JP2004195279A - Catalyst filling method - Google Patents

Catalyst filling method Download PDF

Info

Publication number
JP2004195279A
JP2004195279A JP2002363352A JP2002363352A JP2004195279A JP 2004195279 A JP2004195279 A JP 2004195279A JP 2002363352 A JP2002363352 A JP 2002363352A JP 2002363352 A JP2002363352 A JP 2002363352A JP 2004195279 A JP2004195279 A JP 2004195279A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
chain
filling
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363352A
Other languages
Japanese (ja)
Inventor
Shuhei Yada
修平 矢田
Masayasu Goriki
正康 強力
Hirochika Hosaka
浩親 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002363352A priority Critical patent/JP2004195279A/en
Publication of JP2004195279A publication Critical patent/JP2004195279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To fill a fixed bed multi-tube type reactor with a catalyst while minimizing the powdering and collapse of the catalyst at the time of filling without exerting influence on a catalyst filling work time when the reaction tubes of the reactor are filled with the catalyst. <P>SOLUTION: In this catalyst filling method, the reaction tubes of the fixed bed multi-tube type reactor are filled with the catalyst in such a state that a chain-like substance is inserted into each of the reaction tubes so that the lower end thereof is located at a position above the upper end of a catalyst bed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、触媒を固定床多管型反応器の反応管へ充填する際に、触媒充填作業時間に影響を与えることなく、充填触媒時のブロッキング、粉化、崩壊を最小限に押さえて反応器に充填する方法に関するものである。
【0002】
【従来の技術】
一般に、アクリル酸又はメタクリル酸(以下、まとめて「(メタ)アクリル酸」と記す)生成用触媒を固定床多管型反応器の反応管に充填するには反応器上部から投入落下させて充填する方法が採られている。しかし、この方法は触媒の投入落下時の物理的衝撃により触媒が粉化、崩壊することがある。これを防ぐために触媒自体に有る程度以上の機械的強度を持たせるか、もしくは充填の方法に何らかの工夫を施す必要がある。
【0003】
触媒の機械的強度は、触媒の成型圧力を調整したり、成型又は担持の操作を工夫することで有る程度は改善される。しかし、この様な手法で機械的強度を高くした触媒は、概して触媒の持つ比表面積が小さくなったり、反応に有効な活性点の数が減少したり、また、反応に有効な細孔分布が制御できないことから、目的生成物の収率が低くなり実用的でないという問題点があった。
【0004】
また触媒充填時の触媒の粉化、崩壊を抑制する方法としては、以下の方法が提案されている。
【0005】
触媒充填時の触媒の粉化、崩壊を抑制する方法として、その触媒表面上に解重合性を有する有機高分子化合物でコーティングすることにより触媒の機械的強度を向上する方法が知られている(例えば、特許文献1参照)。
【0006】
また、触媒を反応器上部より落下充填する場合、反応器内に実質的に触媒の落下を妨げない形状及び太さを有するひも状物質を介在させる方法が知られている(例えば、特許文献2参照)。
【0007】
また、触媒を落下充填するに先だってドライアイスを充填した後触媒を充填し、次いでドライアイスを気化除去する方法が知られている(例えば、特許文献3参照)。
【0008】
また、反応器上部より触媒を充填するに際し、まず該反応管内に液状物を充填した後、触媒を充填し、次いで該液状物質を除去する方法が知られている(例えば、特許文献4参照)。
【0009】
しかし、触媒をコーティングして触媒の機械的強度を高める方法においては、すべての触媒に対して均一にコーティングすることは難しく、全体的に触媒強度が上がっても触媒強度にばらつきがあり、触媒の粉化、崩壊の減少には多少の効果があるものの、触媒製造時にコーティングするという工程が必要で満足のいく方法とは言い難い。
【0010】
触媒充填時に、ひも状物質を介在する方法においては、触媒の粉化、崩壊の防止には効果は見られるものの、ひも状物質を、触媒を充填しながら上部に引き上げる作業が必要で、充填作業時間が長くなる等の影響は避けられなく、満足いくものとは言い難い。
【0011】
触媒充填前に、ドライアイスや液状物質を予め充填しておく方法においては、触媒充填後の後処理に手間がかかることや取り扱う物質によっては作業環境が悪化することがあるため、工業的に満足のいく方法とは言い難い。
【0012】
【特許文献1】
特許第2852712号明細書
【特許文献2】
特開平5−31351号公報
【特許文献3】
特開平10−277381号公報
【特許文献4】
特開平9−141084号公報
