JP2004195699A - Composite tool for hole processing - Google Patents

Composite tool for hole processing Download PDF

Info

Publication number
JP2004195699A
JP2004195699A JP2002364237A JP2002364237A JP2004195699A JP 2004195699 A JP2004195699 A JP 2004195699A JP 2002364237 A JP2002364237 A JP 2002364237A JP 2002364237 A JP2002364237 A JP 2002364237A JP 2004195699 A JP2004195699 A JP 2004195699A
Authority
JP
Japan
Prior art keywords
grinding wheel
core bit
hole
tool
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364237A
Other languages
Japanese (ja)
Inventor
Akihiro Koike
昭博 小池
Toshiyuki Tsukamoto
敏之 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2002364237A priority Critical patent/JP2004195699A/en
Publication of JP2004195699A publication Critical patent/JP2004195699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite tool for hole processing capable of freely regulating the depth of a hole and the depth of a spot facing corresponding to the situation of a work site and also having high durability, in a tool for processing a structure such as concrete or the like to form a spot facing. <P>SOLUTION: A core bit, wherein a diamond chip is bonded to one end of a cylindrical base metal, and a grinding wheel, wherein a diamond chip is bonded to the single side end surface of a disc-shaped substrate having a tapered attaching hole having a diameter larger than the outer diameter of the base metal, are used as a processing tool. A plurality of fixing members, which are formed by dividing a cylindrical member having a tapered outer peripheral surface, are inserted in the space between both of the core bit and the grinding wheel to be integrally fixed to both of them to obtain a composite tool for hole processing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、コンクリート、石材など硬質脆性材料の穴あけ加工用工具に関するものであり、特に座ぐり穴を有する段付きの穴を形成する加工用工具に関する。
【0002】
【従来の技術】
従来、コンクリートや石材等の硬質脆性材料の穴あけ加工には円筒状の台金の先端部に切刃となるダイヤモンドチップが設けられたコアビットなどの工具が使用される。このコアビットでは、一般に一定の径の穴を形成するのに使用されることが多い。またこの他に、座ぐり穴などを有する段付きの穴加工が行われることがある。例えば、コンクリート構造物に防音壁など他の物体を固定する場合などは、ボルトにより固定される。このボルト固定用の穴として段付きの穴の加工が必要とされる。この場合、最初にコアビットで所定の深さの穴を形成しておき、そのコアビットの直径より大きな研削ホイールなどに交換した後、所定の深さまで座ぐり穴を加工し、段付きの穴とする方法で行われる。
【0003】
上記の方法では、工具の付け替えが発生するため、非常に手間がかかり作業効率が悪くなる。工具の付け替えに要する工数と時間は全く付加価値を生まず、工期を長引かせるだけの無駄な作業である。そのため、コアビットと研削ホイールが一体になった工具を使用することが考えられる。
【0004】
このような工具として、コアビットと研削ホイールの台金を一体構造としてダイヤモンドチップを取り付けた工具がある(例えば、特許文献1参照。)。
また、コアビットと研削ホイールの台金をボルトにより固定する構造の工具がある(例えば、特許文献2参照。)。
さらに、コアビットの台金の外周に研削ホイールを取り付けるためのねじ構造となった取付部を設け、研削ホイールをねじ込んで取り付ける構造の工具がある(例えば、特許文献3参照。)。
【0005】
【特許文献1】
実開昭50−37175号公報
【特許文献2】
実開昭52−78193号公報
【特許文献3】
実開昭63−163913号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記の工具では必ずしも満足のいく加工ができるものではなかった。まず、台金が一体構造となった工具では、コアビットの作用面と研削ホイールの作用面との距離が固定されてしまい調節が不可能である。そのため、作業現場の状況に応じて穴の深さや座ぐりの深さを調節することができず、予め作業現場の状況に合わせた仕様の工具を準備する必要がある。また、コアビットと研削ホイールのいずれかのダイヤモンドチップが摩耗して使用不可能となった場合、もう一方のダイヤモンドチップは残っていても廃棄するしかなく、無駄を生じてしまう。
【0007】
また、ねじ構造となった取付部を有する構造の工具では、片方のダイヤモンドチップが摩耗してしまっても交換は可能であるが、複数の取付部を設けることはできないため、コアビットの作用面と研削ホイールの作用面との距離は固定されたままであり、上記同様に作業現場の状況に応じて穴の深さや座ぐりの深さを調節することができない。
