JP2004193631A - Manufacturing method of silicon carbide thin film - Google Patents

Manufacturing method of silicon carbide thin film Download PDF

Info

Publication number
JP2004193631A
JP2004193631A JP2004081316A JP2004081316A JP2004193631A JP 2004193631 A JP2004193631 A JP 2004193631A JP 2004081316 A JP2004081316 A JP 2004081316A JP 2004081316 A JP2004081316 A JP 2004081316A JP 2004193631 A JP2004193631 A JP 2004193631A
Authority
JP
Japan
Prior art keywords
silicon carbide
thin film
substrate
carbon
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004081316A
Other languages
Japanese (ja)
Other versions
JP2004193631A5 (en
Inventor
Makoto Kitahata
真 北畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004081316A priority Critical patent/JP2004193631A/en
Publication of JP2004193631A publication Critical patent/JP2004193631A/en
Publication of JP2004193631A5 publication Critical patent/JP2004193631A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming 3C-SiC single crystal thin film of a single phase having less crystal defects on an Si wafer by making hetero epitaxial growth on the surface of an Si substrate. <P>SOLUTION: This method comprises a step for forming a silicon carbide by supplying a carbon and then heating the surface of the Si substrate to carbonize the surface, and a step for growing the silicon carbide by supplying the carbon and the silicon after carbonizing. A lot of terraces 5 and steps 6 exist on an offcut substrate surface of the Si because different surface reactivities are shown in a P direction 8 of a long stretch of atomic row parallel to a step edge 10 and in an N direction 7 of a short atomic row on the terrace which is perpendicular to the step edge 10 and segmentalized by the step edge 10. An SiC single crystal thin film of a single phase which comprises no anti-phase boundary (APB) and has less crystal defect can be formed on account of this anisotropy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、高パワーデバイス・高温デバイス・耐環境性デバイスなどの半導体素子に応用可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)の単結晶薄膜の製造方法に関する。特に、Si基板表面にヘテロエピタキシャル成長させることにより、Siウェハ上に結晶欠陥の少ない単相の3C-SiC単結晶薄膜を形成する方法に関する。   The present invention relates to a method of manufacturing a single crystal thin film of silicon carbide (SiC), which is a wide band gap semiconductor material applicable to semiconductor devices such as high power devices, high temperature devices, and environmental resistance devices. In particular, the present invention relates to a method for forming a single-phase 3C-SiC single-crystal thin film with few crystal defects on a Si wafer by heteroepitaxial growth on a Si substrate surface.

従来、6H型、4H型のSiC単結晶基板は市販されているが、移動度が最も大きい3C-SiCに関しては、Si基板上にヘテロエピタキシャル成長させた結晶が形成されていた。Si基板表面に炭化珪素を成長させる場合は、まずSi表面に炭素水素ガスを供給し加熱して炭化させ、その後に炭素と珪素を供給して炭化珪素をヘテロエピタキシャル成長させていた(特許文献1)。
特開平7−172997号公報
Conventionally, 6H-type and 4H-type SiC single-crystal substrates are commercially available, but for 3C-SiC having the highest mobility, a crystal formed by heteroepitaxial growth is formed on the Si substrate. When silicon carbide is grown on the surface of a Si substrate, first, a carbon-hydrogen gas is supplied to the surface of the Si to heat and carbonize, and then carbon and silicon are supplied to heteroepitaxially grow silicon carbide (Patent Document 1). .
JP-A-7-172997

この従来の技術によって形成された炭化珪素薄膜は、SiC/Si界面において、高密度の格子欠陥・ツウィン等の成長が起こり、電子デバイスを形成するための炭化珪素基板を作成するためには問題であった。更に、Si基板上に2種類のフェーズの単結晶粒が成長し、お互いに異なるフェーズの2種類の結晶粒の界面にアンチフェーズバウンダリー(APB)が形成されて、欠陥が多数導入されて問題であった。   The silicon carbide thin film formed by this conventional technique has a high density of growth of lattice defects and twins at the SiC / Si interface, which is a problem in producing a silicon carbide substrate for forming an electronic device. there were. Furthermore, single crystal grains of two types of phases grow on the Si substrate, and an anti-phase boundary (APB) is formed at the interface between the two types of crystal grains of different phases, and a large number of defects are introduced. Met.

