and its production
AU2009241418B2 (en) Gel composition, method for preparing the same, and impact resistant absorbing material using the same
WO2001036532A1 (en) Polyolefin resin composition
JP2002356574A (en) Foamable thermoplastic resin composition, thermoplastic resin foamed material and laminated composite
CN115369653A (en) Liquid (meth) acrylic syrup for impregnating a fibrous substrate, impregnation method and composite obtained
KR101431002B1 (en) Non-flammable coating composition for expanded polystyrene foam
KR101647153B1 (en) Aqueous pressure-sensitive adhesive composition, method for preparing thereof, pressure-sensitive adhesive sheet and wall paper comprising the same
KR101096797B1 (en) Expandable polystyrene bead and method for preparing the same
JP2004196897A (en) Flame retardant and flameproofing method
WO2002016479A1 (en) Sheet-form molding
JP2789705B2 (en) Coated plastic film
US10407550B2 (en) Microlattice structures including flame retardant materials and compositions and methods for forming the same
JP2001019966A (en) Flame retardant, flame retardant resin composition and molded product thereof
WO2014018521A1 (en) Improved use of alumina trihydrate with expandable graphite in composites
JP2006089712A (en) Noncombustible polyolefin resin composition
CA2925392C (en) Varnishes and prepregs and laminates made therefrom
JP2014224251A (en) Nonflammable hollow polymeric microspheres
JP4840747B2 (en) Organic-inorganic composite gel foam and method for producing the same
JP2002173558A (en) Polyolefin-based resin composition
EP3487932A1 (en) Improved sma resin formulation
JP2004160818A (en) Decorative sheet
CN114144500A (en) Liquid composition, fire-resistant layer, laminated structure comprising fire-resistant layer and fire-resistant method
JP2004149664A (en) Sheet-like formed body and decorative sheet
JP2003171569A (en) Fire retarding resin composition
JP5435835B2 (en) Polymer gel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311