【0013】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたものであり、機械的強度の高くない触媒の粉化、崩壊を最小限に押さえ、且つ触媒充填作業時間に影響を与えないで固定床多管型反応器の反応管に触媒を充填する方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するため、各種の検討を行った結果、成型触媒又は担持触媒を固定床多管型反応器の反応管上部から落下充填する際に、反応管に鎖状物質を介在させ、触媒の落下速度を落とすことで、触媒充填作業時間に影響を与えることなく、ブロッキングを抑制し、粉化、崩壊を最小限にできることを見出した。
【0015】
すなわち本発明は、以下の通りである。
(1)触媒を固定床多管型反応器の反応管に落下充填させる方法であって、鎖状物質をその下端が触媒層の上端よりも上方に位置するように前記反応管内に介在させて、前記触媒を固定床多管型反応器の反応管に充填させることを特徴とする触媒充填方法。
(2)前記触媒は、成型触媒又は担持触媒である(1)に記載の触媒充填方法。
(3)前記鎖状物質の下端は、反応管に充填する触媒層の上端より1〜100cm上方にくるように位置する(1)又は(2)に記載の触媒充填方法。
(4)前記触媒は、アクリル酸又はメタクリル酸生成用触媒である(1)〜(3)のいずれかに記載の触媒充填方法。
(5)前記固定床多管型反応器の反応管の大きさは、長さ2〜10m、直径50mm以下である(1)〜(4)のいずれかに記載の触媒充填方法。
【0016】
【発明の実施の形態】
本発明において、固定床多管型反応器とは、一般に工業的に用いられているものであり特に制限はないが、固定床多管型反応器の反応管の長さが2〜10m、直径50mm以下のものに本発明の方法を用いた場合、有効である。
【0017】
本発明の触媒充填方法は、(メタ)アクリル酸を生成するために用いる固定床多管型反応器の反応管の(メタ)アクリル酸生成用触媒の充填に用いられることが好ましく、触媒としては具体的に、以下のものが挙げられる。
【0018】
(メタ)アクリル酸生成に用いられる触媒としては、オレフィンから不飽和アルデヒド又は不飽和酸への前段反応に用いられるものと不飽和アルデヒドから不飽和酸への後段反応に用いられるもの、アルカンから不飽和酸への反応に用いられるものがある。
【0019】
前段反応に用いられる触媒としては、下記一般式(I)で表されるものが挙げられる。
【0020】
【化1】
MoabBicFedefghix (I)
(式中、Moはモリブデン、Wはタングステン、Biはビスマス、Feは鉄、Aはニッケルおよびコバルトから選ばれる少なくとも一種の元素、Bはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも一種の元素、Cはアルカリ土類金属から選ばれる少なくとも一種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、ヒ素、ホウ素および亜鉛から選ばれる少なくとも一種の元素、Eはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Oは酸素であり、a、b、c、d、e、f、g、h、iおよびxはそれぞれMo、W、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a=12のとき、0≦b≦10、0<c≦10(好ましくは0.1≦c≦10)、0<d≦10(好ましくは0.1≦d≦10)、2≦e≦15、0<f≦10(好ましくは0.001≦f≦10)、0≦g≦10、0≦h≦4、0≦i≦30である。xは各々の元素の酸化状態によって定まる数値である。)
本発明に用いられる後段反応触媒としては、下記一般式(II)で表されるものが挙げられる。
【0021】
【化2】
MoabcCudefg (II)
(式中、Moはモリブデン、Vはバナジウム、Wはタングステン、Cuは銅、XはMg、Ca、SrおよびBaよりなる群から選ばれる少なくとも一種の元素、YはTi、Zr、Ce、Cr、Mn、Fe、Co、Ni、Zn、Nb、Sn、Sb、PbおよびBiよりなる群から選ばれる少なくとも一種の元素、そしてOは酸素であり、a、b、c、d、e、fおよびgはそれぞれMo、V、W、Cu、X、YおよびOの原子比を示し、a=12とするとき、2≦b≦14、0≦c≦12、0<d≦6、0≦e≦3、0≦f≦3であり、gは各々の元素の酸化状態によって定まる数値である。)
上記触媒は、所定の金属成分の水溶性塩の水溶液を必要に応じて、シリカ、アルミナ等の担体の存在下で混合して乾燥し、所望の形状に成型して、焼成することにより製造することができる。
【0022】
本発明で使用する触媒は、押し出し成型法または打錠成型法で成型された成型触媒でもよく、また触媒成分よりなる複合酸化物を、炭化ケイ素、アルミナ、酸化ジルコニウム、酸化チタンなどの不活性な担体に担持した担持触媒でも良い。
【0023】
本発明で使用する触媒の形状は、特に制限はなく、球状、円柱状、円筒状、リング状、星型状、不定形などのいずれでも良い。特にリング状触媒を使用するとホットスポット部における蓄熱の防止に効果がある。
【0024】
本発明においては、使用する触媒が、単独触媒であってもよいし、または不活性物質で希釈されている触媒であることも好ましい。不活性物質は、アクリル酸又はメタクリル酸生成応条件下で安定であり、オレフィン等の原料物質及び不飽和アルデヒド、不飽和脂肪酸等の生成物と反応性がない材質のものであれば何でも良く、具体的には、アルミナ、シリコンカーバイド、シリカ、酸化ジルコニア、酸化チタン等、触媒の担体に使われるものがよい。また、その形状は触媒と同様に制限はなく、球状、円柱状、リング状、小片状、網状、不定形などのいずれでも良い。不活性物質は、充填層における触媒全体の活性を調整して、発熱反応時の異常発熱防止のために用いられる。
【0025】
不活性物質の使用量は、目的とする触媒活性により適宜決定されるものであるが、例えば、反応管の充填層を区分して、反応原料ガス入口付近は触媒活性を低くして、発熱を抑えるために不活性物質の使用量を増やし、反応ガス出口付近は触媒活性を高くして反応を促進させるために不活性物質の使用量を減らす。
【0026】
反応管内に介在させる鎖状物質としては、触媒の落下速度を落とし、落下を実質的に妨げない太さ、材質であれば特に制限はない。具体的には、ステンレス製、プラスチック製等のチェーンが挙げられ、落下する触媒との接触により破損、破断しないものであればよい。太さとしては、鎖状物質の使用本数、反応管の大きさにより適宜選べばよい。
【0027】
図2に、リングの外径6mm×9mmの本発明で用いられる鎖状物質の一例を示す。好ましい鎖状物質としては、リングの線径が1〜1.5mmで、外径が5〜15mmの楕円形のリング状部材からなるチェーンが挙げられる。線径が1mm未満だと強度が不足して、使用中にチェーンが破断する恐れがあり、一方、1.5mmを超えるとチェーンが絡み合って「ダンゴ状」になりやすい。リングの外径についても、上記の範囲のものが取り扱い易いので好ましい。なお、リング状部材に接合部がある場合は溶接されたものが好ましい。