図1にSi表面に炭素を供給して加熱し、炭化させてSiC結晶粒を形成するプロセスのメカニズムの概念図を示す。清浄なSi(001)表面において、2本のダングリングボンドを有するSi原子が[110]方向に連なっている。このダングリングボンドを炭素原子によりコンペンセイトすると、Si-C-Si..と連なったSi-C原子列が[110]方向に連なって形成される。ここで、炭素原子1と結合したSi原子2とそのもう一層下のSi原子3との間のボンドが切断されると、上記[110]方向に連なるSi-C-Si..原子列1−2がSi[110]方向に収縮し、SiC原子構造が形成される。off-cutの無いjust Si(001)表面においては、Si[110]方向と直行する下記式(数1)方向は区別することができず、Si(001)表面に同じ確立で現れる。   FIG. 1 shows a conceptual diagram of a mechanism of a process of forming SiC crystal grains by supplying carbon to a Si surface, heating and carbonizing the Si surface. On a clean Si (001) surface, Si atoms having two dangling bonds are connected in the [110] direction. When this dangling bond is compensated for by carbon atoms, a series of Si-C atoms linked to Si-C-Si .. is formed in a [110] direction. Here, when the bond between the Si atom 2 bonded to the carbon atom 1 and the Si atom 3 located further below is broken, the Si-C-Si. 2 shrinks in the Si [110] direction to form a SiC atomic structure. On the just Si (001) surface without off-cut, the direction of the following equation (1) orthogonal to the Si [110] direction cannot be distinguished, and appears on the Si (001) surface with the same probability.

Figure 2004193631
Figure 2004193631

このため、上記Si[110]方向への収縮は互いに直行する2方向に対してほぼ同じ確立で起こり、この異なる方向性を有する2種類のSiC結晶粒は互いに異なるフェーズを有する。異なるフェーズを有するSiC結晶粒は、成長によって互いに結合して一体になることが出来ず、界面にAPBを含む2フェーズの薄膜となってしまい問題であった。   For this reason, the contraction in the Si [110] direction occurs with almost the same probability in the two directions orthogonal to each other, and the two types of SiC crystal grains having different directions have different phases. The SiC crystal grains having different phases cannot be combined with each other by growth to be integrated, resulting in a two-phase thin film containing APB at the interface, which is a problem.

本発明は、前記従来の問題を解決するため、Si基板表面にヘテロエピタキシャル成長させることにより、Siウェハ上に結晶欠陥の少ない単相の3C-SiC単結晶薄膜を形成する方法を提供することを目的とする。   An object of the present invention is to provide a method for forming a single-phase 3C-SiC single-crystal thin film with few crystal defects on a Si wafer by heteroepitaxial growth on a Si substrate surface in order to solve the conventional problem. And

前記目的を達成するため、本発明の炭化珪素薄膜の製造方法は、炭化珪素(Si−C)薄膜の製造方法であって、炭素を供給しSi基板表面を加熱することにより表面を炭化させて炭化珪素を形成する工程と、炭化後に炭素と珪素を供給して炭化珪素を成長させる工程からなり、前記Si基板表面に異方性がありテラスとステップを形成することを特徴とする。   In order to achieve the above object, a method for producing a silicon carbide thin film of the present invention is a method for producing a silicon carbide (Si-C) thin film, in which carbon is supplied and the surface of the Si substrate is heated to carbonize the surface. The method includes a step of forming silicon carbide, and a step of growing carbon carbide by supplying carbon and silicon after carbonization, wherein terraces and steps are formed on the surface of the Si substrate having anisotropy.

前記構成においては、Si基板表面のテラスの幅が5オングストローム(0.5nm)以上1000オングストローム(100nm)以下であることが好ましい。   In the above structure, it is preferable that the width of the terrace on the surface of the Si substrate is not less than 5 angstroms (0.5 nm) and not more than 1000 angstroms (100 nm).

また前記構成においては、炭化珪素形成工程において、Si基板表面の温度が600℃以下の段階で炭素を供給することが好ましい。   In the above structure, in the silicon carbide forming step, it is preferable to supply carbon at a stage where the temperature of the surface of the Si substrate is 600 ° C. or lower.

また前記構成においては、Si基板表面を加熱して炭化し炭化珪素を形成する時に供給する炭素源が、少なくとも炭素原子等の分子線を含むことが好ましい。   In the above structure, it is preferable that the carbon source supplied when the silicon substrate is heated to carbonize to form silicon carbide includes at least a molecular beam such as a carbon atom.

また前記構成においては、炭化後に炭素とSiを供給して炭化珪素を成長させる工程において、炭化珪素表面がSiターミネイト表面に過剰なSi原子が付加している構造を成長表面として保持していることが好ましい。   In the above structure, in the step of growing carbon carbide by supplying carbon and Si after carbonization, the silicon carbide surface holds a structure in which excess Si atoms are added to the Si terminating surface as a growth surface. Is preferred.

前記した本発明において、炭化して炭化珪素を形成するSi基板の表面に異方性を付けてテラスとステップを導入することにより、従来の技術において問題であった2種類のフェーズを有する結晶粒の形成が、1つのフェーズの結晶粒に限定され、APBの形成が抑制される。   In the above-described present invention, by introducing terraces and steps by giving anisotropy to the surface of the Si substrate that forms silicon carbide by carbonizing, crystal grains having two types of phases, which were problems in the prior art, Is limited to one phase of crystal grains, and the formation of APB is suppressed.

