JP2004193937A - Method for forming antenna conductor pattern of radar antenna for millimeter wave - Google Patents

Method for forming antenna conductor pattern of radar antenna for millimeter wave Download PDF

Info

Publication number
JP2004193937A
JP2004193937A JP2002359144A JP2002359144A JP2004193937A JP 2004193937 A JP2004193937 A JP 2004193937A JP 2002359144 A JP2002359144 A JP 2002359144A JP 2002359144 A JP2002359144 A JP 2002359144A JP 2004193937 A JP2004193937 A JP 2004193937A
Authority
JP
Japan
Prior art keywords
conductor pattern
pattern
antenna
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359144A
Other languages
Japanese (ja)
Inventor
Kazuo Shiraishi
一男 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002359144A priority Critical patent/JP2004193937A/en
Publication of JP2004193937A publication Critical patent/JP2004193937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formation method for an antenna conductor pattern of a radar antenna for millimeter waves which enables formation of a high-precision antenna conductor pattern on the internal surface of a plastic molding which curves with a specific curvature. <P>SOLUTION: A parabolic plastic molding 10 having predetermined curvature is manufactured by plastic molding. On the internal surface of the plastic molding 10, a plated underlying layer is formed by electroless copper plating or the like. Using the plated underlying layer as a cathode, electrolytic copper plating is performed, and a conductor layer 21 of copper of specified thickness is formed. Moreover, the conductor layer 21 is worked into a conductor pattern 21a by a laser of a wavelength of 532 nm. Furthermore, a nickel layer of predetermined thickness is formed on the surface of the conductor pattern 21a, to obtain a radar antenna 20 for millimeter waves. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ミリ波用レーダーアンテナのアンテナ導体パターンの形成方法に関する。
【0002】
【従来の技術】
最近、安全上の問題から自動車の追突防止等を目的としてミリ波用レーダーアンテナを用いて走行中の自動車の車間距離を自動計測する自動運転支援システムの開発、一部実用化が行われている。
このシステムに用いられるミリ波用レーダーアンテナは所定の曲率を持ったパラボラ型のプラスチック成型品の内面に導体幅100μm前後の導体パターンを形成したアンテナが形成されている。
【0003】
以下、ミリ波用レーダーアンテナのアンテナ導体パターンの形成方法について説明する。
図2(a)〜(f)に、従来のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法の工程の一例を示す。
まず、プラスチックの成型加工にて特定の曲率を有するパラボラ状のプラスチック成型品10を作製する(図2(a)参照)。
【0004】
次に、プラスチック成型品10の内面10aを粗化処理、触媒核付与及び活性化処理を行った後、無電解銅めっき等により、プラスチック成型品10の内面にめっき下地導体層を形成する(特に、図示せず)。さらに、めっき下地層をカソードにして電解銅めっきを行い、所定厚の銅からなる導体層21を形成する(図2(b)参照)。
【0005】
次に、回転塗布法、ドライフィルムの貼付法等により、導体層21上に所定厚の感光層(レジスト)31を形成する(図2(c)参照)。
【0006】
次に、遮光パターン41が形成された露光マスク40を用いて、パターン露光を行い、感光層(レジスト)にパターン潜像を形成する(図2(d)参照)。
ここで、露光マスク40はガラス基板等の透明な剛体に遮光パターンを形成したものであるから、今回のような湾曲したプラスチック成型品10の内面の感光層(レジスト)31に露光マスク40を密着させることができない。そのため、露光マスクの位置によって距離が変わり、パターン位置によってパターン形状に形状差及びバラツキを生じることになる。
【0007】
次に、専用の現像液で感光層(レジスト)31を現像処理し、乾燥、ポストベークを行って、導体層21上にレジストパターン31aを形成する(図2(e)参照)。
【0008】
次に、レジストパターン31aをエッチングマスクにして、塩化第2鉄液等のエッチング液で導体層21をエッチング処理し、専用の剥離液でレジストパターン31aを除去して、プラスチック成型品10の内面にアンテナ導体パターン21aを形成し、ミリ波用レーダーアンテナ30を得る(図2(f)参照)。
【0009】
【発明が解決しようとする課題】
上記アンテナ導体パターンの形成方法でも分かるように、プラスチック成型品10の内面がある曲率を持って湾曲しているため、従来のフォトエッチング法を適用した場合フォトリソ工程の感光層(レジスト)及びパターン露光工程がそのまま適用できず、特に、パターン露光工程での位置によるパターン形状歪み、パターン幅バラツキが発生する。
導体幅100μm前後の導体パターンを歪み無く、パターン幅バラツキを所定の値に入れようとすると、10%程度の製造歩留まりとなり、問題となっていた。
本発明は、上記問題点に鑑み考案されたもので、特定の曲率を持って湾曲しているプラスチック成型品の内面に高精度のアンテナ導体パターンが形成できるミリ波用レーダーアンテナのアンテナ導体パターンの形成方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に於いて上記課題を達成するために、本発明では、ミリ波用レーダーアンテナの導体パターンの加工方法であって、少なくとも以下の工程を備えることを特徴とするミリ波用レーダーアンテナのアンテナ導体パターンの形成方法としたものである。
(a)プラスチック成形加工にて所定の曲率を有するプラスチック成型品10を作製する工程。
(b)プラスチック成型品10の内面に無電解銅めっき等によりめっき下地層を形成し、めっき下地層をカソードにして電解銅めっきを行い、所定厚の銅からなる導体層21を形成する工程。
(c)導体層21を波長532nmのレーザにてパターン加工を行い、所定のパターン幅、ピッチのアンテナ導体パターン21aを形成する工程。
(d)電解ニッケルめっき等により導体パターン21aの表面に所定厚のニッケル層を形成する工程。
【0011】
【発明の実施の形態】
以下本発明の実施の形態につき説明する。
本発明のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法は、特定の曲率を持って湾曲しているプラスチック成型品の内面に形成された銅からなる導体層を選択加工性を有する波長532nmのレーザ(グリーンレーザ)ビームを用いてパターン加工することにより、パターン形状歪みのない、パターン加工精度に優れた導体パターンを特定の曲率を持って湾曲しているプラスチック成型品の内面に形成することができる。
【0012】
以下、本発明のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法について説明する。
図1(a)〜(c)に、本発明のミリ波用レーダーアンテナの導体パターンの形成方法の工程の一例を示す。
まず、プラスチック成型加工にて特定の曲率を有するパラボラ状のプラスチック成型品10を作製する(図1(a)参照)。
【0013】