【0028】
本発明において、反応管内に介在させる鎖状物質の使用本数は、少なくとも1本であり、本数が多いほど触媒充填時の粉化、崩壊を抑制する効果が大きい。しかし、本数が多すぎると触媒落下の妨げになることがあるため、鎖状物質の太さ、反応管の大きさ等で適宜選べばよい。
【0029】
鎖状物質の長さは、鎖状物質の下端が反応管に充填する触媒層の上端より1〜100cm、好ましくは1〜50cm、さらに好ましくは5〜20cm上方にくるように位置させることが良い。
【0030】
なお、本発明における触媒の充填仕様は、特に制限はないが、反応管内に充填する触媒の活性を変化させ、触媒が充填された反応管を用いて目的とする反応を行った場合の反応効率が上がるようにするために多層充填が好ましい。
【0031】
反応管内に充填する触媒の活性を変化させるために、反応管の充填層を区分していくつかの触媒層を設ける多層充填とする場合には、各触媒層ごとに長さが調整された鎖状物質を用意し、目的とする触媒層を充填するときに適当な鎖状物質に交換して反応管内に触媒を充填することが好ましい。
【0032】
鎖状物質を反応管内に介在させる手段としては、反応管上部に設置する充填用ロートにつり下げる方式が挙げられる。具体的には、図1(a)〜(c)に示すように、鎖状物質が反応管内に落下しないように、反応管径よりも大きいステンレス製(例えば、SUS304)のリング1に、同じくステンレス製の線材2をクロスに溶接し、そのクロス部分にチェーン3をステンレス製の針金で固定する方法が挙げられる。
【0033】
【実施例】
以下、本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例によって限定されるものではない。
【0034】
本実施例で使用した充填用触媒は、以下のように製造した。
【0035】
バラモリブテン酸アンモン94.1gを純水400mlに加熱して溶解させる。次に硝酸第二鉄7.18g、硝酸コバルト25.8g及び硝酸ニッケル38.7gを純水60mlに加温して溶解させる。この二液を充分攪拌しながら徐々に混合する。
【0036】
次に、この混合液(スラリー)にホウ砂0.85g、硝酸ソーダ0.38g及び硝酸カリウム0.36gを純水40mlに加温溶解した液を加えて、充分に攪拌する。次に、次炭酸ビスマス57.8gとシリカ64gとを加えて、攪拌混合する。このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理を行う。得られた固体を小型成型機にて、外径6mm、内径2mm、高さ6mmの円筒状に打錠成型し、マツフル炉にて480℃/8時間の焼成を行って、触媒とした。仕込み原料から計算される触媒の金属成分の組成比は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si:=12:5:2:3:0.4:0.2:0.2:0.08:24
上記で得られた触媒は、外径6mm、内径2mm、高さ6mmの円筒状に打錠成型したMo−Bi系触媒であり、希釈用の不活性物質(希釈剤)は外径6mmの球状ムライトボールを使用した。
【0037】
粉化、崩壊の定義は以下の通りである。
1)粉化率:正常触媒全体に対し、14メッシュのふるいを通過した粉の割合
2)割れ率:正常触媒全体に対する割れ品の割合
【0038】
【実施例1】
内径26.6mm、管長4.4mのステンレス製直管底部に底部から上方50mmの位置にステンレス製のスプリングを固定し、反応管上部から2.65mの長さで、線径1.5mm、外径6mm×9mmの楕円形のリング状部材からなるステンレス製のチェーンを吊り下げ(自由落下距離:1.7m)、単独触媒としてMo−Bi系触媒650gを上部から落下充填した。なお、チェーンの下端と触媒層の上端の間隔は5cmとした。この時の粉化率は0.2%、割れ率は3.1%であった。
【0039】
【比較例1】
実施例1に於いて、チェーンを用いないで(自由落下距離:4.35m)、単独触媒としてMo−Bi系触媒650gを落下充填した。この時の粉化率:0.9%、割れ率は25.0%となった。
【0040】
【実施例2】
実施例1の反応管に反応管の底部から1.55m上方の位置にステンレス製のスプリングを固定し、反応管上部から1.85mの長さのチェーンを吊り下げ(自由落下距離:1.0m)、Mo−Bi系触媒195gと希釈剤240gを混合した希釈触媒を上部から落下充填した。なお、チェーンの下端と触媒層の上端の間隔は5cmとした。この時の粉化率:0.4%、割れ率は4.8%であった。
【0041】
【比較例2】
実施例2に於いて、チェーンを挿入しないで(自由落下距離:2.85m)実施例2の希釈触媒を落下充填した。この時の粉化率は0.9%、割れ率は19.4%であった。
【0042】
【実施例3】
実施例1の反応管に反応管の底部から2.55m上方の位置にステンレス製のスプリングを固定し、反応管上部から0.9mの長さのチェーンを吊り下げ(自由落下距離:0.95m)、Mo−Bi系触媒140gと希釈剤345gを混合した希釈触媒を上部から落下充填した。なお、チェーンの下端と触媒層の上端の間隔は50cmとした。この時の粉化率は0.3%、割れ率は5.6%であった。
【0043】
【比較例3】
実施例3に於いて、チェーンを挿入しないで(自由落下距離:1.85m)実施例3の希釈触媒を落下充填した。この時の粉化率は0.6%、割れ率は13.4%であった。
【0044】
【実施例4】
内径:24.0mm、管長:1.0mのポリカーボネート製直管底部にステンレス製のスプリングを固定、反応管上部から0.7mの長さのチェーンを吊り下げ(自由落下距離:0.3m)、単独触媒としてMo−Bi系触媒35gを落下充填した。なお、チェーンの下端と触媒層の上端の間隔は2cmとした。この時の粉化率は0.3%、割れ率は0.9%であった。
【0045】
【比較例4】
実施例4に於いて、チェーンを挿入しないで(自由落下距離:1.0m)単独触媒としてMo−Bi系触媒35gを落下充填した。この時の粉化率は0.3%、割れ率は3.0%であった。
【0046】
【発明の効果】
本発明によれば、固定床多管型反応器に触媒を充填する際、鎖状物質による抵抗で落下時の物理的衝撃による触媒の粉化、崩壊が著しく少なくすることが出来る。このため、充填時に於ける触媒の粉化等を懸念して触媒の機械的強度を必要以上に高くする必要が無くなり、触媒設計上の制限が少なく、幅広い条件での触媒調整が可能となる。また、触媒充填時のブロッキングを防止することもできる。
【図面の簡単な説明】
