JP2004194097A - Full duplex radio equipment - Google Patents

Full duplex radio equipment Download PDF

Info

Publication number
JP2004194097A
JP2004194097A JP2002361186A JP2002361186A JP2004194097A JP 2004194097 A JP2004194097 A JP 2004194097A JP 2002361186 A JP2002361186 A JP 2002361186A JP 2002361186 A JP2002361186 A JP 2002361186A JP 2004194097 A JP2004194097 A JP 2004194097A
Authority
JP
Japan
Prior art keywords
signal
phase
circuit
antenna
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002361186A
Other languages
Japanese (ja)
Inventor
Hiroshi Okubo
博 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002361186A priority Critical patent/JP2004194097A/en
Publication of JP2004194097A publication Critical patent/JP2004194097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transceivers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the S/N of a reception signal from being deteriorated caused by the reflected signal of a transmission signal on an antenna. <P>SOLUTION: A transmission signal P<SB>T</SB>from a variable BPF (BandPass Filter) 4 is supplied to the antenna 2 through a circulator 5 and is transmitted as a radio wave. Part of the transmission signal P<SB>T</SB>is reflected at the antenna 2 due to the impedance mismatching of the antenna 2 and is coupled as the reflected signal P<SB>TR</SB>to a receiver 7 side through the circulator 5. Now, part of the transmission signal P<SB>T</SB>is distributed to a variable attenuation circuit 8 side through a distributor 10. The variable attenuation circuit 8 adjusts the transmission signal P<SB>T</SB>to a level approximately equal to the reflected signal P<SB>TR</SB>. A variable phase circuit 9 adjusts the phase of the transmission signal P<SB>T</SB>to approximately 180° to generate a correction signal P<SB>C</SB>. The correction signal P<SB>C</SB>is supplied to an addition circuit 11 to add the correction signal P<SB>C</SB>to the output signal (the reception signal) of the circulator 5 directed to the receiver side 7. Thus, the reflected signal P<SB>TR</SB>in the output signal is sufficiently canceled by the correction signal P<SB>C</SB>. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、共通のアンテナで送受信する全二重無線機に関する。
【0002】
【従来の技術】
全二重無線機は、送・受信機を備え、1つのアンテナを用いて送受信を可能とし、双方向通信を行なうものである。即ち、図4に示すように、2つの全二重無線機1a,1bをみた場合、一方の全二重無線機1aがアンテナ2aから送信信号の電波を送信すると、他方の全二重無線機1bがそのアンテナ2bでこれを受信し、また、全二重無線機1bがアンテナ2bから送信信号の電波を送信すると、全二重無線機1aがそのアンテナ2bでこれを受信する。これにより、これら全二重無線機1a,1b間で双方向の通信ができる。