更に、Si基板表面を加熱して炭化し炭化珪素を形成する時に供給する炭素源が、炭化水素等のガス状の物質だけではなく、少なくとも炭素原子等の分子線を含む場合にツウィンの形成が抑制される。   Further, when the carbon source supplied when heating the Si substrate surface to form carbonized silicon carbide is not only a gaseous substance such as a hydrocarbon, but also contains at least a molecular beam such as a carbon atom, the formation of twins is reduced. Is suppressed.

本発明によれば、炭化珪素(Si−C)薄膜の製造方法であって、炭素を供給しSi基板表面を加熱することにより表面を炭化させて炭化珪素を形成する工程と、炭化後に炭素と珪素を供給して炭化珪素を成長させる工程からなり、前記Si基板表面に異方性がありテラスとステップを形成することにより、Si基板表面にヘテロエピタキシャル成長させ、Siウェハ上に結晶欠陥の少ない単相の3C-SiC単結晶薄膜を形成できる。   According to the present invention, there is provided a method for producing a silicon carbide (Si—C) thin film, comprising the steps of: supplying carbon and heating the surface of a Si substrate to carbonize the surface to form silicon carbide; A step of supplying silicon to grow silicon carbide, by forming terraces and steps having anisotropy on the surface of the Si substrate, heteroepitaxially growing the surface of the Si substrate, and forming a single crystal with few crystal defects on the Si wafer. Phase 3C-SiC single crystal thin film can be formed.

また本発明の炭化珪素薄膜の製造方法により、APBを含まない単相の3C-SiC単結晶薄膜が制御性良く成長可能となり、電子デバイスに応用可能な3C-SiC単結晶薄膜が、Si基板上に形成できるようになった。   Further, the method for producing a silicon carbide thin film of the present invention enables a single-phase 3C-SiC single-crystal thin film not containing APB to grow with good controllability, and a 3C-SiC single-crystal thin film applicable to electronic devices can be formed on a Si substrate. Can be formed.

本発明の異方性をつけてテラスとステップを導入したSi基板表面の模式図を図2に示す。Si(001)表面4が[110]方向に傾けてoff-cutされており、テラス5とステップ6が導入されている。テラスの幅(ステップエッジと垂直方向:図2中のN方向7)は、ステップエッジと平行(図2中のP方向8)なテラスの長さに比べて非常に短く、off-cut角度が4度でステップ6の高さが1原子層の場合は、20オングストローム程度である。この短く連なったSi[110]原子列(図2のN方向7)は、長く連なっている図2のP方向8のSi[110]原子列に比べて、炭素と反応して収縮しSiC原子構造を形成することが容易である。つまり、テラスとステップが導入された表面においては、テラスの幅方向(図2のN方向7)のSi[110]原子列が選択的に収縮し供給炭素9とともにSiC原子構造を形成する。このように、just Si(001)表面に形成され問題であった2つのフェーズのSi結晶粒が、テラスとステップの導入により1つのフェーズに限定され単相のSiC単結晶薄膜となることを本発明者は確認した。   FIG. 2 is a schematic view of the surface of the Si substrate according to the present invention in which terraces and steps are introduced with anisotropy. The Si (001) surface 4 is off-cut inclined in the [110] direction, and a terrace 5 and a step 6 are introduced. The width of the terrace (vertical direction to the step edge: N direction 7 in FIG. 2) is much shorter than the length of the terrace parallel to the step edge (P direction 8 in FIG. 2), and the off-cut angle is small. In the case of 4 degrees and the height of step 6 is one atomic layer, it is about 20 angstroms. This short series of Si [110] atoms (N direction 7 in FIG. 2) reacts with carbon and shrinks compared to the long series of Si [110] atoms in P direction 8 in FIG. It is easy to form the structure. In other words, on the surface where the terraces and steps are introduced, the array of Si [110] atoms in the width direction of the terrace (N direction 7 in FIG. 2) is selectively contracted to form a SiC atomic structure together with the supplied carbon 9. In this way, the two-phase Si crystal grains formed on the just Si (001) surface and having problems were limited to one phase by the introduction of terraces and steps, and became a single-phase SiC single-crystal thin film. The inventor has confirmed.

