JP2004193560A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2004193560A
JP2004193560A JP2003343762A JP2003343762A JP2004193560A JP 2004193560 A JP2004193560 A JP 2004193560A JP 2003343762 A JP2003343762 A JP 2003343762A JP 2003343762 A JP2003343762 A JP 2003343762A JP 2004193560 A JP2004193560 A JP 2004193560A
Authority
JP
Japan
Prior art keywords
foil
electric double
double layer
layer capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003343762A
Other languages
Japanese (ja)
Other versions
JP4018612B2 (en
Inventor
Shigeki Koyama
茂樹 小山
Manabu Iwaida
学 岩井田
Kenichi Murakami
顕一 村上
Koichi Yoshida
光一 吉田
Hiroyuki Saito
弘幸 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Chemi Con Corp
Original Assignee
Honda Motor Co Ltd
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Chemi Con Corp filed Critical Honda Motor Co Ltd
Priority to JP2003343762A priority Critical patent/JP4018612B2/en
Priority to US10/724,352 priority patent/US6845003B2/en
Publication of JP2004193560A publication Critical patent/JP2004193560A/en
Application granted granted Critical
Publication of JP4018612B2 publication Critical patent/JP4018612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of suppressing changes over aging of an electric double layer capacitor and ensuring the high performance over a long term. <P>SOLUTION: The residual chlorine concentration per unit area of a foil is managed not to exceed 1.0 mg/m<SP>2</SP>. Since the chlorine concentration is managed not to exceed 1.0 mg/m<SP>2</SP>, changes of an electric double layer capacitor can be suppressed over aging and the electric double layer capacitor can maintain the high performance over a long term. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は電気二重層コンデンサに用いる集電箔に関する。   The present invention relates to a current collector foil used for an electric double layer capacitor.

従来、電気二重層コンデンサに相当する電気二重層キャパシタ、特にそれの集電箔(アルミニウム箔)の強度に注目した発明が知られている(例えば、特許文献1。)。
特開平11−283871号公報(第2−3頁)
2. Description of the Related Art An electric double layer capacitor corresponding to an electric double layer capacitor, particularly an invention focusing on the strength of a current collecting foil (aluminum foil) thereof has been known (for example, Patent Document 1).
JP-A-11-283871 (pages 2-3)

特許文献1の第2頁段落番号[0007]第10行〜第12行に「しかし、得られた電極体の強度は弱く、電極体の製造工程及び電極体とセパレータを積層してキャパシタを作製する工程で破損しやすい。」の記載があり、電極体の強度が課題であるとされている。   In page 10 paragraph number [0007], line 10 to line 12 of Patent Document 1, "However, the strength of the obtained electrode body is low, and the manufacturing process of the electrode body and the lamination of the electrode body and the separator to produce a capacitor. The electrode body is likely to be damaged in the process of performing the process. "

そして特許文献1の第3頁段落番号[0011]第7行〜第9行に「破断エネルギーが3kg・mm以上であることを特徴とする電気二重層キャパシタ用集電体」の記載がある。
このことから、特許文献1は、耐衝撃性を高めることで強度的な課題を解決した発明であると言える。
The third page, paragraph number [0011], page 7 to line 9 of Patent Document 1 describes "a current collector for an electric double layer capacitor characterized by having a breaking energy of 3 kg · mm or more".
From this, it can be said that Patent Literature 1 is an invention in which the problem of strength is solved by increasing the impact resistance.

本発明者らは、特許文献1と同様に電極体、すなわち集電箔の強度に配慮しながら多数個の電気二重層コンデンサを試作し、それらを評価した。この評価の結果、強度的には満足できるものの、使用時間と共に抵抗値が、許容できる以上に増加し、蓄電池としての性能が著しく低下することが分かった。   The present inventors prototyped a large number of electric double layer capacitors in consideration of the strength of the electrode body, that is, the current collector foil, as in Patent Document 1, and evaluated them. As a result of this evaluation, it was found that although the strength was satisfactory, the resistance value increased more than tolerable with the use time, and the performance as a storage battery was significantly reduced.

本発明は、電気二重コンデンサにおいて、経年劣化を抑えることができ、高い性能を長期間にわたって発揮させることができる技術を提供することを課題とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a technique of an electric double capacitor capable of suppressing deterioration over time and exhibiting high performance over a long period of time.