次に、プラスチック成型品10の内面10aを粗化処理、触媒核付与及び活性化処理を行った後、無電解銅めっき等により、プラスチック成型品10の内面にめっき下地導体層を形成する(特に、図示せず)。さらに、めっき下地層をカソードにして電解銅めっきにて所定厚の銅からなる導体層21を形成する(図1(b)参照)。
ここで、導体層21は、膜厚2〜3μmの銅からなる導体層が用いられる。
【0014】
次に、Nd:YAGレーザ(基本波:1064nm)の第2高調波レーザ(波長:532nm)を用いて、レーザビーム径、出力を調整して、導体層21上をビームスキャンして、所定幅の導体パターン加工を行い、パラボラ状のプラスチック成型品10の内面にアンテナ導体パターン21a形成して、ミリ波用レーダーアンテナ20を得る(図1(c)参照)。
ここで、Nd:YAGレーザ(基本波:1064nm)の第2高調波レーザ(波長:532nm)はグリーンレーザとも呼ばれ、Nd:YAGレーザ(基本波:1064nm)に対して、ビーム径は半分に、エネルギー密度は4倍にすることができ、銅等の反射率の高い金属の加工適性に優れているのが特徴である。
【0015】
上記したように、銅からなる導体層をNd:YAGレーザ(基本波:1064nm)の第2高調波レーザ(波長:532nm)を用いて、パターン加工することにより、パターン形状歪みのない、高精度の導体パターンを高歩留まりで得ることができる。
また、フォトリソ工程の感光層(レジスト)形成、パターン露光、現像工程の一連のパターニング処理を必要としないため、導体パターンの形成工程が簡略化され、コストダウンを図ることができる。
【0016】
【実施例】
以下実施例により本発明を詳細に説明する。
まず、プラスチック成型加工にて、スチロール変性樹脂(ザレック120:出光石油化学製)を用いて、厚み1.7mm、直径80mm、曲率半径R−40mmのパラボラ状のプラスチック成型品10を作製した(図1(a)参照)。
【0017】
次に、過マンガン酸カリウム溶液でプラスチック成型品10の内面10aを粗面化処理した後、パラジウム溶液で触媒核付与し、無電解銅めっきにより0.2μm厚のめっき下地層を形成し、めっき下地層をカソードにして電解銅めっきを行い、3μm厚の銅からなる導体層21を形成した(図1(b)参照)。
【0018】
次に、YAGグリーンスキャンマーカ(ECOMARKER(商品名):ML9010A、ミヤチテクノス株式会社製)を用いて波長:532nmでのレーザパターン加工を行い、パターン幅130μm、ピッチ570μmのアンテナ導体パターン21aを形成した。さらに、電解ニッケルめっきにて0.2μm厚のニッケル層を形成し、ミリ波用レーダーアンテナ20を得た(図1(c)参照)。
【0019】
得られたミリ波用レーダーアンテナのアンテナ導体パターン21aのパターン幅を測長顕微鏡にて測定した結果、パターン幅設定値130μmに対し、アンテナ導体パターン21aのパターン幅は、ミリ波用レーダーアンテナの全域にわたって、±20μmの範囲に入っており、許容できるものであった
【0020】
【発明の効果】
上記したように、本発明のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法を用いることにより、特定の曲率で湾曲したパラボラ状のプラスチック成型品の内面に、パターン形状歪みのない、高精度の導体パターンを高歩留まりで得ることができる。
また、フォトリソ工程の感光層(レジスト)形成、パターン露光、現像工程の一連のパターニング処理を必要としないため、導体パターンの形成工程が簡略化され、製造コストのコストダウンを図ることができる。
【図面の簡単な説明】
【図1】(a)〜(c)は、本発明のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法の一例を示す模式構成断面図である。
【図2】(a)〜(f)は、従来のミリ波用レーダーアンテナのアンテナ導体パターンの形成方法の一例を示す模式構成断面図である。
【符号の説明】
10……プラスチック成型品
1a……プラスチック成型品の内面
20、30……ミリ波用レーダーアンテナ
21……導体層
21a……アンテナ導体パターン
31……感光層(レジスト)
31a……レジストパターン
40……露光マスク
41……遮光パターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming an antenna conductor pattern of a millimeter wave radar antenna.
[0002]
[Prior art]
Recently, an autonomous driving support system that automatically measures the distance between vehicles using a millimeter-wave radar antenna for the purpose of preventing rear-end collision of vehicles due to safety issues has been developed and partially put into practical use. .
The millimeter-wave radar antenna used in this system has a parabolic plastic molded product having a predetermined curvature and an inner surface formed with a conductor pattern having a conductor width of about 100 μm.
[0003]
Hereinafter, a method of forming the antenna conductor pattern of the millimeter wave radar antenna will be described.
2A to 2F show an example of a process of a method for forming an antenna conductor pattern of a conventional millimeter wave radar antenna.
First, a parabolic plastic molded product 10 having a specific curvature is produced by plastic molding (see FIG. 2A).
[0004]
Next, after subjecting the inner surface 10a of the plastic molded product 10 to a roughening treatment, a catalyst nucleus provision and an activation treatment, a plating base conductor layer is formed on the inner surface of the plastic molded product 10 by electroless copper plating or the like (particularly, , Not shown). Further, electrolytic copper plating is performed using the plating base layer as a cathode to form a conductor layer 21 made of copper having a predetermined thickness (see FIG. 2B).
[0005]
Next, a photosensitive layer (resist) 31 having a predetermined thickness is formed on the conductor layer 21 by a spin coating method, a dry film sticking method, or the like (see FIG. 2C).
[0006]
Next, pattern exposure is performed using the exposure mask 40 on which the light-shielding pattern 41 is formed to form a pattern latent image on the photosensitive layer (resist) (see FIG. 2D).
Here, since the exposure mask 40 is formed by forming a light-shielding pattern on a transparent rigid body such as a glass substrate, the exposure mask 40 is closely attached to the photosensitive layer (resist) 31 on the inner surface of the curved plastic molded product 10 like this time. I can't let it. For this reason, the distance changes depending on the position of the exposure mask, and a pattern difference and variation occur in the pattern shape depending on the pattern position.