【0008】
これに対し、ボルトにより台金を固定する工具では、ボルトの取付穴を複数設けておくことで、ある程度は作業現場の状況に応じて穴の深さや座ぐりの深さを調節することができ、片方のダイヤモンドチップが摩耗してしまっても交換は可能である。しかしながら、実際に加工する場合にはボルトの締め付け強度が不足したり、ボルト取付用の穴が変形したり、ボルト取付用の穴から破壊する可能性が出てくる。特に、近年ではコアビットの切味を向上すべくダイヤモンドチップを薄くする方向にあり、それにつれて台金の厚みも薄くなっているため、ボルト穴を台金に形成すると台金の強度が著しく低下する。しかも、ボルトで固定した場合には研削ホイールにかかる抵抗がボルトを通じてボルト穴に集中的にかかり、その穴から破壊する可能性が高くなってくる。
【0009】
以上のようなことから、本発明は、コアビットと研削ホイールとの着脱が容易で、双方の台金の耐久性も低下せず、作業現場の状況に応じて穴の深さや座ぐりの深さを自由に調節することができる穴加工用複合工具を提案するものである。
【0010】
【課題を解決するための手段】
本発明の穴加工用複合工具の特徴は、円筒状の台金の一端にダイヤモンドチップが接合されたコアビットと、
前記台金の外径より大きい径でテーパー状の取付穴を有する円盤状の基板の片側端面にダイヤモンドチップが接合された研削ホイールと、
円筒状で外周面がテーパー状となった部材の円周方向を分割した複数の固定部材とからなることである。
【0011】
すなわち、加工用工具として穴加工を行うコアビットとその外周に座ぐり穴加工を行う研削ホイールとを有し、これらの工具を固定するためにコアビットの外周と研削ホイールの取付穴との間に複数のテーパー状の固定部材を挿入した複合工具である。このような構造とすることで、コアビットに接合されたダイヤモンドチップの作用面と研削ホイールに接合されたダイヤモンドチップの作用面との距離を自由に設定して固定することができるので、加工する穴の深さや座ぐり穴の深さを自由に変えることが可能になる。また、コアビットと研削ホイールとの着脱も容易となり、しかもテーパー状の固定部材で固定されているので、加工時に研削ホイールにかかる抵抗により固定部材が締まる方向であり、緩んで外れることもない。加工時の抵抗により固定部材が締まる方向にするには、前記テーパー状の取付穴は、前記基板の前記ダイヤモンドチップが接合されていない端面から接合されている端面に向かって径が小さくなるようにしてやれば良い。なお、固定部材の形状を分割した複数の固定部材に代え、円筒状で外周面がテーパー状となった部材に円周方向に分割した切溝を設けた固定部材とすれば、コアビットと研削ホイールとの着脱がより容易になる。
【0012】
【発明の実施の形態】
本発明の穴加工用複合工具を図1、穴加工用複合工具を構成するものの内、コアビットを図3、研削ホイールを図4、固定部材を図5に示す。またこれらを取り付けたときの断面形状を図2に示す。本発明の穴加工用複合工具は、主にコアビット1、研削ホイール2、複数の固定部材3の3種類で構成される。
【0013】
図3に本発明の複合工具に用いるコアビットの一例を模式的に示す。コアビット1は、円筒状の台金5の一端にダイヤモンドチップ4がロー付けなどにより固定されていて、台金4の他端側には電動工具などに取り付けるための取付部6が設けられている。台金5は金属製のパイプなどを切削加工されたものであり、ダイヤモンドチップ4はダイヤモンド砥粒とメタルボンドなどの結合材を混合し、成形焼結したものである。
【0014】
図4に本発明の複合工具に用いる研削ホイールの一例を模式的に示す。研削ホイール2は、円盤状の基板8の片側端面にダイヤモンドチップ7をロー付けなどにより固定したものである。基板8の中心部には取付穴9が形成され、この取付穴9はダイヤモンドチップ7が接合された端面8aから接合されていない端面8bに向かうほど直径が大きくなるテーパー状の穴となっている。このテーパーの角度は工具の使用状況によって適正な範囲に調節すれば良いが、特に回転軸10に対する角度θ1が0.5〜5°の範囲が望ましい。このようにすることで、加工時に研削ホイールにかかる負荷により固定部材3が緩んで外れ易くなったり、所定の深さの座ぐり穴の加工がし難くなったり、また座ぐり穴の加工そのものも難しくなるという問題が起こらない。基板8の形状は、できるだけ軽量化するとともに固定部材3による固定を確実にするために、取付穴9に近い内周側の部分は厚みが厚くなっており、外周側では厚みを薄くした形状すなわち断面がT形のような形状になっている。ダイヤモンドチップ7は直方体状のものが放射状に接合され、その外周側端面7aは基板8の外周面8cより外側に突出しており、内周側端面7bは取付穴9より内側に突出している。なお、コアビット1と研削ホイール2を一体に固定したときに、前記の内周側端面7bから回転軸心までの距離はコアビット1に設けられたダイヤモンドチップ4の外周面4aから回転軸心までの距離と同じかやや小さくするのが好ましい。このようにすることで、ダイヤモンドチップ4とダイヤモンドチップ7の間に被削材の削り残しが発生せず、削り残した破片が詰まって回転を阻害するようなトラブルを防止できる。また、上記の例では基板8の片側端面にのみダイヤモンドチップ7を設けたものを例示したが、外周面8cにもダイヤモンドチップを設ければ、座ぐり穴の内面をより高精度に仕上げることが容易になる。
【0015】
図5に本発明の複合工具に用いる固定部材の一例を模式的に示す。固定部材3は、外周面3aがテーパー状になった円筒状の部材を円周方向を分割するようにその軸方向に切断して分割した形状のものからなる。分割する数は2分割や3分割など特に限定されないが、コアビット1と研削ホイール2を固定する際の作業性の観点からは、3分割か4分割が好ましく、分割された大きさはいずれもほぼ均等に同じ大きさであることが好ましい。内周面3bは一定の径であり、コアビット1の台金5の外周面の径と同じである。外周面3aのテーパーの角度θ2は上記研削ホイール2の取付穴9のテーパー角度θ1と同様の角度とする。
【0016】
また、前記研削ホイールの取付穴のテーパー面及び前記固定部材の外周面は、それぞれの軸方向に対し0.5〜5°の傾きとすることが好ましく、より好ましくは2〜3°とする。
【0017】
図6に固定部材の別の例を示す。この固定部材3は、外周面3aがテーパー状になった円筒状の部材に円周方向を分割するようにその軸方向に切溝を設けたものであり、軸と垂直方向の断面形状はC形になっている。このような形状とすれば、コアビット1と研削ホイール2を固定する際の作業性が向上する。
【0018】
以上のようなコアビット1と研削ホイール2を加工する穴及び座ぐり穴の深さに応じて、お互いに所定の位置関係になるように保持しておき、コアビット1の台金5の外周面と研削ホイール2の取付穴9との隙間に固定部材3を差し込むことにより図1及び図2に示すように一体に固定する。コアビット1の台金5の厚みが薄いと僅かに弾性を有するので、使用中に固定部材3が緩むことが無い。そのためには、台金5の厚みを0.8〜4.0mmとするのが好ましい。より好ましくは、1.5〜4.0mmとする。