そこで、各種の要素を調べた結果、集電箔の表面に残留する塩素が経年劣化に大きな影響を及ぼしていることを突き止めた。エッチング液に含まれる塩素イオンが残留塩素の要因であるため、エッチング後の集電箔には不可避的に塩素が残存する。   Therefore, as a result of examining various elements, it was found that chlorine remaining on the surface of the current collector foil had a great influence on aging. Since chlorine ions contained in the etching solution are factors of residual chlorine, chlorine is inevitably left on the current collector foil after etching.

この残存塩素は一般に洗浄で除去する。洗浄度を高めるには多数回の洗浄が必要となり、多数回の洗浄は製造コストの観点から好ましくない。
そこで、本発明者らは残存塩素の濃度を各種検討し、その許容限界を見出すことに成功した。
This residual chlorine is generally removed by washing. In order to increase the degree of cleaning, multiple cleanings are required, and the multiple cleanings are not preferable from the viewpoint of manufacturing cost.
Thus, the present inventors have studied the concentration of residual chlorine in various ways and have succeeded in finding an allowable limit thereof.

すなわち、請求項1は、一対の集電箔に各々活性炭を主体とした電極物質を貼り付けることで正極電極及び負極電極を造り、これらの正負極電極間にセパレータを介在させると共に電解液を介在させ、前記一対の集電箔を通じて充電及び放電を行うことのできる電気二重層コンデンサにおいて、
電極物質を貼り付ける段階での前記集電箔は、以下の条件を満足するものを用いたことを特徴とする電気二重層コンデンサ。
・集電箔は、塩素イオンを含むエッチング液によりエッチング処理を施す。
・上記エッチング処理は、皮膜耐電圧65.5ボルトにて化成処理した場合における箔単体の単位表面積当りの静電容量が(1.7〜2.3)μF/cmに収まる様に実施する。
・箔の引張り強さは、9000N/cmを下回らぬこと。
・箔に残留する単位面積当りの塩素濃度は、1.0mg/mを超えぬこと。
That is, claim 1 forms a positive electrode and a negative electrode by attaching an electrode material mainly composed of activated carbon to a pair of current collecting foils, and a separator is interposed between the positive and negative electrodes and an electrolytic solution is interposed. In the electric double layer capacitor capable of performing charging and discharging through the pair of current collector foils,
An electric double layer capacitor, wherein the current collector foil used in the step of attaching an electrode material satisfies the following conditions.
-The current collector foil is subjected to an etching process using an etching solution containing chlorine ions.
The above etching treatment is performed so that the capacitance per unit surface area of the foil alone in the case of chemical conversion treatment with a coating withstand voltage of 65.5 volts falls within (1.7 to 2.3) μF / cm 2. .
Tensile strength of the foil, that which is not less than the 9000N / cm 2.
Chlorine concentration per unit area remaining in the foil, it, not exceed 1.0 mg / m 2.

静電容量が(1.7〜2.3)μF/cmに収まり、箔に残留する単位面積当りの塩素濃度は、1.0mg/mを超えぬように管理することで、電気二重コンデンサの経年劣化を抑えることができ、高い性能を長期間にわたって発揮させることができる。
箔の引張り強さを、9000N/cm以上にすることにより、製造中の破断トラブルを回避することができ、製造コストを下げることができる。
By controlling the capacitance so that it is within (1.7 to 2.3) μF / cm 2 and the chlorine concentration per unit area remaining on the foil does not exceed 1.0 mg / m 2 , the electric power Aging of the heavy capacitor can be suppressed, and high performance can be exhibited over a long period of time.
By setting the tensile strength of the foil to 9000 N / cm 2 or more, it is possible to avoid breakage trouble during manufacturing and reduce manufacturing cost.

箔に1.0mg/mまでの塩素の残存を許容したので、洗浄が容易になり、洗浄に係るコストを圧縮することができる。 Since chlorine of up to 1.0 mg / m 2 is allowed to remain in the foil, cleaning is facilitated, and the cost for cleaning can be reduced.