【0003】
図5はかかる全二重無線機の一従来例を示す構成図であって、1は全二重無線機、2はアンテナ、3は送信機、4は可変BPF(バンドパスフィルタ)、5はサーキュレータ、6は可変BPF、7は受信機である。
【0004】
図5に示すように、全二重無線機1(図4における全二重無線機1aに相当)は送信機3と受信機7とを備えており、アンテナ2により、送信機3からの送信信号の送信と受信機7での受信ができる。送信機3からは送信周波数fTの送信信号(無変調の連続信号または被変調信号)PTが出力される。この送信信号PTは中心周波数fTの可変BPF4で処理され、サーキュレータ5によってアンテナ2にカップリングされて、このアンテナ4から電波として放射される。また、他の無線機(図4における全二重無線機1bに相当)から送信された電波はアンテナ2から受信され、受信周波数fRのその受信信号PRはサーキュレータ5によって受信機7側にカップリングされる。これにより、サーキュレータ5からの受信信号PRは中心周波数fRの可変BPF6で処理されて、受信機7に供給されて復調などの各処理がなされる(例えば、特許文献1参照)。
【0005】
ここで、送信機1では、周波数合成部(図示せず)によって送信信号PTが生成されるため、送信信号PTの近傍に位相雑音が発生し、これが送信機3から出力される送信信号PTに含まれる。可変BPF4は、かかる位相雑音を減衰させるものであって、かかる減衰が充分行なわれるように、その中心周波数や通過帯域が調整されている。また、可変BPF6は受信信号PRの帯域近傍の雑音成分を減衰させるためのものであって、かかる減衰が充分行なわれるように、その中心周波数や通過帯域が調整されている。
【0006】
【特許文献1】
特開2000ー115016
【0007】
【発明が解決しようとする課題】
ところで、図5に示す全二重無線機1では、アンテナ2のインピーダンス整合が充分でないと、送信信号PTの一部がアンテナ2で反射し、反射信号PTRが発生する。この反射信号PTRはサーキュレータ5によって受信機7側にカップリングし、受信機7に回り込むことになる。このため、送信機3からの送信信号PTの送信と他の無線機からの受信とを同時に行なうときには、受信機7に供給される受信信号PRにアンテナ2からの送信信号PTの一部の反射信号PTRが一定のレベルで混入することになる。
【0008】
ここで、比較的近い距離の他の無線機からの受信のときには、その受信信号 PRのレベルがこの反射信号PTRのレベルに比べて非常に高いから、各別問題とはならないが、遠い距離の他の無線機からの受信の場合には、反射信号PTRのレベルは低いといっても、この他の無線機からの受信信号PRもレベルが低いから、受信機7では、この反射信号PTRの影響を受ける。特に、反射信号PTRのレベルが受信信号PRのレベルよりも高い場合には、受信機7内の増幅器がこの反射信号PTRによって影響され、受信信号PRが充分増幅されない状態で飽和してしまうことになり、S/Nの劣化の原因となる。
【0009】
このとき、送信周波数fTと受信周波数fRとが充分離れて、送信側の可変BPF4と受信側の可変BPF6との通過帯域が一部でも重ならないように離調されていれば、反射信号PTRが受信側の可変BPF6で除かれ、上記のような反射信号PTRによる影響は発生しないが、離調が充分でないときには、つまり、送信側の可変BPF4と受信側の可変BPF6との通過帯域が一部でも重なっている場合には、特に、遠い距離の他の無線機からの受信の場合には、反射信号PTRの影響を受け手受信信号のS/Nが劣化することになる。
【0010】
本発明の目的は、かかる問題を解消し、送信信号のアンテナからの反射信号による受信信号のS/Nの劣化を防止することができるようにした全二重無線機を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、第1の周波数帯域の送信信号を生成する送信機と、送信信号をフィルタリングする第1の帯域通過フィルタと、受信信号をフィルタリングする第2の帯域通過フィルタと、第2の帯域通過フィルタからの受信信号が供給される受信機と、第1の帯域通過フィルタからの送信信号をアンテナにカップリングし、かつアンテナで受信された受信信号を第2の帯域通過フィルタにカップリングするサーキュレータとを備えた全二重無線機であって、第1の帯域通過フィルタから出力される送信信号を分配する分配器と、分配器からの分配信号のレベルを調整する減衰回路と、分配器からの分配信号の位相を調整する位相回路と、減衰回路でレベルが調整され、かつ位相回路で位相が調整された分配信号を、補正信号として、サーキュレータからの受信信号に加算して第2の帯域通過フィルタに供給する加算回路とを設けたものである。
【0012】
そして、減衰回路は、分配信号のレベルを、アンテナで反射される送信信号の一部の反射信号のレベルにほぼ等しくし、位相回路は、分配信号の位相をほぼ180゜ずらし、このように、減衰回路でレベルが調整されかつ位相回路で位相が調整された分配信号により、加算回路でアンテナからの反射信号を打ち消すようにしたものである。
【0013】
さらに、減衰器はその減衰量を、位相回路はその位相量を夫々調整可能としたものである。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は本発明による全二重無線機の一実施形態を示す構成図であって、8は可変減衰回路、9は可変位相回路、10は分配器、11は加算回路であり、図5に対応する部分には同一符号を付けて重複する説明を省略する。
【0015】