【図1】(a)本発明の触媒充填方法に用いられる鎖状物質の一つの実施の形態の斜視図である。
(b)(a)のA方向から見た平面図である。
(c)(a)のB方向から見た平面図である。
【図2】本発明の触媒充填方法に用いられる鎖状物質の一つの実施の形態を示す拡大図である。
【符号の説明】
1 リング
2 線材
3 チェーン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for filling a reaction tube of a fixed-bed multitubular reactor into a reaction tube while minimizing blocking, pulverization, and disintegration at the time of filling the catalyst without affecting the operation time for charging the catalyst. It relates to a method of filling a vessel.
[0002]
[Prior art]
Generally, in order to charge a catalyst for producing acrylic acid or methacrylic acid (hereinafter collectively referred to as "(meth) acrylic acid") into a reaction tube of a fixed-bed multitubular reactor, the catalyst is dropped from the upper part of the reactor and charged. The method is adopted. However, in this method, the catalyst may be pulverized or disintegrated due to a physical impact when the catalyst is dropped. In order to prevent this, it is necessary to give the catalyst itself a mechanical strength higher than a certain level, or to apply some means to the filling method.
[0003]
The mechanical strength of the catalyst can be improved to some extent by adjusting the molding pressure of the catalyst or devising the molding or loading operation. However, a catalyst whose mechanical strength is increased by such a method generally has a smaller specific surface area of the catalyst, a reduced number of active sites effective for the reaction, and a pore distribution effective for the reaction. Since it cannot be controlled, there is a problem that the yield of the target product is low and it is not practical.
[0004]
Further, the following methods have been proposed as methods for suppressing powdering and disintegration of the catalyst at the time of filling the catalyst.
[0005]
As a method for suppressing powdering and disintegration of the catalyst at the time of filling the catalyst, there is known a method of improving the mechanical strength of the catalyst by coating the surface of the catalyst with an organic polymer compound having depolymerizability ( For example, see Patent Document 1).
[0006]
In addition, when a catalyst is dropped and filled from the upper part of a reactor, a method is known in which a string-like substance having a shape and a thickness that does not substantially prevent the catalyst from falling is interposed in the reactor (for example, Patent Document 2). reference).
[0007]
Also, a method is known in which dry ice is charged before the catalyst is dropped and charged, then the catalyst is charged, and then the dry ice is vaporized and removed (for example, see Patent Document 3).
[0008]
In addition, when a catalyst is charged from the upper part of the reactor, a method is known in which the reaction tube is first filled with a liquid material, then the catalyst is charged, and then the liquid material is removed (for example, see Patent Document 4). .