[0007]
Next, the photosensitive layer (resist) 31 is developed with a dedicated developer, dried, and post-baked to form a resist pattern 31a on the conductor layer 21 (see FIG. 2E).
[0008]
Next, using the resist pattern 31a as an etching mask, the conductor layer 21 is etched with an etching solution such as a ferric chloride solution, and the resist pattern 31a is removed with a dedicated stripping solution. The antenna conductor pattern 21a is formed to obtain the millimeter wave radar antenna 30 (see FIG. 2F).
[0009]
[Problems to be solved by the invention]
As can be seen from the above-described method of forming the antenna conductor pattern, since the inner surface of the plastic molded product 10 is curved with a certain curvature, the photosensitive layer (resist) and the pattern exposure in the photolithography process when a conventional photoetching method is applied. The process cannot be applied as it is, and in particular, pattern shape distortion and pattern width variation due to positions in the pattern exposure process occur.
If a conductor pattern having a conductor width of about 100 μm is not distorted and the pattern width variation is set to a predetermined value, the production yield becomes about 10%, which is a problem.
The present invention has been devised in view of the above problems, and a high precision antenna conductor pattern can be formed on the inner surface of a plastic molded product that is curved with a specific curvature. An object is to provide a forming method.
[0010]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, the present invention provides a method for processing a conductor pattern of a millimeter wave radar antenna, wherein the antenna of the millimeter wave radar antenna includes at least the following steps. This is a method for forming a conductor pattern.
(A) A step of producing a plastic molded product 10 having a predetermined curvature by plastic molding.
(B) A step of forming a plating base layer on the inner surface of the plastic molded article 10 by electroless copper plating or the like, performing electrolytic copper plating using the plating base layer as a cathode, and forming a conductor layer 21 made of copper of a predetermined thickness.
(C) a step of patterning the conductor layer 21 with a laser having a wavelength of 532 nm to form an antenna conductor pattern 21a having a predetermined pattern width and pitch.
(D) forming a nickel layer having a predetermined thickness on the surface of the conductor pattern 21a by electrolytic nickel plating or the like;
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The method for forming an antenna conductor pattern of a millimeter-wave radar antenna according to the present invention is a method of forming a conductor layer made of copper formed on the inner surface of a plastic molded product having a specific curvature and having a wavelength of 532 nm having a selective processability. By performing pattern processing using a laser (green laser) beam, it is possible to form a conductor pattern with no pattern distortion and excellent pattern processing accuracy on the inner surface of a plastic molded product that is curved with a specific curvature. it can.
[0012]
Hereinafter, a method of forming the antenna conductor pattern of the millimeter wave radar antenna of the present invention will be described.
FIGS. 1A to 1C show an example of steps of a method for forming a conductor pattern of a millimeter wave radar antenna according to the present invention.
First, a parabolic plastic molded product 10 having a specific curvature is produced by plastic molding (see FIG. 1A).
[0013]
Next, after subjecting the inner surface 10a of the plastic molded product 10 to a roughening treatment, a catalyst nucleus provision and an activation treatment, a plating base conductor layer is formed on the inner surface of the plastic molded product 10 by electroless copper plating or the like (particularly, , Not shown). Further, a conductor layer 21 made of copper having a predetermined thickness is formed by electrolytic copper plating using the plating base layer as a cathode (see FIG. 1B).
Here, a conductor layer made of copper having a thickness of 2 to 3 μm is used as the conductor layer 21.