テラス5とステップ6を含むSi(001)表面に炭素9を供給し炭化しSiC結晶粒を形成する場合、炭素9を炭化水素などのガス状の物質として供給するとツウィンが形成されやすく、例えば炭素原子などの分子線を含む炭素源を供給するとツウィンの形成が抑制されることも、本発明者は確認した。これは、次のような理由によると考えられる。ガスフェーズの炭素源とSi表面との反応を考えると、Si表面で最も反応性の高い状態にある原子から炭素との反応が始まると考えられる。Si表面で最も反応性の高い状態にあるSi原子は、表面に存在するステップエッジ10の位置にある原子であり、ガスフェーズの炭素9によるSi表面4の炭化は、ステップエッジ10から始まると考えられる。ステップエッジ10においては、基板のSi原子配列に段差が存在するため、その位置から方位の異なるツウィンが成長しやすい。一方、ガスフェーズの炭素だけでなく、例えば炭素原子などの分子線を含む炭素源を供給すると、Si基板との反応が、炭素が供給された任意の位置から起こり、ステップエッジ10の位置から選択的に起こることが抑制されテラス5上で起こる。このため、ステップエッジ10の位置からのツウィンの成長も抑制され、ツウィンの少ないSiC結晶薄膜が形成されることを確認した。   When carbon 9 is supplied to the Si (001) surface including the terrace 5 and the step 6 and carbonized to form SiC crystal grains, when carbon 9 is supplied as a gaseous substance such as hydrocarbon, twins are easily formed. The present inventors have also confirmed that the formation of twins is suppressed by supplying a carbon source including a molecular beam such as an atom. This is considered for the following reasons. Considering the reaction between the carbon source in the gas phase and the Si surface, it is considered that the reaction with carbon starts from the most reactive atom on the Si surface. The most reactive Si atom on the Si surface is the atom at the position of the step edge 10 existing on the surface, and carbonization of the Si surface 4 by the carbon 9 in the gas phase is considered to start from the step edge 10. Can be At the step edge 10, since there is a step in the arrangement of Si atoms on the substrate, twins having different directions tend to grow from that position. On the other hand, when a carbon source including not only carbon in the gas phase but also a molecular beam such as a carbon atom is supplied, a reaction with the Si substrate occurs from an arbitrary position where the carbon is supplied, and is selected from the position of the step edge 10. Is prevented from occurring on the terrace 5. For this reason, it was confirmed that the growth of twins from the position of the step edge 10 was also suppressed, and an SiC crystal thin film with little twins was formed.

以下実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
まず、Si(001) 4度-offcut基板をMBE装置内に導入し、10-9Torr以下の高真空下で900℃以上に加熱し、RHEED観察によりSi(001)(2x1)表面再配列が観測されるSi清浄表面を形成した。この清浄表面を400℃以下に冷却した後、昇温速度100−250℃/分で昇温した。基板温度が400℃に達した時点から、黒鉛粒を充填した坩堝に電子銃を照射する電子線蒸着器から炭素原子を蒸発させて、基板表面に供給した。この場合の坩堝から基板までの距離は40cm程度で、電子線蒸着器への供給電力は、8kV,100mA程度が適当であった。基板温度は、炭素の供給を受けつつ昇温され、昇温過程で炭化処理がなされた。この場合、上記offcut基板を用いると、炭化過程で形成されるSiC結晶粒の結晶方向が揃うことが確認された。これは、図2に示したように、offcut基板表面にはテラス5とステップ6が多数存在し、ステップエッジ10に平行な長く連なる原子列のP方向8と、ステップエッジ10に垂直でステップエッジ10により分断された短いテラス上の原子列のN方向7について異なった表面反応性を示すためである。
(Example 1)
First, a Si (001) 4 ° -offcut substrate was introduced into an MBE apparatus, heated to 900 ° C or higher under a high vacuum of 10 -9 Torr or lower, and the Si (001) (2x1) surface rearrangement was observed by RHEED observation. The observed Si clean surface was formed. After cooling this clean surface to 400 ° C. or lower, the temperature was raised at a rate of 100-250 ° C./min. When the substrate temperature reached 400 ° C., carbon atoms were evaporated from an electron beam evaporator that irradiates an electron gun to a crucible filled with graphite particles and supplied to the substrate surface. In this case, the distance from the crucible to the substrate was about 40 cm, and the power supplied to the electron beam evaporator was suitably about 8 kV and about 100 mA. The substrate temperature was increased while being supplied with carbon, and carbonization was performed during the temperature increase process. In this case, it was confirmed that when the offcut substrate was used, the crystal directions of the SiC crystal grains formed during the carbonization process were aligned. As shown in FIG. 2, there are many terraces 5 and steps 6 on the surface of the offcut substrate, the P direction 8 of a long row of atoms parallel to the step edge 10, and the step edge perpendicular to the step edge 10. This is to show different surface reactivity in the N direction 7 of the atomic row on the short terrace divided by 10.

炭素原子1がSi(001)表面のSi[110]原子列2と反応して収縮することが、炭化の基本メカニズムであるため、Si[110]の原子列の連なりが短い方がより容易に収縮することができ、均一な3C-SiC(001)/Si(001)界面が形成できると考えられる。上記図2のoffcut基板表面においては、上記N方向にSi[110]原子列の収縮が容易に起こり、3C-SiC結晶の[110]のSi(下)C(上)方向がN方向と一致する。   Since the basic mechanism of carbonization is that the carbon atom 1 reacts with the Si [110] atomic sequence 2 on the Si (001) surface and contracts, it is easier to shorten the sequence of the Si [110] atomic sequence. It is thought that it can shrink and form a uniform 3C-SiC (001) / Si (001) interface. On the surface of the offcut substrate shown in FIG. 2, the contraction of the Si [110] atom sequence easily occurs in the N direction, and the Si (bottom) and C (top) directions of the [110] of the 3C-SiC crystal coincide with the N direction. I do.