[0009]
However, in the method of coating the catalyst to increase the mechanical strength of the catalyst, it is difficult to uniformly coat all the catalysts, and even if the catalyst strength is increased as a whole, the catalyst strength varies. Although it has some effect on reducing powdering and disintegration, it is difficult to say that it is a satisfactory method because it requires a step of coating during catalyst production.
[0010]
In the method of interposing a string-like substance at the time of filling the catalyst, it is effective in preventing the catalyst from being powdered and disintegrated, but it is necessary to pull the string-like substance upward while filling the catalyst. The effects of longer time are inevitable and it is hardly satisfactory.
[0011]
In the method of pre-filling with dry ice or liquid material before filling the catalyst, the post-treatment after filling the catalyst is troublesome and the working environment may be deteriorated depending on the substance to be handled. It's hard to say that it's easy.
[0012]
[Patent Document 1]
Japanese Patent No. 2852712 [Patent Document 2]
JP-A-5-31351 [Patent Document 3]
JP-A-10-277381 [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-141084
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and it has been found that a fixed-bed multitubular reaction can be carried out without minimizing powdering and disintegration of a catalyst having low mechanical strength, and without affecting the catalyst filling operation time. It is an object of the present invention to provide a method for filling a reaction tube of a vessel with a catalyst.
[0014]
[Means for Solving the Problems]
The present inventors have conducted various studies to solve the above problems, and as a result, when dropping and filling a molded catalyst or a supported catalyst from the upper part of the reaction tube of a fixed-bed multitubular reactor, a chain was added to the reaction tube. It has been found that, by interposing a particulate matter and lowering the falling speed of the catalyst, blocking can be suppressed and powdering and disintegration can be minimized without affecting the catalyst filling operation time.
[0015]
That is, the present invention is as follows.
(1) A method for dropping and filling a catalyst into a reaction tube of a fixed-bed multitubular reactor, wherein a chain-like substance is interposed in the reaction tube such that the lower end is located above the upper end of the catalyst layer. And filling the catalyst in a reaction tube of a fixed-bed multitubular reactor.
(2) The catalyst filling method according to (1), wherein the catalyst is a molded catalyst or a supported catalyst.
(3) The catalyst filling method according to (1) or (2), wherein the lower end of the chain substance is located 1 to 100 cm above the upper end of the catalyst layer to be filled in the reaction tube.
(4) The catalyst charging method according to any one of (1) to (3), wherein the catalyst is a catalyst for producing acrylic acid or methacrylic acid.
(5) The catalyst filling method according to any one of (1) to (4), wherein the size of the reaction tube of the fixed-bed multitubular reactor is 2 to 10 m in length and 50 mm or less in diameter.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the fixed-bed multitubular reactor is generally used industrially and is not particularly limited, but the length of the reaction tube of the fixed-bed multitubular reactor is 2 to 10 m and the diameter is 2 to 10 m. It is effective when the method of the present invention is used for a member having a size of 50 mm or less.
[0017]
The catalyst charging method of the present invention is preferably used for charging a catalyst for (meth) acrylic acid production in a reaction tube of a fixed-bed multitubular reactor used for producing (meth) acrylic acid. Specifically, the following are mentioned.
[0018]
Catalysts used for the production of (meth) acrylic acid include those used in the first-stage reaction from olefins to unsaturated aldehydes or unsaturated acids, those used in the second-stage reaction from unsaturated aldehydes to unsaturated acids, and those used in alkane to unsaturated acids. Some are used in reactions to saturated acids.
[0019]
Examples of the catalyst used in the first-stage reaction include those represented by the following general formula (I).
[0020]
Embedded image
Mo a W b Bi c Fe d A e B f C g D h E i O x (I)
(Wherein, Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, and B is at least one element selected from sodium, potassium, rubidium, cesium and thallium. Element, C is at least one element selected from alkaline earth metals, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc; E is silicon , Aluminum, titanium and zirconium, O is oxygen, a, b, c, d, e, f, g, h, i and x are Mo, W, Bi, Fe, A , B, C, D, E and O, when a = 12, 0 ≦ b ≦ 10, 0 <c ≦ 10 Preferably 0.1 ≦ c ≦ 10, 0 <d ≦ 10 (preferably 0.1 ≦ d ≦ 10), 2 ≦ e ≦ 15, 0 <f ≦ 10 (preferably 0.001 ≦ f ≦ 10) , 0 ≦ g ≦ 10, 0 ≦ h ≦ 4, 0 ≦ i ≦ 30. X is a numerical value determined by the oxidation state of each element.)
Examples of the latter reaction catalyst used in the present invention include those represented by the following general formula (II).
[0021]
Embedded image
Mo a V b W c Cu d X e Y f O g (II)
(Where Mo is molybdenum, V is vanadium, W is tungsten, Cu is copper, X is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, Y is Ti, Zr, Ce, Cr, At least one element selected from the group consisting of Mn, Fe, Co, Ni, Zn, Nb, Sn, Sb, Pb and Bi, and O is oxygen, and a, b, c, d, e, f and g Represents the atomic ratio of Mo, V, W, Cu, X, Y and O, and when a = 12, 2 ≦ b ≦ 14, 0 ≦ c ≦ 12, 0 <d ≦ 6, 0 ≦ e ≦ 3, 0 ≦ f ≦ 3, and g is a numerical value determined by the oxidation state of each element.)