【0019】
なお、固定部材3の外周面3a及び内周面3b、それにこれらの面と接する台金5の外周面及び取付穴9の表面は、表面粗さRaを1μm以上10μm以下としておくのが好ましい。このようにすれば、お互いの摩擦抵抗が高くなって固定部材3が外れにくくなるとともに、分解する際には相手を傷つけることなく容易に固定部材3を外すことができる。
【0020】
【実施例】
(実施例1)
本発明の穴加工用複合工具を用いてコンクリートの穴加工を行った。コアビット1の台金5の外周面の直径は31mm、内周面の直径は28mm、厚みは1.5mm、ダイヤモンドチップ4の外周面4aの直径は32mm、内周面4bの直径は26mmとした。研削ホイール2の基板8の外周面8cの直径は74mm、取付穴9の直径は端面8a側が36mmでテーパーの角度θ1は回転軸に対し0.3°、0.5°、2°、3°、5°、6°の6種類のものとした。この基板8に接合されたダイヤモンドチップ7は半径方向の長さが22mm、円周方向の長さが6mmで、内周側端面7bから回転軸心までの距離は16mmとした。固定部材3は、外径40mm、内径30mm、軸方向長さ25mmのパイプの外径を上記研削ホイール2の取付穴9のテーパー角度θ1と同じ角度のテーパーθ2が付くように切削し、細くなった側の外径が36.15mmとなるように加工した。その後、刃厚2mmの円板カッターにより軸方向に3等分に切断し、図5に示すような形状の固定部材3を製作した。なお、コアビット1の台金5の外周面、研削ホイール2の取付穴9の面、固定部材3の外周面3a、及び内周面3bの面粗さは、Raが1μmと10μmのものをそれぞれ製作した。
【0021】
上記のコアビットを用いて、コンクリートの穴加工の試験を行った。コアビットで加工する穴の深さは300mm、研削ホイールで加工する座ぐり穴の深さは60mmとした。テーパーの角度や面粗さが異なるいずれの仕様の工具においても、コアビットと研削ホイールを一体化し電動工具に取り付けるのに30〜40秒、そして穴加工及び座ぐり加工を一度に行い、その加工に平均5分14秒〜5分30秒を要し、合計で5分44秒〜6分10秒を要した。そして、加工を継続した結果、いずれの仕様のものもダイヤモンドチップが完全に無くなるまで台金や基板の破損は見られず、最後まで使用することができた。ただし、テーパー角度θ1及びθ2が6°のものは途中で一度固定部材3をたたき込んでコアビット1と研削ホイール2の固定を確実にしてやる必要があり、このために15秒程度余分に時間を要した。また、テーパー角度θ1及びθ2が0.3°のものは使用中に固定部材3が強く締まり分解する際に10秒程度余分に時間を要した。
【0022】
(実施例2)
次にコアビット1の台金の厚みを変えたものを製作し、比較試験を行った。コアビット1の台金5の外周面の直径は31mm、ダイヤモンドチップ4の外周面の直径は32mmで実施例1と同様にしておき、ダイヤモンドチップ4の厚みはいずれのものも台金5の厚みより1.5mm厚くなるようにして、厚みの異なるコアビット1を製作した。台金5の厚みは、0.6、0.8、1.5、3.0、4.0、5.0mmの6種類のものとした。研削ホイール2や固定部材3の仕様は実施例1と同じであり、テーパー角度θ1及びθ2は2°とした。
【0023】
上記のコアビットを用いて、コンクリートの穴加工の試験を行った。試験方法は実施例1と同様である。その結果、コアビットと研削ホイールを一体化し電動工具に取り付けるのに30〜40秒であったが、穴加工及び座ぐり加工を行う時間は、台金5の厚みが4.0mm以下のものはすべて5分30秒以内であったが、5.0mmのものは6分10秒を要した。これは台金5の厚みが厚くなり必然的にダイヤモンドチップ4の厚みが増したために抵抗が大きくなって時間がかかったと考えられる。また、回転速度が低下することによる抵抗も大きくなり、途中で固定部材3をたたき込む必要が生じた。また、台金5の厚みが0.6mm及び0.8mmのものは、試験を繰り返すにつれてコアビット1に僅かに回転振れが発生しており、厚みが0.6mmのものでは試験後に台金5が少し変形しているのが確認された。
【0024】
(比較例1)
比較例として、コアビット1と研削ホイール2とを一体化せず、それぞれの工具にて穴加工と座ぐり加工を行った。工具の仕様は実施例1と同様である。その結果、コアビット1の取付に21秒、穴加工に5分10秒、コアビット1の取り外しに32秒、研削ホイール2の取り付けに21秒、座ぐり加工に1分25秒を要し、合計で7分37秒を要した。
【0025】
(比較例2)
実施例1とほぼ同形状のコアビット1及び研削ホイール2をボルトによる固定を行ったもので試験を行った。実施例1と異なる点は、研削ホイール2の取付穴9をテーパーの無い面とし、その直径はコアビット1の台金5の外周面の直径と同様の31mmにした点、及び研削ホイール2からコアビット1の台金5に貫通するボルト固定穴を3箇所設けた点の2点である。この工具を電動工具に取り付けるのに20秒、そして穴加工及び座ぐり加工を一度に行い、その加工に平均5分28秒を要し、合計で5分48秒を要した。能率については、本発明より僅かに良かったが、ダイヤモンドチップが約1/2摩耗した時点でコアビット1の台金5に設けられたボルト穴が変形し始め、コアビット1と研削ホイール2との固定が不安定になって、回転振れが出始め、最終的には使用不可能となった。
【0026】
【発明の効果】
以上説明したように、本発明の穴加工用複合工具は、コアビットに対して研削ホイールの位置を自由に設定して固定することができ、それぞれの加工穴に応じた深さの穴加工及び座ぐり加工を一度に行うことができる。そして、固定部材が分割されているので容易に固定や分解ができ、それに要する時間も短いので、高能率の作業が可能になる。また、コアビットの台金の厚みが薄くなっても固定用の穴などを設ける必要がなく、台金が破壊するのを防止できる。さらに、コアビットと研削ホイールのどちらかのダイヤモンドチップが先に摩耗してしまっても、摩耗した方の工具のみ交換すれば使用できるので、工具の無駄も無く使用できる。
【図面の簡単な説明】
【図1】本発明の穴加工用複合工具の一例を示す模式図で、(a)は正面図、(b)は底面図。
【図2】本発明の穴加工用複合工具を組んだ状態を示す断面図。
【図3】本発明に使われるコアビットの一例を示す模式図で、(a)は正面図、(b)は底面図。
【図4】本発明に使われる研削ホイールの一例を示す模式図で、(a)は底面図、(b)は(a)のA−A断面図。
【図5】本発明に使われる固定部材の一例を示す模式図で、(a)は平面図、(b)は(a)のB−B断面図。
【図6】本発明に使われる固定部材の別の例を示す模式図で、(a)は平面図、(b)は(a)のC−C断面図。
【符号の説明】
1 コアビット
2 研削ホイール
3 固定部材
3a 固定部材の外周面
3b 固定部材の内周面
4 ダイヤモンドチップ
4a ダイヤモンドチップの外周面
4b ダイヤモンドチップの内周面
5 台金
6 取付部
7 ダイヤモンドチップ
7a ダイヤモンドチップの外周側端面