[0014]
Next, using a second harmonic laser (wavelength: 532 nm) of a Nd: YAG laser (fundamental wave: 1064 nm), the laser beam diameter and output are adjusted, and a beam scan is performed on the conductor layer 21 to obtain a predetermined width. The antenna conductor pattern 21a is formed on the inner surface of the parabolic plastic molded article 10 to obtain the millimeter wave radar antenna 20 (see FIG. 1C).
Here, the second harmonic laser (wavelength: 532 nm) of the Nd: YAG laser (fundamental wave: 1064 nm) is also called a green laser, and the beam diameter is reduced to half that of the Nd: YAG laser (fundamental wave: 1064 nm). The energy density can be quadrupled, and it is characterized by excellent workability of metals having high reflectivity such as copper.
[0015]
As described above, the conductor layer made of copper is subjected to pattern processing using the second harmonic laser (wavelength: 532 nm) of Nd: YAG laser (fundamental wave: 1064 nm), so that there is no pattern shape distortion and high precision. Can be obtained with a high yield.
In addition, since a series of patterning processes of forming a photosensitive layer (resist), exposing a pattern, and developing in a photolithography process are not required, the process of forming a conductor pattern can be simplified and cost can be reduced.
[0016]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
First, by plastic molding, a parabolic plastic molded product 10 having a thickness of 1.7 mm, a diameter of 80 mm, and a radius of curvature of R-40 mm was manufactured using a styrene-modified resin (Zarek 120: manufactured by Idemitsu Petrochemical) (FIG. 1 (a)).
[0017]
Next, after roughening the inner surface 10a of the plastic molded article 10 with a potassium permanganate solution, a catalyst nucleus is provided with a palladium solution, and a 0.2 μm thick plating base layer is formed by electroless copper plating. Electrolytic copper plating was performed using the underlayer as a cathode to form a conductor layer 21 made of copper having a thickness of 3 μm (see FIG. 1B).
[0018]
Next, laser pattern processing was performed at a wavelength of 532 nm using a YAG green scan marker (ECOMMARKER (trade name): ML9010A, manufactured by Miyachi Technos Co., Ltd.) to form an antenna conductor pattern 21a having a pattern width of 130 μm and a pitch of 570 μm. . Further, a nickel layer having a thickness of 0.2 μm was formed by electrolytic nickel plating to obtain a millimeter wave radar antenna 20 (see FIG. 1C).
[0019]
As a result of measuring the pattern width of the antenna conductor pattern 21a of the obtained millimeter wave radar antenna using a length-measuring microscope, the pattern width of the antenna conductor pattern 21a was found to be the entire area of the millimeter wave radar antenna for a pattern width set value of 130 μm. Over a range of ± 20 μm, which was acceptable.
【The invention's effect】
As described above, by using the method of forming the antenna conductor pattern of the millimeter-wave radar antenna of the present invention, the inner surface of a parabolic plastic molded product that is curved at a specific curvature has no pattern shape distortion and high precision. A conductor pattern can be obtained with a high yield.
In addition, since a series of patterning processes of forming a photosensitive layer (resist), pattern exposure, and developing in the photolithography process are not required, the process of forming a conductor pattern can be simplified, and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIGS. 1A to 1C are schematic sectional views showing an example of a method for forming an antenna conductor pattern of a millimeter wave radar antenna according to the present invention.
FIGS. 2A to 2F are schematic sectional views showing an example of a method of forming an antenna conductor pattern of a conventional millimeter wave radar antenna.
[Explanation of symbols]
10 plastic molded product 1a inner surface 20 of plastic molded product 30, 30 millimeter wave radar antenna 21 conductor layer 21a antenna conductor pattern 31 photosensitive layer (resist)
31a resist pattern 40 exposure mask 41 light-shielding pattern