図1において、可変BPF4から出力される送信信号PTは、分配器10を介してサーキュレータ8に供給されるが、分配器10では、この送信信号PTの一部が、分配信号PT’として、可変減衰回路8に分配される。可変減衰回路8では、分配信号PT’がアンテナ2で反射されてサーキュレータ5から受信機7側に出力される反射信号PTRとレベルがほぼ等しくなるように、減衰量が調整されている。可変減衰回路8でレベル調整された分配信号PT’は可変位相回路9に供給され、その位相が調整される。この可変位相回路9では、この分配信号PT’の位相がサーキュレータ5から受信機7側に出力される反射信号PTRの位相とほぼ180゜の関係となるように、位相量が設定される。
【0016】
このようにして、可変減衰回路8と可変位相回路9とにより、分配信号PT’がレベル,位相調整されて、反射信号PTRとほぼ等しいレベルで逆相関係の補正信号PCが得られる。この補正信号PCは加算回路11に供給され、サーキュレータ5からの反射信号PTRと加算される。
【0017】
図2は送信信号PTと反射信号PTRと補正信号PCとのレベル・位相関係を摸式的に示す図であり、図示するように、送信信号PTとほぼ同相の反射信号PTRに対し、補正信号PCはレベルがほぼ等しく、位相がほぼ180゜ずれており、これにより、加算回路11では、反射信号PRTがこの補正信号PCによってほぼ打ち消されることになる。
【0018】
従って、アンテナ2でインピーダンス不整合による送信信号の反射があっても、その反射信号PTRが合成回路11で、補正信号PCにより、ほとんど除去されることになり、受信機7に供給される受信信号PRからは反射信号PTRがほとんど除去されることになるから、受信機7のS/Nが大幅に向上する。
【0019】
図3は図5に示した従来例での受信機7に供給される受信信号PRとこの実施形態での受信機7に供給される受信信号PRとを比較して示す周波数スペクトル図であって、ここでは、受信信号PRが低レベルである場合を示している。なお、PTR’は可変BPF6の入力信号であり、図1に対応する信号には同一符号を付けている。
【0020】
同図において、図5に示した従来例では、受信機7にアンテナ2からの反射信号PTRが供給されないように、可変BPF6の通過帯域が調整され、この可変BPF6で反射信号PTRを充分に減衰させる。しかしながら、送信信号PTの送信周波数fTと受信信号PRの受信周波数fRとが接近していると、受信機7に供給される受信信号PRにも、ある程度の周波数帯域が必要であることから、図示するように、可変BPF6としては、反射信号PTRを充分には減衰させるような通過帯域に設定することができず、受信機7には、かかる反射信号PTRを多く含んだ受信信号PRが供給されることになる。このため、受信機7のS/Nが大幅に劣化することになる。また、かかる反射信号PTRをより効果的に減衰させるためには、可変BPF6として、高性能なBPF、従って、高価で大型のBPFを用いざるを得ないことになる。
【0021】
これに対し、この実施形態では、加算回路11で反射信号PTRが補正信号PCによって充分除去されるため、可変BPF6に供給される受信信号PRに混入する反射信号PER’も非常に少なくなり、従って、受信機7に供給される受信信号PRも充分抑圧された反射信号PTRが混入したものとなる。この結果、受信機7はS/Nが大幅に向上するし、また、可変BPF6の通過帯域の設定に対する制約が緩和されることになる。このため、かかる可変BPF6としても、高価で大型なBPFを必要としない。
【0022】
なお、可変減衰回路8での減衰量や可変位相回路9での位相量やの微調整は、例えば、生産される全二重無線機の調整工程などで行なわれる。
【0023】
また、上記実施形態では、分配器10で分配された分配信号PT’に対し、まず、可変減衰回路8でレベル調整し、次いで、可変位相回路9で位相をほぼ180゜ずらすようにしたが、これとは逆に、分配信号PT’に対し、まず、可変位相回路9で位相をほぼ180゜ずらし、次いで、可変減衰回路8でレベル調整するようにしてもよい。
【0024】
さらに、送信信号PTの送信周波数fTと受信信号PRの受信周波数fRとが一致する場合も、本発明は適用可能である。
【0025】
【発明の効果】
以上説明したように、本発明によれば、アンテナから反射して受信機側へ混入する反射信号を大幅に抑圧することができるものであるから、送信周波数と受信周波数とが近接していても、この反射信号の受信信号への混入を効果的に防止できて、受信機のS/Nが大幅に向上する。また、可変BPFとしても、安価で小型のものを用いることができるから、全二重無線機の小型・軽量化,低コスト化が実現できる。
【図面の簡単な説明】
【図1】本発明による全二重無線機の一実施形態を示す構成図である。
【図2】図1に示す実施形態での送信信号PTと反射信号PTRと補正信号PCとのレベル・位相関係を摸式的に示す図である。
【図3】従来の全二重受信機に供給される受信信号と図1に示す全二重受信機に供給される受信信号とを比較して示す周波数スペクトル図である。
【図4】全二重無線機による通信を説明するための図である。
【図5】全二重無線機の一従来例を示す構成図である。
【符号の説明】
1 全二重無線機
2 アンテナ
3 送信機
4 可変BPF
5 サーキュレータ
6 可変BPF
7 受信機
8 可変減衰回路
9 可変位相回路
10 分配器
11 加算器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a full-duplex radio transmitting and receiving with a common antenna.