7b ダイヤモンドチップの内周側端面
8 基板
8a ダイヤモンドチップが接合された端面
8b ダイヤモンドチップが接合されない端面
8c 基板の外周面
9 取付穴
10 回転軸
θ1 取付穴のテーパー角度
θ2 固定部材外周面のテーパー角度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tool for drilling a hard brittle material such as concrete and stone, and more particularly to a tool for forming a stepped hole having a counterbore.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a tool such as a core bit provided with a diamond tip serving as a cutting blade at the tip of a cylindrical base metal is used for drilling a hard brittle material such as concrete or stone. The core bit is often used to form a hole having a constant diameter. In addition, a stepped hole having a counterbore or the like may be formed. For example, when another object such as a soundproof wall is fixed to a concrete structure, it is fixed by bolts. Processing of a stepped hole is required as a hole for fixing the bolt. In this case, a hole of a predetermined depth is first formed with a core bit, and after replacing the grinding wheel or the like with a diameter larger than the diameter of the core bit, a counterbore hole is machined to a predetermined depth to form a stepped hole. Done in a way.
[0003]
In the above-mentioned method, since the replacement of the tool occurs, it takes much time and labor, and the working efficiency deteriorates. The man-hours and time required for changing tools do not add value at all, and are wasteful work that prolongs the construction period. Therefore, it is conceivable to use a tool in which the core bit and the grinding wheel are integrated.
[0004]
As such a tool, there is a tool in which a core bit and a base of a grinding wheel are integrally formed and a diamond tip is attached (for example, see Patent Document 1).
Further, there is a tool having a structure in which a core bit and a base of a grinding wheel are fixed by bolts (for example, see Patent Document 2).
Further, there is a tool having a mounting portion having a screw structure for mounting a grinding wheel on the outer periphery of a base metal of a core bit and screwing and mounting the grinding wheel (for example, see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Utility Model Publication No. 50-37175 [Patent Document 2]
Japanese Utility Model Publication No. 52-78193 [Patent Document 3]
JP-A-63-163913 [0006]
[Problems to be solved by the invention]
However, the above-mentioned tools cannot always perform satisfactory processing. First, in a tool having an integrated base, the distance between the working surface of the core bit and the working surface of the grinding wheel is fixed and cannot be adjusted. For this reason, the depth of the hole and the depth of the counterbore cannot be adjusted in accordance with the situation at the work site, and it is necessary to prepare a tool having specifications in advance according to the situation at the work site. In addition, when one of the diamond bits of the core bit and the grinding wheel becomes unusable due to wear, even if the other diamond tip remains, it must be discarded, resulting in waste.