基板温度が1050℃に達した時点から、炭素に加えて珪素もクヌーセンセルから供給され、その後は1050℃に保持された。この場合のSiクヌーセンセルの温度は1357℃に保たれた。基板表面の結晶性は、MBEの成長室中で常にRHEEDにより観測されており、in-situ分析が行われている。3C-SiC(001)成長表面に供給されるC/Si量は、3C-SiC(001)表面が安定な(3x2)表面再配列構造を常に保つように制御された(表面制御成長)。3C-SiC(001)(3x2)表面は、Si-terminated表面に過剰なSi原子が付加された構造を有し、C/Si=1のSiCの構造に比べてSi過剰な表面となっている。この表面制御成長による3C-SiC(001)表面の成長は、常にSi過剰な表面からSi原子が供給されるため、Si(上)C(下)の方向への成長が選択的に起こり結晶粒がこの方向へより長く成長する。この結晶粒の選択成長方向がoff-cut基板表面のテラス上に長く連なっている図2中のP方向8に一致していれば、結晶粒の成長がテラス上でステップによる妨害無しに進行し、容易に単相の3C-SiC単結晶の成長が得られる。一方上記結晶方向と90度の関係にあるアンチフェーズドメインは、選択成長方向が図2中のN方向7となり、成長がステップによって常に阻害される。上記2種類のアンチフェーズドメインが成長する場合には、選択成長方向がP方向8に一致している結晶粒が選択的に成長し、もう一方のアンチフェーズドメインは成長に伴って消失してゆくと考えられる。上記、off-cut表面の炭化によって形成される3C-SiCの結晶方向はSi(下)C(上)//N方向であったが、この結晶方位は、テラス上の選択成長を考慮したSi(上)C(下)//P方向と一致する。つまり、上記炭化処理と表面制御成長を行えば、方位の揃った3C-SiC単結晶が選択的に成長し、他のアンイフェーズドメインの成長は阻害され、ある程度の膜厚を成長させれば単相の3C-SiC単結晶薄膜が得られる。   When the substrate temperature reached 1050 ° C., silicon was also supplied from the Knudsen cell in addition to carbon, and was kept at 1050 ° C. thereafter. In this case, the temperature of the Si Knudsen cell was kept at 1357 ° C. The crystallinity of the substrate surface is always observed by RHEED in the MBE growth chamber, and in-situ analysis is performed. The amount of C / Si supplied to the 3C-SiC (001) growth surface was controlled so that the 3C-SiC (001) surface always maintained a stable (3x2) surface rearrangement structure (surface controlled growth). The 3C-SiC (001) (3x2) surface has a structure in which excess Si atoms are added to the Si-terminated surface, and has a Si-excess surface compared to the structure of SiC with C / Si = 1 . In the growth of the 3C-SiC (001) surface by this surface controlled growth, since Si atoms are always supplied from the Si excess surface, the growth in the direction of Si (top) C (bottom) occurs selectively and the crystal grain Grow longer in this direction. If the selective growth direction of the crystal grains coincides with the P direction 8 in FIG. 2 which is long on the terrace on the surface of the off-cut substrate, the growth of the crystal grains proceeds on the terrace without interruption by steps. Thus, a single-phase 3C-SiC single crystal can be easily grown. On the other hand, in the antiphase domain having a relationship of 90 degrees with the crystal direction, the selective growth direction is the N direction 7 in FIG. 2, and the growth is always inhibited by the steps. When the two types of antiphase domains grow, crystal grains whose selective growth direction coincides with the P direction 8 grow selectively, and the other antiphase domain disappears as the growth progresses. it is conceivable that. Above, the crystal direction of 3C-SiC formed by carbonization of the off-cut surface was Si (bottom) C (top) // N direction, but this crystal orientation is Si considering the selective growth on the terrace (Top) coincides with the C (bottom) // P direction. In other words, if the carbonization treatment and the surface controlled growth are performed, a 3C-SiC single crystal having a uniform orientation is selectively grown, and the growth of other air phase domains is inhibited. A phase 3C-SiC single crystal thin film is obtained.