[0002]
[Prior art]
The full-duplex radio is provided with a transmitter / receiver, enables transmission / reception using one antenna, and performs bidirectional communication. That is, as shown in FIG. 4, when two full-duplex radios 1a and 1b are viewed, when one full-duplex radio 1a transmits the radio wave of the transmission signal from the antenna 2a, the other full-duplex radio 1a 1b receives this with its antenna 2b, and when the full-duplex radio 1b transmits the radio wave of the transmission signal from the antenna 2b, the full-duplex radio 1a receives this with its antenna 2b. Thereby, bidirectional communication can be performed between these full-duplex wireless devices 1a and 1b.
[0003]
FIG. 5 is a block diagram showing a conventional example of such a full-duplex radio, wherein 1 is a full-duplex radio, 2 is an antenna, 3 is a transmitter, 4 is a variable BPF (bandpass filter), and 5 is A circulator, 6 is a variable BPF, and 7 is a receiver.
[0004]
As shown in FIG. 5, the full-duplex radio 1 (corresponding to the full-duplex radio 1a in FIG. 4) includes a transmitter 3 and a receiver 7, and the transmission from the transmitter 3 is performed by the antenna 2. Signal transmission and reception by the receiver 7 can be performed. The transmitter 3 outputs a transmission signal (unmodulated continuous signal or modulated signal) P T having a transmission frequency f T. The transmission signal P T is processed by a variable BPF4 center frequency f T, is coupled to the antenna 2 through the circulator 5, it is radiated as radio waves from the antenna 4. Further, other radio wave transmitted from the (equivalent to full-duplex radio 1b in FIG. 4) is received from the antenna 2, the received signal P R of receiver frequency f R in the receiver 7 side by the circulator 5 Coupled. As a result, the received signal PR from the circulator 5 is processed by the variable BPF 6 having the center frequency f R , supplied to the receiver 7, and subjected to various processes such as demodulation (for example, see Patent Document 1).
[0005]
Here, in the transmitter 1, since the transmission signal PT is generated by the frequency synthesizing unit (not shown), phase noise is generated near the transmission signal PT , and this is the transmission signal output from the transmitter 3. Included in PT . The variable BPF 4 attenuates such phase noise, and its center frequency and passband are adjusted so that such attenuation is sufficiently performed. The variable BPF 6 is for attenuating a noise component in the vicinity of the band of the received signal P R , and its center frequency and pass band are adjusted so that such attenuation is sufficiently performed.
[0006]
[Patent Document 1]
JP-A-2000-115016
[0007]
[Problems to be solved by the invention]
By the way, in the full-duplex radio 1 shown in FIG. 5, if the impedance matching of the antenna 2 is not sufficient, a part of the transmission signal PT is reflected by the antenna 2, and a reflected signal PTR is generated. The reflected signal P TR is coupled to the receiver 7 by the circulator 5 and goes around the receiver 7. Therefore, when performing the received from the transmission and other radio transmission signal P T from the transmitter 3 at the same time, the transmission signal P T from the antenna 2 to the reception signal P R is supplied to a receiver 7 one The reflection signal P TR of the section is mixed at a constant level.
[0008]
Here, when the reception from other radios relatively close distance, since the level of the received signal P R is very high compared to the level of the reflected signal P TR, but not with each other problems, away in the case of reception from a distance of another radio, to say that the level of the reflected signal P TR is low, because the received signal P R the level from the other radio is low, the receiver 7, the It is affected by the reflected signal PTR . In particular, if the level of the reflected signal P TR is higher than the level of the received signal P R is an amplifier in the receiver 7 is affected by the reflected signal P TR, saturated in a state where the received signal P R is not sufficiently amplified This causes the S / N to deteriorate.
[0009]
At this time, if the transmission frequency f T and the reception frequency f R are sufficiently separated from each other, and if the pass bands of the variable BPF 4 on the transmitting side and the variable BPF 6 on the receiving side are detuned so as not to partially overlap, the reflected signal P TR is removed at a variable BPF6 the receiving side, the passage of the influence of the reflected signal P TR as described above does not occur, when the detuning is not sufficient, that is, a variable BPF6 receiving and variable BPF4 the sender If the band overlap even partially, particularly in the case of reception from other radio far distance, the influence of the reflected signal P TR is S / N of the receiver the received signal will be degraded.