[0007]
In addition, in the case of a tool having a screw-shaped mounting portion, even if one of the diamond tips becomes worn, it can be replaced.However, since a plurality of mounting portions cannot be provided, the working surface of the core bit and The distance from the working surface of the grinding wheel remains fixed, and the depth of the hole and the counterbore cannot be adjusted according to the situation at the work site as described above.
[0008]
On the other hand, with a tool that fixes the base metal with bolts, by providing multiple bolt mounting holes, it is possible to adjust the depth of the holes and the counterbore depth to some extent according to the situation at the work site, Even if one of the diamond tips becomes worn, it can be replaced. However, when actually working, there is a possibility that the tightening strength of the bolt is insufficient, the bolt mounting hole is deformed, and the bolt mounting hole is broken. In particular, in recent years, diamond chips have been reduced in thickness in order to improve the sharpness of the core bit, and the thickness of the base metal has also become thinner accordingly. Therefore, forming bolt holes in the base metal significantly reduces the strength of the base metal. . Moreover, when the bolt is fixed, the resistance applied to the grinding wheel is concentrated on the bolt hole through the bolt, and the possibility of breakage from the hole increases.
[0009]
From the above, according to the present invention, the attachment and detachment of the core bit and the grinding wheel are easy, the durability of both base metal does not decrease, and the depth of the hole and the depth of the counterbore are adjusted according to the situation of the work site. The present invention proposes a composite tool for drilling that can be freely adjusted.
[0010]
[Means for Solving the Problems]
The feature of the composite tool for drilling of the present invention is a core bit in which a diamond tip is joined to one end of a cylindrical base metal,
A grinding wheel in which diamond chips are bonded to one end surface of a disk-shaped substrate having a tapered mounting hole with a diameter larger than the outer diameter of the base metal,
It is composed of a plurality of fixing members obtained by dividing the circumferential direction of a cylindrical member whose outer peripheral surface is tapered.
[0011]
That is, it has a core bit that performs hole drilling as a processing tool and a grinding wheel that performs counterbore drilling on its outer circumference, and a plurality of grinding wheels are provided between the outer circumference of the core bit and the mounting hole of the grinding wheel to fix these tools. Is a composite tool into which the tapered fixing member is inserted. With such a structure, the distance between the working surface of the diamond chip joined to the core bit and the working surface of the diamond chip joined to the grinding wheel can be freely set and fixed. And the depth of the counterbore can be freely changed. In addition, since the core bit and the grinding wheel can be easily attached and detached and fixed by the tapered fixing member, the fixing member is tightened by resistance applied to the grinding wheel during processing, and does not come loose. In the direction in which the fixing member is tightened by resistance during processing, the tapered mounting hole is formed such that the diameter decreases from the end face of the substrate where the diamond chip is not joined to the joined end face. Do it. In addition, if instead of a plurality of fixing members in which the shape of the fixing member is divided, instead of a cylindrical member having a tapered outer peripheral surface provided with a cutting groove divided in the circumferential direction, a core bit and a grinding wheel may be used. It becomes easier to attach and detach with.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the composite tool for drilling of the present invention, FIG. 3 shows a core bit, FIG. 4 shows a grinding wheel, and FIG. 5 shows a fixing member. FIG. 2 shows a cross-sectional shape when these are attached. The composite tool for drilling according to the present invention is mainly composed of three types: a core bit 1, a grinding wheel 2, and a plurality of fixing members 3.
[0013]
FIG. 3 schematically shows an example of a core bit used in the composite tool of the present invention. In the core bit 1, a diamond tip 4 is fixed to one end of a cylindrical base metal 5 by brazing or the like, and a mounting portion 6 for mounting to a power tool or the like is provided on the other end side of the base metal 4. . The base metal 5 is formed by cutting a metal pipe or the like, and the diamond tip 4 is formed by mixing diamond abrasive grains and a binder such as a metal bond and molding and sintering the mixture.
[0014]
FIG. 4 schematically shows an example of a grinding wheel used for the composite tool of the present invention. The grinding wheel 2 has a diamond-shaped chip 7 fixed to one end face of a disk-shaped substrate 8 by brazing or the like. A mounting hole 9 is formed in the center of the substrate 8, and the mounting hole 9 is a tapered hole whose diameter increases from the end face 8a where the diamond chip 7 is bonded to the end face 8b where it is not bonded. . The angle of the taper may be adjusted to an appropriate range depending on the use condition of the tool, but it is particularly preferable that the angle θ1 with respect to the rotating shaft 10 is in the range of 0.5 to 5 °. By doing so, the fixing member 3 is loosened and easily detached due to a load applied to the grinding wheel at the time of machining, it becomes difficult to machine a counterbore hole having a predetermined depth, and the machining of the counterbore hole itself is also performed. The problem of becoming difficult does not occur. In order to reduce the weight as much as possible and secure the fixing by the fixing member 3, the shape of the substrate 8 is thicker on the inner peripheral side near the mounting hole 9 and thinner on the outer peripheral side. The cross section has a T-shaped shape. The diamond chip 7 has a rectangular parallelepiped shape and is radially joined. The outer peripheral end face 7a protrudes outside the outer peripheral face 8c of the substrate 8, and the inner peripheral end face 7b protrudes inward from the mounting hole 9. When the core bit 1 and the grinding wheel 2 are integrally fixed, the distance from the inner peripheral end surface 7b to the rotation axis is from the outer peripheral surface 4a of the diamond chip 4 provided on the core bit 1 to the rotation axis. It is preferable that the distance is equal to or slightly smaller than the distance. In this way, a problem in which uncut portions of the work material do not occur between the diamond tip 4 and the diamond tip 7, and a problem in which the uncut pieces are blocked and rotation is prevented can be prevented. Further, in the above example, the diamond chip 7 is provided only on one end surface of the substrate 8, but if the diamond chip is also provided on the outer peripheral surface 8c, the inner surface of the counterbore hole can be finished with higher precision. It will be easier.