Claims (1)

ミリ波用レーダーアンテナの導体パターンの加工方法であって、少なくとも以下の工程を備えることを特徴とするミリ波用レーダーアンテナのアンテナ導体パターンの形成方法。
(a)プラスチック成形加工にて所定の曲率を有するパラボラ状のプラスチック成型品(10)を作製する工程。
(b)プラスチック成型品(10)の内面に無電解銅めっき等によりめっき下地層を形成し、めっき下地層をカソードにして電解銅めっきを行い、所定厚の銅からなる導体層(21)を形成する工程。
(c)導体層(21)を波長532nmのレーザにてパターン加工を行い、所定のパターン幅、ピッチのアンテナ導体パターン(21a)を形成する工程。
(d)電解ニッケルめっき等により導体パターン(21a)の表面に所定厚のニッケル層を形成する工程。
A method for processing a conductor pattern of a millimeter wave radar antenna, comprising at least the following steps:
(A) A step of producing a parabolic plastic molded product (10) having a predetermined curvature by plastic molding.
(B) A plating base layer is formed on the inner surface of the plastic molded product (10) by electroless copper plating or the like, and electrolytic copper plating is performed using the plating base layer as a cathode to form a conductor layer (21) made of copper having a predetermined thickness. Forming step.
(C) A step of patterning the conductor layer (21) with a laser having a wavelength of 532 nm to form an antenna conductor pattern (21a) having a predetermined pattern width and a predetermined pitch.
(D) forming a nickel layer having a predetermined thickness on the surface of the conductor pattern (21a) by electrolytic nickel plating or the like;
JP2002359144A 2002-12-11 2002-12-11 Method for forming antenna conductor pattern of radar antenna for millimeter wave Pending JP2004193937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359144A JP2004193937A (en) 2002-12-11 2002-12-11 Method for forming antenna conductor pattern of radar antenna for millimeter wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359144A JP2004193937A (en) 2002-12-11 2002-12-11 Method for forming antenna conductor pattern of radar antenna for millimeter wave