[0010]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a full-duplex radio capable of solving such a problem and preventing deterioration of the S / N of a received signal due to a reflected signal of a transmitted signal from an antenna.
[0011]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a transmitter for generating a transmission signal in a first frequency band, a first band-pass filter for filtering a transmission signal, and a second band-pass filter for filtering a reception signal. A filter, a receiver to which a reception signal from the second band-pass filter is supplied, a transmission signal from the first band-pass filter to an antenna, and a reception signal received by the antenna to a second signal. A full-duplex wireless device including a circulator for coupling to a band-pass filter, wherein the distributor divides a transmission signal output from a first band-pass filter, and adjusts a level of the distribution signal from the distributor. Attenuating circuit, a phase circuit that adjusts the phase of the distribution signal from the distributor, and a distribution signal whose level is adjusted by the attenuation circuit and whose phase is adjusted by the phase circuit. As the signal is obtained by providing an adding circuit for supplying adds the received signals to a second band pass filter from the circulator.
[0012]
Then, the attenuation circuit makes the level of the distribution signal substantially equal to the level of a part of the reflection signal of the transmission signal reflected by the antenna, and the phase circuit shifts the phase of the distribution signal by almost 180 °, thus: The reflected signal from the antenna is canceled by the addition circuit by the distribution signal whose level is adjusted by the attenuation circuit and the phase is adjusted by the phase circuit.
[0013]
Further, the attenuator can adjust the amount of attenuation, and the phase circuit can adjust the amount of phase.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a full-duplex radio according to the present invention, wherein 8 is a variable attenuation circuit, 9 is a variable phase circuit, 10 is a distributor, 11 is an addition circuit, and FIG. Corresponding parts are denoted by the same reference numerals, and redundant description will be omitted.
[0015]
In FIG. 1, a transmission signal PT output from a variable BPF 4 is supplied to a circulator 8 via a distributor 10. In the distributor 10, a part of the transmission signal PT is converted to a distribution signal PT '. And distributed to the variable attenuation circuit 8. In the variable attenuating circuit 8, the attenuation is adjusted so that the level of the distribution signal P T ′ is reflected by the antenna 2 and becomes substantially equal to the level of the reflection signal P TR output from the circulator 5 to the receiver 7 side. The distribution signal P T ′ whose level has been adjusted by the variable attenuating circuit 8 is supplied to the variable phase circuit 9 and its phase is adjusted. In the variable phase circuit 9, the amount of phase is set such that the phase of the distribution signal PT ′ is substantially 180 ° relative to the phase of the reflection signal PTR output from the circulator 5 to the receiver 7. .
[0016]
In this way, the variable attenuation circuit 8 and the variable phase circuit 9, the distributed signals P T 'level, are phase adjusted, the correction signal P C of reversed phase relationships are obtained in almost equal level as the reflected signal P TR . The correction signal P C is supplied to the adding circuit 11, it is added to the reflected signal P TR from the circulator 5.
[0017]
Figure 2 is a diagram showing the level and phase relationship between the transmit signal P T and the reflected signal P TR and the correction signal P C in schematic manner, as illustrated, it transmits the signal P T and substantially in phase of the reflected signal P TR to the correction signal P C level is substantially equal phase are approximately 180 ° out, thereby, the adding circuit 11, so that the reflected signal P RT is canceled substantially by the correction signal P C.
[0018]
Therefore, even if reflection of the transmitted signal due to impedance mismatching in the antenna 2, with the reflected signal P TR synthesis circuit 11, the correction signal P C, will be almost removed, it is fed to the receiver 7 because so that the reflected signal P TR is mostly removed from the received signal P R, S / N of the receiver 7 is significantly improved.
[0019]
FIG. 3 is a frequency spectrum diagram showing a comparison between the received signal P R supplied to the receiver 7 in the conventional example shown in FIG. 5 and the received signal P R supplied to the receiver 7 in this embodiment. there, here, a case where the received signal P R is low. Note that P TR ′ is an input signal of the variable BPF 6, and signals corresponding to FIG.