[0015]
FIG. 5 schematically shows an example of a fixing member used for the composite tool of the present invention. The fixing member 3 has a shape in which a cylindrical member whose outer peripheral surface 3a is tapered is cut in the axial direction so as to divide the circumferential direction and is divided. The number of divisions is not particularly limited, such as two divisions or three divisions, but from the viewpoint of workability when fixing the core bit 1 and the grinding wheel 2, three divisions or four divisions are preferable. It is preferable that they have the same size. The inner peripheral surface 3b has a constant diameter, which is the same as the diameter of the outer peripheral surface of the base metal 5 of the core bit 1. The taper angle θ2 of the outer peripheral surface 3a is the same as the taper angle θ1 of the mounting hole 9 of the grinding wheel 2.
[0016]
Further, the tapered surface of the mounting hole of the grinding wheel and the outer peripheral surface of the fixing member are preferably inclined at 0.5 to 5 degrees with respect to their respective axial directions, more preferably at 2 to 3 degrees.
[0017]
FIG. 6 shows another example of the fixing member. The fixing member 3 is provided with a cutout in the axial direction so as to divide the circumferential direction into a cylindrical member having a tapered outer peripheral surface 3a. It is shaped. With such a shape, workability when fixing the core bit 1 and the grinding wheel 2 is improved.
[0018]
According to the depth of the hole for machining the core bit 1 and the grinding wheel 2 and the depth of the counterbore as described above, the core bit 1 and the counterbore are held so as to have a predetermined positional relationship. By inserting the fixing member 3 into a gap between the grinding wheel 2 and the mounting hole 9, the grinding wheel 2 is integrally fixed as shown in FIGS. 1 and 2. When the base metal 5 of the core bit 1 is thin, the base member 5 has a slight elasticity, so that the fixing member 3 does not loosen during use. For this purpose, the thickness of the base metal 5 is preferably set to 0.8 to 4.0 mm. More preferably, it is set to 1.5 to 4.0 mm.
[0019]
It is preferable that the outer surface 3a and the inner surface 3b of the fixing member 3 and the outer surface of the base metal 5 and the surface of the mounting hole 9 which are in contact with these surfaces have a surface roughness Ra of 1 μm or more and 10 μm or less. By doing so, the frictional resistance between the members increases, and the fixing member 3 is hardly detached, and when disassembled, the fixing member 3 can be easily detached without damaging the partner.
[0020]
【Example】
(Example 1)
A hole was drilled in concrete using the composite tool for hole drilling of the present invention. The diameter of the outer peripheral surface of the base metal 5 of the core bit 1 was 31 mm, the diameter of the inner peripheral surface was 28 mm, the thickness was 1.5 mm, the diameter of the outer peripheral surface 4a of the diamond chip 4 was 32 mm, and the diameter of the inner peripheral surface 4b was 26 mm. . The diameter of the outer peripheral surface 8c of the substrate 8 of the grinding wheel 2 is 74 mm, the diameter of the mounting hole 9 is 36 mm on the end surface 8a side, and the taper angle θ1 is 0.3 °, 0.5 °, 2 °, 3 ° with respect to the rotation axis. , 5 ° and 6 °. The diamond chip 7 bonded to the substrate 8 had a length in the radial direction of 22 mm, a length in the circumferential direction of 6 mm, and a distance from the inner peripheral end face 7b to the axis of rotation was 16 mm. The fixing member 3 is formed by cutting an outer diameter of a pipe having an outer diameter of 40 mm, an inner diameter of 30 mm, and an axial length of 25 mm so that a taper θ2 having the same angle as the taper angle θ1 of the mounting hole 9 of the grinding wheel 2 is formed. It processed so that the outer diameter of the other side might be 36.15 mm. Thereafter, the plate was cut into three equal parts in the axial direction by a disk cutter having a blade thickness of 2 mm, thereby producing a fixing member 3 having a shape as shown in FIG. The surface roughness of the base metal 5 of the core bit 1, the surface of the mounting hole 9 of the grinding wheel 2, the surface 3 a of the fixing member 3, and the surface roughness of the inner surface 3 b are Ra 1 μm and 10 μm, respectively. Made.
[0021]
Using the above-mentioned core bit, a test of drilling a hole in concrete was performed. The depth of the hole processed by the core bit was 300 mm, and the depth of the counterbore hole processed by the grinding wheel was 60 mm. For tools of any specifications with different taper angles and surface roughness, it takes 30 to 40 seconds to integrate the core bit and the grinding wheel and attach it to the electric tool, and perform hole drilling and counterboring at once, An average of 5 minutes 14 seconds to 5 minutes 30 seconds was required, and a total of 5 minutes 44 seconds to 6 minutes 10 seconds was required. Then, as a result of continuing the processing, no damage was found on the base metal or the substrate until the diamond chip completely disappeared, and all of the specifications could be used until the end. However, when the taper angles θ1 and θ2 are 6 °, it is necessary to strike the fixing member 3 once in the middle to securely fix the core bit 1 and the grinding wheel 2, and it takes about 15 seconds extra time for this. . When the taper angles θ1 and θ2 are 0.3 °, the fixing member 3 is strongly tightened and disassembled during use, requiring about 10 seconds extra time.