The catalyst is manufactured by mixing and drying an aqueous solution of a water-soluble salt of a predetermined metal component in the presence of a carrier such as silica or alumina, if necessary, molding into a desired shape, and calcining. be able to.
[0022]
The catalyst used in the present invention may be a molded catalyst molded by an extrusion molding method or a tablet molding method, or a composite oxide comprising a catalyst component, silicon carbide, alumina, zirconium oxide, an inert catalyst such as titanium oxide. A supported catalyst supported on a carrier may be used.
[0023]
The shape of the catalyst used in the present invention is not particularly limited, and may be any of a spherical shape, a cylindrical shape, a cylindrical shape, a ring shape, a star shape, an irregular shape, and the like. In particular, the use of a ring catalyst is effective in preventing heat storage at the hot spot.
[0024]
In the present invention, the catalyst used may be a single catalyst or a catalyst diluted with an inert substance. The inert substance is stable under the conditions for producing acrylic acid or methacrylic acid, and may be any material having no reactivity with the starting materials such as olefins and unsaturated aldehydes and unsaturated fatty acids. Specifically, alumina, silicon carbide, silica, zirconia oxide, titanium oxide, and the like used for a catalyst carrier are preferable. The shape of the catalyst is not limited as in the case of the catalyst, and may be any of a sphere, a column, a ring, a small piece, a net, and an irregular shape. The inert substance is used for adjusting the activity of the entire catalyst in the packed bed and preventing abnormal heat generation during the exothermic reaction.
[0025]
The amount of the inert substance used is appropriately determined depending on the desired catalytic activity.For example, the packed bed of the reaction tube is divided, and the catalytic activity is lowered near the inlet of the reactant gas to generate heat. The amount of the inert substance used is increased to suppress the reaction, and the amount of the inert substance used is reduced near the outlet of the reaction gas in order to increase the catalytic activity and promote the reaction.
[0026]
The chain substance to be interposed in the reaction tube is not particularly limited as long as it has a thickness and a material that do not hinder the falling speed of the catalyst and substantially prevent the falling. Specifically, a chain made of stainless steel, plastic, or the like may be used, as long as it does not break or break due to contact with a falling catalyst. The thickness may be appropriately selected depending on the number of chain substances used and the size of the reaction tube.
[0027]
FIG. 2 shows an example of a chain substance used in the present invention having a ring outer diameter of 6 mm × 9 mm. As a preferable chain substance, a chain made of an elliptical ring-shaped member having a ring diameter of 1 to 1.5 mm and an outer diameter of 5 to 15 mm is exemplified. If the wire diameter is less than 1 mm, the strength is insufficient and the chain may be broken during use. On the other hand, if the wire diameter is more than 1.5 mm, the chain is entangled and easily becomes "dango-shaped". The outer diameter of the ring is preferably in the above range because it is easy to handle. When the ring-shaped member has a joint, it is preferable that the ring-shaped member is welded.
[0028]
In the present invention, the number of chain substances used in the reaction tube is at least one, and the greater the number, the greater the effect of suppressing powdering and disintegration during catalyst filling. However, if the number is too large, it may hinder the falling of the catalyst, so it may be appropriately selected depending on the thickness of the chain substance, the size of the reaction tube, and the like.
[0029]
The length of the chain substance is preferably such that the lower end of the chain substance is located 1 to 100 cm, preferably 1 to 50 cm, more preferably 5 to 20 cm above the upper end of the catalyst layer filled in the reaction tube. .
[0030]
Note that the catalyst filling specification in the present invention is not particularly limited, but the activity of the catalyst to be charged into the reaction tube is changed, and the reaction efficiency when the target reaction is performed using the reaction tube filled with the catalyst is performed. In order to increase the temperature, multi-layer filling is preferred.
[0031]
In order to change the activity of the catalyst packed in the reaction tube, when the packed layer of the reaction tube is divided into several layers to provide a multi-layer packing, a chain whose length is adjusted for each catalyst layer is used. It is preferable to prepare a gaseous substance and replace it with an appropriate chain substance when filling a target catalyst layer, and to fill the reaction tube with the catalyst.
[0032]
As a means for interposing the chain substance in the reaction tube, there is a method in which the chain material is suspended in a filling funnel placed above the reaction tube. Specifically, as shown in FIGS. 1 (a) to 1 (c), a stainless steel (for example, SUS304) ring 1 having a diameter larger than the diameter of the reaction tube is used to prevent the chain-like substance from falling into the reaction tube. A method of welding the stainless steel wire 2 to a cloth and fixing the chain 3 to the cross part with a stainless steel wire is used.
[0033]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.
[0034]
The packing catalyst used in this example was produced as follows.
[0035]
94.1 g of ammonium balamolybdate is dissolved by heating in 400 ml of pure water. Next, 7.18 g of ferric nitrate, 25.8 g of cobalt nitrate and 38.7 g of nickel nitrate are heated and dissolved in 60 ml of pure water. The two liquids are gradually mixed with sufficient stirring.