図3に上記表面制御成長を3時間行った1000オングストローム(100nm)膜厚の単相3C-SiC(001)表面のSEM写真を示す。方位の揃った結晶粒がテラス上を選択的に成長しコアレスして大型の単結晶を形成していっているのが観察できる。膜厚1000オングストローム(100nm)に対して、観測されるそれぞれの結晶粒の大きさは1000オングストローム(100nm)程度であった。さらにこの薄膜の成長を続けると、膜厚の増大に伴ってこれらの結晶粒は更に大きくコアレスして大きな単結晶粒を形成した。   FIG. 3 shows an SEM photograph of a single-phase 3C-SiC (001) surface having a thickness of 1000 Å (100 nm) obtained by performing the above-mentioned surface controlled growth for 3 hours. It can be observed that crystal grains with uniform orientation are selectively grown on the terrace and coreless to form a large single crystal. For a film thickness of 1000 angstroms (100 nm), the size of each crystal grain observed was about 1000 angstroms (100 nm). When the growth of the thin film was further continued, these crystal grains became larger and coreless to form larger single crystal grains as the film thickness increased.

図4に、この(a)1000オングストローム(100nm)厚の単相3C-SiC単結晶薄膜のESRスペクトルを、(b)just-cut Si(001)表面上に形成されたAPBを含む2フェーズの薄膜のESRスペクトルと比較して示す。(b)において観測される格子欠陥に対応するSiダングリングボンドのスペクトルが、本発明の炭化珪素薄膜の製造方法により形成された(a)においては確認されず,薄膜中のAPBに起因する格子欠陥が飛躍的に減少していることが確認された。   FIG. 4 shows (a) the ESR spectrum of the single-phase 3C-SiC single-crystal thin film having a thickness of 1000 angstroms (100 nm), and (b) a two-phase single-layer 3C-SiC thin film including APB formed on the just-cut Si (001) surface. This is shown in comparison with the ESR spectrum of the thin film. The spectrum of the Si dangling bond corresponding to the lattice defect observed in (b) was not confirmed in (a) formed by the method of manufacturing a silicon carbide thin film of the present invention, and the lattice caused by APB in the thin film was not observed. It was confirmed that defects were dramatically reduced.

本実施例においては、異方性を有するSi基板としてoff-cut基板を用いたが、表面に異方性がありテラスとステップを含んでいれば、just-cut基板であって異方性エッチングなどにより表面に凸凹を付けた表面でも良く、off-cutの方向も[110]方向に限るものではなく、[110]方向と下記式(数2)方向について同等でなく異方性があればどの方向にoff-cutしたものでも良い。   In this embodiment, an off-cut substrate was used as the Si substrate having anisotropy. However, if the surface has anisotropy and includes terraces and steps, it is a just-cut substrate and anisotropic etching is performed. The surface may have irregularities due to, for example, the surface. The off-cut direction is not limited to the [110] direction. If the [110] direction is not equivalent to the following formula (Formula 2) and has anisotropy, It may be off-cut in any direction.

Figure 2004193631
Figure 2004193631

本実施例において、off-cutの角度は4度でテラスの幅は20オングストローム(2nm)程度であったが、off-cutの角度を変化させてテラス幅を変えても、テラス幅が5オングストローム(0.5nm)−1000オングストローム(100nm)の範囲では、良好な単相の3C-SiC単結晶薄膜が得られた。5オングストローム(0.5nm)以下のテラス幅の場合は、炭化によって多数のツウィンが形成され、単相の単結晶薄膜が形成できない。また、1000オングストローム(100nm)以上のテラス幅においては、炭化メカニズムにおいて異方性が有効に機能せず、APBを含む2フェーズの薄膜となった。   In the present embodiment, the off-cut angle was 4 degrees and the terrace width was about 20 angstroms (2 nm). However, even if the off-cut angle was changed to change the terrace width, the terrace width was 5 angstroms. In the range of (0.5 nm) -1000 angstroms (100 nm), a good single-phase 3C-SiC single crystal thin film was obtained. In the case of a terrace width of 5 angstroms (0.5 nm) or less, many twins are formed by carbonization, and a single-phase single-crystal thin film cannot be formed. At a terrace width of 1000 Å (100 nm) or more, the anisotropy did not function effectively in the carbonization mechanism, and a two-phase thin film containing APB was obtained.

本実施例においては、炭化処理において基板の昇温中に400℃から炭素の供給を始めたが、600℃以下の温度であれば適用でき、400℃に限るものではない。600℃以上の温度から炭素を供給し炭化するとSiC/Si界面にピットが形成され易くなり、薄膜中に結晶方位の異なる結晶粒が成長しやすい。   In the present embodiment, the supply of carbon was started from 400 ° C. during the heating of the substrate in the carbonization process, but the temperature can be applied as long as the temperature is 600 ° C. or less, and the temperature is not limited to 400 ° C. When carbon is supplied and carbonized from a temperature of 600 ° C. or higher, pits are easily formed at the SiC / Si interface, and crystal grains having different crystal orientations are likely to grow in the thin film.