Publications (1)

Publication Number Publication Date
JP2004193937A true JP2004193937A (en) 2004-07-08

Family

ID=32758625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359144A Pending JP2004193937A (en) 2002-12-11 2002-12-11 Method for forming antenna conductor pattern of radar antenna for millimeter wave

Country Status (1)

Country Link
JP (1) JP2004193937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501393A (en) * 2006-08-21 2010-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tire sensor module and manufacturing method thereof
CN1874060B (en) * 2005-05-31 2011-09-07 株式会社半导体能源研究所 Method for manufacturing antenna and method for manufacturing semiconductor device
CN102738593A (en) * 2012-07-04 2012-10-17 四川省视频电子有限责任公司 High-precision antenna reflector forming process
US10573975B2 (en) 2018-01-10 2020-02-25 Taiwan Green Point Enterprises Co., Ltd. Method of making a conformal array antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874060B (en) * 2005-05-31 2011-09-07 株式会社半导体能源研究所 Method for manufacturing antenna and method for manufacturing semiconductor device
JP2010501393A (en) * 2006-08-21 2010-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tire sensor module and manufacturing method thereof
JP4904397B2 (en) * 2006-08-21 2012-03-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tire sensor module and manufacturing method thereof
CN102738593A (en) * 2012-07-04 2012-10-17 四川省视频电子有限责任公司 High-precision antenna reflector forming process
US10573975B2 (en) 2018-01-10 2020-02-25 Taiwan Green Point Enterprises Co., Ltd. Method of making a conformal array antenna
US11349224B2 (en) 2018-01-10 2022-05-31 Taiwan Green Point Enterprises Co., Ltd. Conformal array antenna

Similar Documents

Publication Publication Date Title
JP3131765B2 (en) Method for manufacturing phase shift mask
JPH09316666A (en) Cylindrical photomask, its production and method for forming dynamic pressure generating groove using cylindrical photomask
JP2004193937A (en) Method for forming antenna conductor pattern of radar antenna for millimeter wave
US20090155401A1 (en) Method of Forming Nanopattern and Substrate Having Pattern Formed Using the Method
TW202142963A (en) Production of three-dimensional structures by means of photoresists
TWI269937B (en) Phase shifting mask and method for preparing the same and method for preparing a semiconductor device using the same
EP0057268A2 (en) Method of fabricating X-ray lithographic masks
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
JP3563809B2 (en) Pattern formation method
JP3259417B2 (en) Method for producing thin metal layer pattern, film for pattern formation, and film capacitor
JP2002076575A (en) Method of manufacturing substrate for semiconductor device
WO2016185604A1 (en) Printed circuit board production method and etch resist pattern forming method
JPH07169669A (en) Formation of multilayer resist pattern and manufacture of semiconductor device
JPS6156317B2 (en)
JP2003183811A (en) Metal mask and manufacturing method therefor
CN114077160A (en) Transfer roller and manufacturing method thereof, and optical film and manufacturing method thereof
JP2004091909A (en) Electroforming method for plate made of copper with precision through part pattern used for mask for laser beam machine
JPH0353587A (en) Formation of resist pattern
JP2973627B2 (en) Printing plate manufacturing method
JP2587032B2 (en) Braille board manufacturing method
JPH01172580A (en) Manufacture of metallic pattern on curved surface body
JPH06260403A (en) Formation of stencil mask
JPH09186429A (en) Manufacture of stereoscopically molded circuit board
JPH02251195A (en) Manufacture of printed wiring board
JPH10115907A (en) Production of phase inversion mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515