[0036]
Next, a solution obtained by heating and dissolving 0.85 g of borax, 0.38 g of sodium nitrate and 0.36 g of potassium nitrate in 40 ml of pure water is added to the mixture (slurry), and the mixture is sufficiently stirred. Next, 57.8 g of bismuth subcarbonate and 64 g of silica are added and mixed with stirring. After heating and drying the slurry, heat treatment is performed at 300 ° C. for 1 hour in an air atmosphere. The obtained solid was tablet-formed into a cylindrical shape having an outer diameter of 6 mm, an inner diameter of 2 mm, and a height of 6 mm using a small molding machine, and calcined at 480 ° C. for 8 hours in a Matsufuru furnace to obtain a catalyst. The composition ratio of the metal component of the catalyst calculated from the charged raw materials is a composite oxide having the following atomic ratio.
Mo: Bi: Co: Ni: Fe: Na: B: K: Si: = 12: 5: 2: 3: 0.4: 0.2: 0.2: 0.08: 24
The catalyst obtained above is a Mo-Bi catalyst which is formed into a cylindrical tablet having an outer diameter of 6 mm, an inner diameter of 2 mm and a height of 6 mm, and the inert substance for dilution (diluent) is a spherical catalyst having an outer diameter of 6 mm. A mullite ball was used.
[0037]
The definitions of powdering and disintegration are as follows.
1) Powdering ratio: The ratio of powder passing through a 14-mesh sieve to the entire normal catalyst 2) Cracking ratio: The ratio of cracked products to the entire normal catalyst
Embodiment 1
A stainless steel spring is fixed to the bottom of a stainless steel straight pipe having an inner diameter of 26.6 mm and a pipe length of 4.4 m, at a position 50 mm above the bottom, a length of 2.65 m from the top of the reaction tube, a wire diameter of 1.5 mm, and an outer diameter of 1.5 mm. A stainless steel chain formed of an elliptical ring-shaped member having a diameter of 6 mm × 9 mm was suspended (free fall distance: 1.7 m), and 650 g of a Mo-Bi-based catalyst as a single catalyst was dropped and filled from above. The distance between the lower end of the chain and the upper end of the catalyst layer was 5 cm. The powdering ratio at this time was 0.2%, and the cracking ratio was 3.1%.
[0039]
[Comparative Example 1]
In Example 1, 650 g of a Mo-Bi catalyst was dropped and filled as a single catalyst without using a chain (free fall distance: 4.35 m). The powdering ratio at this time was 0.9%, and the cracking ratio was 25.0%.
[0040]
Embodiment 2
A stainless steel spring was fixed to the reaction tube of Example 1 at a position 1.55 m above the bottom of the reaction tube, and a 1.85 m long chain was suspended from the top of the reaction tube (free fall distance: 1.0 m). ), And a diluted catalyst obtained by mixing 195 g of a Mo-Bi catalyst and 240 g of a diluent was dropped and filled from above. The distance between the lower end of the chain and the upper end of the catalyst layer was 5 cm. The powdering ratio at this time was 0.4%, and the cracking ratio was 4.8%.
[0041]
[Comparative Example 2]
In Example 2, the diluted catalyst of Example 2 was dropped and filled without inserting a chain (free-fall distance: 2.85 m). The powdering ratio at this time was 0.9%, and the cracking ratio was 19.4%.
[0042]
Embodiment 3
A stainless steel spring was fixed to the reaction tube of Example 1 at a position 2.55 m above the bottom of the reaction tube, and a chain having a length of 0.9 m was suspended from the top of the reaction tube (free fall distance: 0.95 m). ), And a diluted catalyst obtained by mixing 140 g of a Mo-Bi-based catalyst and 345 g of a diluent was dropped and filled from above. The distance between the lower end of the chain and the upper end of the catalyst layer was 50 cm. At this time, the powdering ratio was 0.3% and the cracking ratio was 5.6%.
[0043]
[Comparative Example 3]
In Example 3, the diluted catalyst of Example 3 was dropped and filled without inserting a chain (free-fall distance: 1.85 m). At this time, the powdering ratio was 0.6%, and the cracking ratio was 13.4%.
[0044]
Embodiment 4
A stainless steel spring is fixed to the bottom of a polycarbonate straight tube having an inner diameter of 24.0 mm and a tube length of 1.0 m, and a 0.7 m long chain is suspended from the top of the reaction tube (free fall distance: 0.3 m). As a single catalyst, 35 g of a Mo-Bi-based catalyst was dropped and filled. The distance between the lower end of the chain and the upper end of the catalyst layer was 2 cm. At this time, the powdering ratio was 0.3% and the cracking ratio was 0.9%.
[0045]
[Comparative Example 4]
In Example 4, 35 g of a Mo-Bi-based catalyst was dropped and filled as a single catalyst without inserting a chain (free-fall distance: 1.0 m). At this time, the powdering ratio was 0.3%, and the cracking ratio was 3.0%.
[0046]
【The invention's effect】
According to the present invention, when a fixed-bed multitubular reactor is filled with a catalyst, powdering and disintegration of the catalyst due to physical impact at the time of falling due to resistance by chain substances can be significantly reduced. For this reason, there is no need to increase the mechanical strength of the catalyst more than necessary in consideration of the powdering of the catalyst at the time of filling, so that there are few restrictions on the design of the catalyst, and the catalyst can be adjusted under a wide range of conditions. In addition, blocking at the time of filling the catalyst can be prevented.