[0020]
5, in the conventional example shown in FIG. 5, the pass band of the variable BPF 6 is adjusted so that the reflected signal P TR from the antenna 2 is not supplied to the receiver 7, and the reflected signal P TR is sufficiently adjusted by the variable BPF 6. To attenuate. However, if the reception frequency f R of the transmission frequency f T and the received signal P R of the transmission signal P T is close, to the received signal P R is supplied to a receiver 7, it requires a certain frequency band For this reason, as shown in the figure, the variable BPF 6 cannot be set to a pass band that sufficiently attenuates the reflection signal P TR , and the receiver 7 includes a large amount of the reflection signal P TR. received signal P R will be supplied it. For this reason, the S / N of the receiver 7 is significantly deteriorated. Further, in order to more effectively attenuate the reflection signal P TR , a high-performance BPF, that is, an expensive and large-sized BPF must be used as the variable BPF 6.
[0021]
In contrast, in this embodiment, since the reflected signals P TR by the addition circuit 11 is sufficiently removed by the correction signal P C, the reflected signal P ER 'is also very mixed into the received signal P R is supplied to the variable BPF6 Therefore, the received signal P R supplied to the receiver 7 is also a mixture of the sufficiently suppressed reflected signal P TR . As a result, the S / N of the receiver 7 is greatly improved, and the restriction on the setting of the pass band of the variable BPF 6 is eased. Therefore, the variable BPF 6 does not require an expensive and large BPF.
[0022]
The fine adjustment of the amount of attenuation in the variable attenuation circuit 8 and the amount of phase in the variable phase circuit 9 are performed, for example, in an adjustment process of a manufactured full-duplex radio.
[0023]
In the above embodiment, the level of the distribution signal PT ′ distributed by the distributor 10 is first adjusted by the variable attenuation circuit 8, and then the phase is shifted by approximately 180 ° by the variable phase circuit 9. Conversely, the phase of the distribution signal PT ′ may be shifted by about 180 ° by the variable phase circuit 9 and then the level may be adjusted by the variable attenuation circuit 8.
[0024]
Furthermore, even when the reception frequency f R of the transmission frequency f T and the received signal P R of the transmission signal P T is consistent, the present invention is applicable.
[0025]
【The invention's effect】
As described above, according to the present invention, since the reflected signal reflected from the antenna and mixed into the receiver can be greatly suppressed, even if the transmission frequency and the reception frequency are close to each other. The reflection signal can be effectively prevented from being mixed into the reception signal, and the S / N of the receiver is greatly improved. In addition, since an inexpensive and small BPF can be used as the variable BPF, the size, weight, and cost of the full-duplex radio can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an embodiment of a full-duplex wireless device according to the present invention.
2 is a diagram schematically illustrating the level and phase relationship between the transmit signal P T and the reflected signal P TR and the correction signal P C of the embodiment shown in FIG.
FIG. 3 is a frequency spectrum diagram showing a comparison between a received signal supplied to the conventional full-duplex receiver and a received signal supplied to the full-duplex receiver shown in FIG. 1;
FIG. 4 is a diagram for explaining communication by a full-duplex wireless device.
FIG. 5 is a configuration diagram illustrating a conventional example of a full-duplex wireless device.
[Explanation of symbols]
1 Full-duplex radio 2 Antenna 3 Transmitter 4 Variable BPF
5 Circulator 6 Variable BPF
7 receiver 8 variable attenuation circuit 9 variable phase circuit 10 distributor 11 adder

Claims (3)

第1の周波数帯域の送信信号を生成する送信機と、該送信信号をフィルタリングする第1の帯域通過フィルタと、受信信号をフィルタリングする第2の帯域通過フィルタと、該第2の帯域通過フィルタからの該受信信号が供給される受信機と、該第1の帯域通過フィルタからの該送信信号をアンテナにカップリングし、かつ該アンテナで受信された該受信信号を該第2の帯域通過フィルタにカップリングするサーキュレータとを備えた全二重無線機において、
該第1の帯域通過フィルタから出力される該送信信号を分配する分配器と、
該分配器からの分配信号のレベルを調整する減衰回路と、
該分配器からの分配信号の位相を調整する位相回路と、
該減衰回路でレベルが調整され、かつ該位相回路で位相が調整された該分配信号を、補正信号として、該サーキュレータからの受信信号に加算して該第2の帯域通過フィルタに供給する加算回路と
を設けたことを特徴とする全二重無線機。
A transmitter for generating a transmission signal of a first frequency band, a first bandpass filter for filtering the transmission signal, a second bandpass filter for filtering a reception signal, and a second bandpass filter. And a receiver to which the received signal is supplied, and coupling the transmitted signal from the first band-pass filter to an antenna, and coupling the received signal received by the antenna to the second band-pass filter. In a full-duplex radio equipped with a circulator for coupling,
A distributor that distributes the transmission signal output from the first band-pass filter;
An attenuation circuit for adjusting a level of a distribution signal from the distributor;
A phase circuit for adjusting the phase of the distribution signal from the distributor;
An adding circuit that adds the distribution signal, the level of which is adjusted by the attenuating circuit and the phase of which is adjusted by the phase circuit, to a reception signal from the circulator as a correction signal and supplies the signal to the second band-pass filter And a full-duplex radio.