本実施例において、炭素は電子線蒸着器から原子またはクラスターの形で供給されており、ガス状の炭素の供給とは異なっている。本実施例の薄膜形成中にC2H4等のガス状の炭素源を5x10-8Torr以上供給すると、実施例で述べた単相の3C-SiCの形成が悪化、多数のツウィンが形成されることが確認された。このことより、本発明の炭化珪素薄膜の形成方法の実現のためには、ガス状ではない分子線の炭素の供給が必要であることが確認された。 In this embodiment, carbon is supplied from an electron beam evaporator in the form of atoms or clusters, which is different from the supply of gaseous carbon. When a gaseous carbon source such as C 2 H 4 is supplied at 5 × 10 −8 Torr or more during the formation of the thin film of this embodiment, the formation of single-phase 3C-SiC described in the embodiment is deteriorated, and a large number of twins are formed. Was confirmed. From this, it was confirmed that supply of non-gaseous molecular beam carbon was necessary to realize the method of forming a silicon carbide thin film of the present invention.

本実施例においては、炭化後に炭素と珪素を供給して炭化珪素を成長させるプロセスにおいて、3C-SiC(001)表面が(3x2)の表面再配列を有しSiターミネイト(001)表面上に付加Siが存在するSi過剰な表面を保持して成長させた。表面再配列がSi過剰な他の再配列構造(5x2),(7x2),・・(2n+1,2)(nは任意の正の整数)を保持するように成長させた場合も本発明は有効であった。また、Siターミネイト(001)表面である(2x1)表面でも有効であった。   In the present embodiment, in the process of growing carbon carbide by supplying carbon and silicon after carbonization, the 3C-SiC (001) surface has a (3x2) surface rearrangement and is added on the Si-terminated (001) surface. The surface was grown while retaining the Si-excess surface where Si was present. The present invention is also applicable to a case where the surface rearrangement is grown so as to retain Si-excessive other rearrangement structures (5x2), (7x2),... (2n + 1,2) (n is any positive integer) Was effective. In addition, it was effective also on the (2 × 1) surface which is a Si-terminated (001) surface.

本実施例においては、Si(001)表面について説明したが、例えばSi(111)面のようなSi基板の他の表面でも本発明が有効であることを発明者は確認した。   In the present embodiment, the Si (001) surface has been described, but the inventor has confirmed that the present invention is also effective on other surfaces of the Si substrate such as the Si (111) surface.

Si(001)基板の表面炭化のプロセス概念図。FIG. 4 is a conceptual diagram of a process for carbonizing the surface of a Si (001) substrate. 本発明の一実施例の炭化珪素薄膜の製造方法に用いるSi基板の表面の模式図。FIG. 2 is a schematic view of the surface of a Si substrate used in the method for manufacturing a silicon carbide thin film according to one embodiment of the present invention. 本発明の一実施例の炭化珪素薄膜の製造方法により形成された3C-SiC(001)表面のSEM写真のトレース図。FIG. 4 is a trace diagram of an SEM photograph of a 3C-SiC (001) surface formed by the method for manufacturing a silicon carbide thin film according to one embodiment of the present invention. (a)は本発明の一実施例の炭化珪素薄膜の製造方法により形成された単相3C-SiC単結晶薄膜のESRスペクトルのトレース図、(b)は比較例のjust-cut Si(001)表面上に形成されたAPBを含む2フェーズの薄膜のESRスペクトルのトレース図。(a) is a trace diagram of an ESR spectrum of a single-phase 3C-SiC single-crystal thin film formed by the method of manufacturing a silicon carbide thin film of one embodiment of the present invention, (b) is a just-cut Si (001) of a comparative example The trace figure of the ESR spectrum of the thin film of two phases containing APB formed on the surface.

符号の説明Explanation of reference numerals

1 炭素原子
2 炭素と結合したSi基板原子(Si[110]原子列)
3 炭素と結合したSi原子の一層下のSi基板原子
4 Si基板表面
5 テラス
6 ステップ
7 ステップエッジと垂直なN方向
8 ステップエッジと平行なP方向
9 供給炭素
10 ステップエッジ
1 Carbon atom 2 Si substrate atom bonded to carbon (Si [110] atom sequence)
3 Si substrate atoms below Si atoms bonded to carbon 4 Si substrate surface 5 Terrace 6 Step 7 N direction perpendicular to step edge 8 P direction parallel to step edge 9 Supply carbon 10 step edge

Claims (5)