[Brief description of the drawings]
FIG. 1 (a) is a perspective view of one embodiment of a chain substance used in a catalyst filling method of the present invention.
(B) It is the top view seen from A direction of (a).
(C) It is the top view seen from B direction of (a).
FIG. 2 is an enlarged view showing one embodiment of a chain substance used in the catalyst filling method of the present invention.
[Explanation of symbols]
1 ring 2 wire 3 chain

Claims (5)

触媒を固定床多管型反応器の反応管に落下充填させる方法であって、鎖状物質をその下端が触媒層の上端よりも上方に位置するように前記反応管内に介在させて、前記触媒を固定床多管型反応器の反応管に充填させることを特徴とする触媒充填方法。A method of dropping and filling a catalyst into a reaction tube of a fixed-bed multitubular reactor, wherein a chain-like substance is interposed in the reaction tube such that a lower end thereof is located above an upper end of a catalyst layer, and the catalyst is provided. In a fixed-bed multitubular reactor. 前記触媒は、成型触媒又は担持触媒である請求項1に記載の触媒充填方法。The method according to claim 1, wherein the catalyst is a molded catalyst or a supported catalyst. 前記鎖状物質の下端は、反応管に充填する触媒層の上端より1〜100cm上方にくるように位置する請求項1又は2に記載の触媒充填方法。The catalyst filling method according to claim 1, wherein the lower end of the chain substance is located 1 to 100 cm above the upper end of the catalyst layer filled in the reaction tube. 前記触媒は、アクリル酸又はメタクリル酸生成用触媒である請求項1〜3のいずれか一項に記載の触媒充填方法。The catalyst filling method according to any one of claims 1 to 3, wherein the catalyst is a catalyst for producing acrylic acid or methacrylic acid. 前記固定床多管型反応器の反応管の大きさは、長さ2〜10m、直径50mm以下である請求項1〜4のいずれか一項に記載の触媒充填方法。The catalyst filling method according to any one of claims 1 to 4, wherein the size of the reaction tube of the fixed-bed multitubular reactor is 2 to 10 m in length and 50 mm or less in diameter.
JP2002363352A 2002-12-16 2002-12-16 Catalyst filling method Pending JP2004195279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363352A JP2004195279A (en) 2002-12-16 2002-12-16 Catalyst filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363352A JP2004195279A (en) 2002-12-16 2002-12-16 Catalyst filling method

Publications (1)

Publication Number Publication Date
JP2004195279A true JP2004195279A (en) 2004-07-15

Family

ID=32761520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363352A Pending JP2004195279A (en) 2002-12-16 2002-12-16 Catalyst filling method

Country Status (1)

Country Link
JP (1) JP2004195279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017080A1 (en) 2007-04-10 2008-10-16 Basf Se Method for feeding a longitudinal section of a contact tube
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
WO2020203049A1 (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granulated substance loading method
RU2809250C2 (en) * 2019-03-29 2023-12-08 Мицубиси Кемикал Корпорейшн Method of loading granules

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017080A1 (en) 2007-04-10 2008-10-16 Basf Se Method for feeding a longitudinal section of a contact tube
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
WO2020203049A1 (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granulated substance loading method
CN113631255A (en) * 2019-03-29 2021-11-09 三菱化学株式会社 Method for filling granular material
JP7322756B2 (en) 2019-03-29 2023-08-08 三菱ケミカル株式会社 Particulate filling method
TWI818163B (en) * 2019-03-29 2023-10-11 日商三菱化學股份有限公司 Filling method of granular materials
RU2809250C2 (en) * 2019-03-29 2023-12-08 Мицубиси Кемикал Корпорейшн Method of loading granules

Similar Documents

Publication Publication Date Title
US7667072B2 (en) Method for vapor phase catalytic oxidation
KR100904134B1 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
CN101128415B (en) Method of producing unsaturated aldehyde and/or unsaturated acid
JP2007509051A (en) Method for producing unsaturated aldehyde and / or unsaturated fatty acid
KR20060088292A (en) Method of producing unsaturated fatty acid
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JPH083093A (en) Production of acrolein and acrylic acid
JP2004195279A (en) Catalyst filling method
JP2005325044A (en) Method for conducting pilot test of multitubular reactor
JP4465957B2 (en) Method of filling catalyst while removing powdered and disintegrated catalyst
JP2003261501A (en) Method for vapor-phase catalytic oxidation
JP5500775B2 (en) Fixed bed reactor
WO2020203049A1 (en) Granulated substance loading method
JP2004082099A (en) Filling method of solid catalyst
JP2003252820A (en) Method for producing (meth)acrolein or (meth)acrylic acid
JP4529435B2 (en) Catalyst filling method
KR100992173B1 (en) Shell-and-tube heat exchanger type reactor and method of producing unsaturated aldehyde and/or unsaturated fatty acid using the same
JP3272924B2 (en) Fixed bed reactor
JP2019098269A (en) Reaction method
WO2005068072A1 (en) Process for producing composite oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825