請求項1において、
前記減衰回路は、前記分配信号のレベルを、前記アンテナで反射される前記送信信号の一部の反射信号のレベルにほぼ等しくし、
前記位相回路は、前記分配信号の位相をほぼ180゜ずらし、
前記加算回路で、前記アンテナからの該反射信号を打ち消すことを特徴とする全二重無線機。
In claim 1,
The attenuation circuit makes the level of the distribution signal substantially equal to the level of a part of the transmission signal reflected by the antenna, and
The phase circuit shifts the phase of the distribution signal by approximately 180 °,
A full-duplex radio, wherein the adder circuit cancels the reflected signal from the antenna.
請求項2において、
前記減衰器はその減衰量を、また、前記位相回路はその位相量を夫々調整可能であることを特徴とする全二重無線機。
In claim 2,
A full-duplex radio, wherein the attenuator can adjust the amount of attenuation, and the phase circuit can adjust the amount of phase.
JP2002361186A 2002-12-12 2002-12-12 Full duplex radio equipment Pending JP2004194097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361186A JP2004194097A (en) 2002-12-12 2002-12-12 Full duplex radio equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361186A JP2004194097A (en) 2002-12-12 2002-12-12 Full duplex radio equipment

Publications (1)

Publication Number Publication Date
JP2004194097A true JP2004194097A (en) 2004-07-08

Family

ID=32760032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361186A Pending JP2004194097A (en) 2002-12-12 2002-12-12 Full duplex radio equipment

Country Status (1)

Country Link
JP (1) JP2004194097A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668653B1 (en) 2004-08-18 2007-01-12 한국전자통신연구원 Apparatus and method for separation transmitting and receiving signal for time division duplexing radio system
US7778611B2 (en) 2006-05-29 2010-08-17 Tokyo Institute Of Technology Radio communication apparatus and radio communication method
JP2011055078A (en) * 2009-08-31 2011-03-17 Nec Corp Time division multiplexing wireless system and reflected signal attenuation method thereof
WO2014061444A1 (en) * 2012-10-17 2014-04-24 株式会社村田製作所 Transceiver device
WO2014061443A1 (en) * 2012-10-17 2014-04-24 株式会社村田製作所 Transceiver device
WO2015002127A1 (en) * 2013-07-01 2015-01-08 株式会社村田製作所 Power amplification module, and front end circuit
WO2015045538A1 (en) * 2013-09-26 2015-04-02 株式会社村田製作所 High frequency power amplifier, high frequency front end circuit, and wireless communication device
WO2015115001A1 (en) * 2014-02-03 2015-08-06 シャープ株式会社 Communication circuit and communication apparatus
WO2016076478A1 (en) * 2014-11-12 2016-05-19 순천향대학교 산학협력단 Hybrid coupler using intentional mismatching
WO2018008274A1 (en) * 2016-07-08 2018-01-11 株式会社村田製作所 Front-end module and communication device
US9985673B2 (en) 2014-03-31 2018-05-29 Murata Manufacturing Co., Ltd. Transmission-reception apparatus and reflected signal suppressing method
US10009048B2 (en) 2013-12-20 2018-06-26 Murata Manufacturing Co., Ltd. High-frequency circuit and transmission and reception circuit using high-frequency circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668653B1 (en) 2004-08-18 2007-01-12 한국전자통신연구원 Apparatus and method for separation transmitting and receiving signal for time division duplexing radio system
US7778611B2 (en) 2006-05-29 2010-08-17 Tokyo Institute Of Technology Radio communication apparatus and radio communication method
JP2011055078A (en) * 2009-08-31 2011-03-17 Nec Corp Time division multiplexing wireless system and reflected signal attenuation method thereof
US9739871B2 (en) 2012-10-17 2017-08-22 Murata Manufacturing Co., Ltd. Transmission-reception apparatus
US9407315B2 (en) 2012-10-17 2016-08-02 Murata Manufacturing Co., Ltd. Transmission/reception device
WO2014061443A1 (en) * 2012-10-17 2014-04-24 株式会社村田製作所 Transceiver device
WO2014061444A1 (en) * 2012-10-17 2014-04-24 株式会社村田製作所 Transceiver device