[0022]
(Example 2)
Next, a core bit 1 having a different base metal thickness was manufactured and subjected to a comparative test. The diameter of the outer peripheral surface of the base metal 5 of the core bit 1 is 31 mm, and the diameter of the outer peripheral surface of the diamond tip 4 is 32 mm, which is the same as that of the first embodiment. The core bits 1 having different thicknesses were manufactured so as to have a thickness of 1.5 mm. The thickness of the base metal 5 was six types of 0.6, 0.8, 1.5, 3.0, 4.0, and 5.0 mm. The specifications of the grinding wheel 2 and the fixing member 3 were the same as those in Example 1, and the taper angles θ1 and θ2 were 2 °.
[0023]
Using the above-mentioned core bit, a test of drilling a hole in concrete was performed. The test method is the same as in Example 1. As a result, it took 30 to 40 seconds to integrate the core bit and the grinding wheel and attach it to the power tool. However, the time for performing the hole machining and the counterboring is not limited to the case where the thickness of the base metal 5 is 4.0 mm or less. It took less than 5 minutes and 30 seconds, but the one with 5.0 mm required 6 minutes and 10 seconds. This is thought to be because the thickness of the base metal 5 was increased and the thickness of the diamond tip 4 was inevitably increased, so that the resistance was increased and it took time. In addition, the resistance due to the decrease in the rotation speed increases, and it becomes necessary to strike the fixing member 3 halfway. When the base metal 5 has a thickness of 0.6 mm and 0.8 mm, the core bit 1 slightly rotates while the test is repeated, and when the base metal 5 has a thickness of 0.6 mm, the base metal 5 It was confirmed that it was slightly deformed.
[0024]
(Comparative Example 1)
As a comparative example, the core bit 1 and the grinding wheel 2 were not integrated, and a hole and a counterbore were formed with each tool. The specifications of the tool are the same as in the first embodiment. As a result, it took 21 seconds to attach the core bit 1, 5 minutes and 10 seconds to drill the hole, 32 seconds to remove the core bit 1, 21 seconds to attach the grinding wheel 2, and 1 minute and 25 seconds to counterbore machining. It took 7 minutes and 37 seconds.
[0025]
(Comparative Example 2)
A test was conducted using a core bit 1 and a grinding wheel 2 having substantially the same shape as in Example 1 and fixed with bolts. The difference from the first embodiment is that the mounting hole 9 of the grinding wheel 2 is a surface having no taper, the diameter of which is 31 mm, which is the same as the diameter of the outer peripheral surface of the base metal 5 of the core bit 1, and that the core bit There are two points where three bolt fixing holes penetrating through one base metal 5 are provided. It took 20 seconds to attach this tool to the power tool, and drilling and counterboring were performed at once, and the processing required an average of 5 minutes and 28 seconds, and a total of 5 minutes and 48 seconds. Although the efficiency was slightly better than that of the present invention, the bolt hole provided in the base metal 5 of the core bit 1 began to deform when the diamond tip was worn by about 2, and the core bit 1 and the grinding wheel 2 were fixed. Became unstable and started to run out, eventually becoming unusable.
[0026]
【The invention's effect】
As described above, the hole drilling composite tool of the present invention can freely set and fix the position of the grinding wheel with respect to the core bit, and can drill and drill a hole having a depth corresponding to each drilled hole. Boring can be performed at once. Since the fixing member is divided, the fixing member can be easily fixed and disassembled, and the time required for the fixing is short. Further, even if the thickness of the base metal of the core bit is reduced, it is not necessary to provide a fixing hole or the like, so that the base metal can be prevented from being broken. Furthermore, even if the diamond tip of either the core bit or the grinding wheel is worn first, it can be used by replacing only the worn tool, so that the tool can be used without waste.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a composite tool for boring according to the present invention, wherein (a) is a front view and (b) is a bottom view.
FIG. 2 is a cross-sectional view showing a state in which the composite tool for boring according to the present invention is assembled.
3A and 3B are schematic diagrams showing an example of a core bit used in the present invention, wherein FIG. 3A is a front view and FIG. 3B is a bottom view.
4A and 4B are schematic views showing an example of a grinding wheel used in the present invention, wherein FIG. 4A is a bottom view, and FIG. 4B is a cross-sectional view taken along line AA of FIG.
5A and 5B are schematic views illustrating an example of a fixing member used in the present invention, wherein FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along line BB of FIG.
6A and 6B are schematic views showing another example of a fixing member used in the present invention, wherein FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along the line CC of FIG.
[Explanation of symbols]
Reference Signs List 1 core bit 2 grinding wheel 3 fixing member 3a outer peripheral surface 3b of fixing member inner peripheral surface 4 of fixing member diamond chip 4a outer peripheral surface 4b of diamond chip inner peripheral surface of diamond chip 5 base metal 6 mounting portion 7 diamond chip 7a of diamond chip Outer end surface 7b Inner end surface 8 of diamond chip Substrate 8a End surface 8b to which diamond chip is joined End surface 8c to which diamond chip is not joined Outer surface 9 of substrate 9 Mounting hole 10 Rotation axis θ1 Taper angle θ2 of mounting hole Outer surface of fixing member Taper angle

Claims (3)

円筒状の台金の一端にダイヤモンドチップが接合されたコアビットと、
前記台金の外径より大きい径でテーパー状の取付穴を有する円盤状の基板の片側端面にダイヤモンドチップが接合された研削ホイールと、
円筒状で外周面がテーパー状となった部材の円周方向を分割した複数の固定部材とからなる穴加工用複合工具。
A core bit in which a diamond tip is joined to one end of a cylindrical base metal,
A grinding wheel in which diamond chips are bonded to one end surface of a disk-shaped substrate having a tapered mounting hole with a diameter larger than the outer diameter of the base metal,
A composite tool for drilling comprising a plurality of fixing members obtained by dividing a circumferential direction of a cylindrical member having a tapered outer peripheral surface.