炭化珪素(Si−C)薄膜の製造方法であって、炭素を供給しSi基板表面を加熱することにより表面を炭化させて炭化珪素を形成する工程と、炭化後に炭素と珪素を供給して炭化珪素を成長させる工程からなり、前記Si基板表面に、異方性がありテラスとステップを形成することを特徴とする炭化珪素薄膜の製造方法。   A method for producing a silicon carbide (Si-C) thin film, comprising: supplying carbon and heating the surface of a Si substrate to carbonize the surface to form silicon carbide; and supplying carbon and silicon after carbonization to carbonize. A method for producing a silicon carbide thin film, comprising a step of growing silicon, wherein anisotropic terraces and steps are formed on the surface of the Si substrate. Si基板表面のテラスの幅が5オングストローム(0.5nm)以上1000オングストローム(100nm)以下である請求項1に記載の炭化珪素薄膜の製造方法。   2. The method of manufacturing a silicon carbide thin film according to claim 1, wherein the width of the terrace on the surface of the Si substrate is not less than 5 Å (0.5 nm) and not more than 1000 Å (100 nm). 炭化珪素形成工程において、Si基板表面の温度が600℃以下の段階で炭素を供給する請求項1に記載の炭化珪素薄膜の製造方法。   The method for producing a silicon carbide thin film according to claim 1, wherein in the silicon carbide forming step, carbon is supplied at a stage where the temperature of the surface of the Si substrate is 600 ° C. or lower. Si基板表面を加熱して炭化し炭化珪素を形成する時に供給する炭素源が、少なくとも炭素原子等の分子線を含む請求項1に記載の炭化珪素薄膜の製造方法。   2. The method for producing a silicon carbide thin film according to claim 1, wherein the carbon source supplied when the silicon substrate is heated to carbonize to form silicon carbide includes at least a molecular beam such as a carbon atom. 炭化後に炭素とSiを供給して炭化珪素を成長させる工程において、炭化珪素表面がSiターミネイト表面に過剰なSi原子が付加している構造を成長表面として保持している請求項1に記載の炭化珪素薄膜の製造方法。

2. The carbonized carbon according to claim 1, wherein, in the step of supplying carbon and Si after carbonization to grow silicon carbide, the silicon carbide surface holds a structure in which an excess of Si atoms are added to the Si terminating surface as a growth surface. A method for manufacturing a silicon thin film.

JP2004081316A 2004-03-19 2004-03-19 Manufacturing method of silicon carbide thin film Withdrawn JP2004193631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081316A JP2004193631A (en) 2004-03-19 2004-03-19 Manufacturing method of silicon carbide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081316A JP2004193631A (en) 2004-03-19 2004-03-19 Manufacturing method of silicon carbide thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23748895A Division JP3735145B2 (en) 1995-09-14 1995-09-14 Silicon carbide thin film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004193631A true JP2004193631A (en) 2004-07-08
JP2004193631A5 JP2004193631A5 (en) 2005-05-26

Family

ID=32768311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081316A Withdrawn JP2004193631A (en) 2004-03-19 2004-03-19 Manufacturing method of silicon carbide thin film

Country Status (1)

Country Link
JP (1) JP2004193631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678671B2 (en) 2005-10-27 2010-03-16 Toyota Jidosha Kabushiki Kaisha Method of forming epitaxial SiC using XPS characterization
CN113227465A (en) * 2018-11-05 2021-08-06 学校法人关西学院 SiC semiconductor substrate, and method and apparatus for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678671B2 (en) 2005-10-27 2010-03-16 Toyota Jidosha Kabushiki Kaisha Method of forming epitaxial SiC using XPS characterization
CN113227465A (en) * 2018-11-05 2021-08-06 学校法人关西学院 SiC semiconductor substrate, and method and apparatus for manufacturing same
CN113227465B (en) * 2018-11-05 2024-03-29 学校法人关西学院 SiC semiconductor substrate, and method and apparatus for manufacturing the same
US12020928B2 (en) 2018-11-05 2024-06-25 Kwansei Gakuin Educational Foundation SiC semiconductor substrate, method for manufacturing same, and device for manufacturing same

Similar Documents

Publication Publication Date Title
JP4694144B2 (en) Method for growing SiC single crystal and SiC single crystal grown thereby
JP5908853B2 (en) III-N substrate manufacturing method
JP2005320237A (en) NON-POLAR SINGLE CRYSTALLINE a-PLANE NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURING METHOD
JPWO2003078702A1 (en) Method for producing SiC crystal and SiC crystal
JP2006032655A (en) Manufacturing method of silicon carbide substrate
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP2007273524A (en) Manufacturing method of multilayer-structured silicon carbide substrate
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
Yakimova et al. Progress in 3C-SiC growth and novel applications
WO2011135065A1 (en) Semiconductor wafer and method for manufacturing the same
JP5829508B2 (en) Crystal growth method of SiC crystal and SiC crystal substrate
JP3735145B2 (en) Silicon carbide thin film and method for manufacturing the same
JP3628079B2 (en) Silicon carbide thin film manufacturing method, silicon carbide thin film, and laminated substrate
JP2001181095A (en) Silicon carbide single crystal and its growing method
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2004193631A (en) Manufacturing method of silicon carbide thin film
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL
JP2005203666A (en) Manufacturing method for compound semiconductor device
JP2023096845A (en) Template for producing nitride semiconductor film and method for manufacturing the same
JP2004193631A5 (en)
JP2007261900A (en) Method for manufacturing single crystal silicon carbide substrate
CN113841260A (en) Semiconductor substrate with n-doped intermediate layer
JP4766642B2 (en) SiC semiconductor and SiC epitaxial growth method
CN113874981A (en) n-codoped semiconductor substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060510