WO2015002127A1 (en) * 2013-07-01 2015-01-08 株式会社村田製作所 Power amplification module, and front end circuit
WO2015001828A1 (en) * 2013-07-01 2015-01-08 株式会社村田製作所 Front-end circuit
US10128796B2 (en) 2013-07-01 2018-11-13 Murata Manufacturing Co., Ltd. Power amplification module and front end circuit
WO2015045538A1 (en) * 2013-09-26 2015-04-02 株式会社村田製作所 High frequency power amplifier, high frequency front end circuit, and wireless communication device
JPWO2015045538A1 (en) * 2013-09-26 2017-03-09 株式会社村田製作所 High frequency power amplifier, high frequency front end circuit, wireless communication device
US9787334B2 (en) 2013-09-26 2017-10-10 Murata Manufacturing Co., Ltd. High frequency power amplifier, high frequency front-end circuit, and radio communication device
US10009048B2 (en) 2013-12-20 2018-06-26 Murata Manufacturing Co., Ltd. High-frequency circuit and transmission and reception circuit using high-frequency circuit
WO2015115001A1 (en) * 2014-02-03 2015-08-06 シャープ株式会社 Communication circuit and communication apparatus
US9985673B2 (en) 2014-03-31 2018-05-29 Murata Manufacturing Co., Ltd. Transmission-reception apparatus and reflected signal suppressing method
WO2016076478A1 (en) * 2014-11-12 2016-05-19 순천향대학교 산학협력단 Hybrid coupler using intentional mismatching
WO2018008274A1 (en) * 2016-07-08 2018-01-11 株式会社村田製作所 Front-end module and communication device
US10419039B2 (en) 2016-07-08 2019-09-17 Murata Manufacturing Co., Ltd. Front end module and communication apparatus

Similar Documents

Publication Publication Date Title
US7894779B2 (en) Apparatus and method for transmitting and receiving multiple radio signals over a single antenna
US6961019B1 (en) Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US20070298838A1 (en) Apparatus and method for improving reception in a system with multiple transmitters and receivers operating on a single antenna
AU678915B2 (en) Transmitter-receiver
US7555280B2 (en) Apparatus for frequency direct conversion reception in mobile communication terminal and method thereof
JP2004194097A (en) Full duplex radio equipment
KR101741260B1 (en) Method And Apparatus For Removing Introduced Signal And Cognitive Radio Apparatus Using Thereof
KR101723233B1 (en) Wireless communication apparatus improved tx/rx isolation
EP0905914A2 (en) Apparatus for cancelling radio frequency interference between transmitting antenna and receiving antenna, repeating system and transmitting and receiving system using the same
JP2000091943A (en) Radio communication device
WO2014061444A1 (en) Transceiver device
JPH09116459A (en) Device for eliminating interference between transmission and reception
JP2006279309A (en) Wireless apparatus
KR100302118B1 (en) Full Band Hopping / Frequency Division Full Duplex
JPH02151130A (en) Antenna multicoupler
JP4687456B2 (en) Power amplification circuit unit and wireless communication device using the same
KR20000074437A (en) Interference cancellation system with phase compensation circuitry
US5881054A (en) Frequency division duplex transmitter which attenuates the difference between a receiving frequency an output frequency from a second oscillator
JPH0294821A (en) Attenuating device for interference wave between transmitter and receiver in radio equipment
KR20010027324A (en) Transmitter-receiver of relay center system
JPH05304492A (en) Radio communication equipment
JPS59232A (en) Common use device of antenna
JP3013394B2 (en) Demultiplexer
KR100737555B1 (en) Apparatus for adaptation interference controlling in mobile communication system
JPH01174018A (en) Transmission and reception sneaking elimination circuit for transmitter-receiver