前記研削ホイールの取付穴のテーパー面及び前記固定部材の外周面は、それぞれの軸方向に対し0.5〜5°の傾きであることを特徴とする請求項1記載の穴加工用複合工具。The composite tool for drilling according to claim 1, wherein the tapered surface of the mounting hole of the grinding wheel and the outer peripheral surface of the fixing member have an inclination of 0.5 to 5 degrees with respect to their respective axial directions. 前記分割した複数の固定部材に代え、円筒状で外周面がテーパー状となった部材に円周方向を分割した切溝を設けた固定部材としたことを特徴とする請求項1または2記載の穴加工用複合工具。The fixing member according to claim 1 or 2, wherein the fixing member is a member having a cylindrical and tapered outer peripheral surface provided with a cut groove divided in a circumferential direction, instead of the plurality of divided fixing members. Composite tool for drilling holes.
JP2002364237A 2002-12-16 2002-12-16 Composite tool for hole processing Pending JP2004195699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364237A JP2004195699A (en) 2002-12-16 2002-12-16 Composite tool for hole processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364237A JP2004195699A (en) 2002-12-16 2002-12-16 Composite tool for hole processing

Publications (1)

Publication Number Publication Date
JP2004195699A true JP2004195699A (en) 2004-07-15

Family

ID=32762162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364237A Pending JP2004195699A (en) 2002-12-16 2002-12-16 Composite tool for hole processing

Country Status (1)

Country Link
JP (1) JP2004195699A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231585A (en) * 2010-04-30 2011-11-17 Dow Chemical Company Heat insulating structure, fastener used therein, construction method therefor, and drill used for constructing the insulating structure
JP2013241770A (en) * 2012-05-18 2013-12-05 Paru Unit Kk Tile peeling prevention bolt and replacement blade of drill
JP2015058484A (en) * 2013-09-17 2015-03-30 トヨタ自動車株式会社 Tool holder
CN108789871A (en) * 2018-06-15 2018-11-13 蚌埠朝阳玻璃机械有限公司 A kind of mobile boring assemblies for special-shaped glass drilling machine
CN108789872A (en) * 2018-06-15 2018-11-13 蚌埠朝阳玻璃机械有限公司 A kind of glass drilling machine
CN110154246A (en) * 2019-06-03 2019-08-23 惠州市西顿光电有限公司 A kind of combined drill bit assembly
EP4360785A1 (en) * 2022-10-28 2024-05-01 Kaiser GmbH & Co. KG Core drill attachment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231585A (en) * 2010-04-30 2011-11-17 Dow Chemical Company Heat insulating structure, fastener used therein, construction method therefor, and drill used for constructing the insulating structure
JP2013241770A (en) * 2012-05-18 2013-12-05 Paru Unit Kk Tile peeling prevention bolt and replacement blade of drill
JP2015058484A (en) * 2013-09-17 2015-03-30 トヨタ自動車株式会社 Tool holder
CN108789871A (en) * 2018-06-15 2018-11-13 蚌埠朝阳玻璃机械有限公司 A kind of mobile boring assemblies for special-shaped glass drilling machine
CN108789872A (en) * 2018-06-15 2018-11-13 蚌埠朝阳玻璃机械有限公司 A kind of glass drilling machine
CN110154246A (en) * 2019-06-03 2019-08-23 惠州市西顿光电有限公司 A kind of combined drill bit assembly
EP4360785A1 (en) * 2022-10-28 2024-05-01 Kaiser GmbH & Co. KG Core drill attachment

Similar Documents

Publication Publication Date Title
US20050188792A1 (en) Disk cutter
JP7165658B2 (en) Roughening tool and method for roughening cylindrical surfaces
US20070274790A1 (en) Milling cutter
US20150093204A1 (en) Rotary cutting tool
JP2006198767A (en) Milling cutter tool
JPH08155722A (en) T-groove milling cutter
JP2008264979A (en) Rotary cutting tool for drilling
JP2004195699A (en) Composite tool for hole processing
JPH0373210A (en) High hardness cutting tool and manufacture and use thereof
US20100329805A1 (en) Diamond tool
JP4911713B2 (en) Module coupled to tool holder
JP5914446B2 (en) Cutting tool and workpiece machining method using the same
CN105750596B (en) drill bit
JP2006205327A (en) Cemented carbide blade grinding tool and method of manufacturing cemented carbide tool
JP4545100B2 (en) Compound tool
JP2003251512A (en) Diamond tool and hole drilling method by use of the same
JP2006150535A (en) Cutting tool
JP5893960B2 (en) Cutting tool for internal diameter machining with replaceable edge
JP2008229764A (en) Rotary tool and machining method
JP2016155178A (en) Rotary tool and manufacturing method thereof
JP2008062620A (en) Drill bit
JP2008142795A (en) Saw blade
CN217802577U (en) Saw blade for cutting diamond
JP2007038310A (en) Cutting tool
JPH0911038A (en) Reamer