請求項1によれば、静電容量が(1.7〜2.3)μF/cmに収まり、箔に残留する単位面積当りの塩素濃度は、1.0mg/mを超えぬように管理することで、電気二重コンデンサの経年劣化を抑えることができ、高い性能を長期間にわたって発揮させることができる。箔の引張り強さを、9000N/cm以上にすることにより、製造中の破断トラブルを回避することができ、製造コストを下げることができる。 According to claim 1, the capacitance is set to (1.7 to 2.3) μF / cm 2, and the chlorine concentration per unit area remaining on the foil does not exceed 1.0 mg / m 2. By managing, the aging of the electric double capacitor can be suppressed, and high performance can be exhibited over a long period of time. By setting the tensile strength of the foil to 9000 N / cm 2 or more, it is possible to avoid breakage trouble during production and reduce production cost.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る電気二重層コンデンサの斜視図であり、電気二重層コンデンサ10は、帯状の正極電極11と帯状の負極電極12とをセパレータ13を介して積層し、密に巻き、容器14に収納してなる円筒型電気二重層コンデンサである。
15は封止板、16は正極端子、17は負極端子、18は電解液を注入するための注液口である。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals.
FIG. 1 is a perspective view of an electric double-layer capacitor according to the present invention. An electric double-layer capacitor 10 has a band-shaped positive electrode 11 and a band-shaped negative electrode 12 laminated via a separator 13 and tightly wound into a container. 14 is a cylindrical electric double layer capacitor.
Reference numeral 15 denotes a sealing plate, 16 denotes a positive electrode terminal, 17 denotes a negative electrode terminal, and 18 denotes a liquid injection port for injecting an electrolytic solution.

図2は電気二重層コンデンサの断面拡大図であり、正極電極11は、アルミニウム箔などの集電箔21と、この集電箔21にシート状に貼り付けた活性炭素を主体とした電極物質22とからなる。負極電極12も、アルミニウム箔などの集電箔21と、この集電箔21にシート状に貼り付けた活性炭素を主体とした電極物質22とからなる。なお、集電箔21、21の裏面にも電極物質22、22を貼り付けるが、説明を簡単にするために図示を省略した。   FIG. 2 is an enlarged cross-sectional view of the electric double layer capacitor. A positive electrode 11 includes a current collector foil 21 such as an aluminum foil and an electrode material 22 mainly composed of activated carbon adhered to the current collector foil 21 in a sheet shape. Consists of The negative electrode 12 also includes a current collecting foil 21 such as an aluminum foil and an electrode substance 22 mainly composed of activated carbon adhered to the current collecting foil 21 in a sheet shape. The electrode materials 22, 22 are also adhered to the back surfaces of the current collector foils 21, 21, but are not shown for simplicity.

そして、電極物質22、22に適量の電解液を含浸させる。
正極端子16と負極端子17に直流を印加すると、電極物質22、22内部及び集電箔21、21の表面に正負イオンが吸着し、一方は正極、他方は負極を形成する。放電時においては、この吸着イオンが脱着することに伴う電子の移動により正・負極端子16、17を通じて電流を取出すことができる。
Then, the electrode materials 22 and 22 are impregnated with an appropriate amount of an electrolytic solution.
When a direct current is applied to the positive electrode terminal 16 and the negative electrode terminal 17, positive and negative ions are adsorbed inside the electrode materials 22, 22 and on the surfaces of the current collecting foils 21, 21, and one forms a positive electrode and the other forms a negative electrode. At the time of discharge, a current can be extracted through the positive and negative terminals 16 and 17 due to the movement of electrons accompanying the desorption of the adsorbed ions.

図3は本発明に係る電気二重層コンデンサの製造フロー、特に集電箔の製造を詳しく説明するフロー図である。ST××はステップ番号を示す。
ST01:集電箔として、例えば純度が99.8%以上のアルミニウム箔を準備する。このアルミニウム箔の表面は実質的に平坦である。
FIG. 3 is a flowchart for explaining in detail the manufacturing flow of the electric double layer capacitor according to the present invention, particularly the manufacturing of the current collector foil. STxx indicates a step number.
ST01: As the current collecting foil, for example, an aluminum foil having a purity of 99.8% or more is prepared. The surface of the aluminum foil is substantially flat.

ST02:前記アルミニウム箔を、塩酸を含むエッチング液中でエッチングを施す。このエッチングにより、箔の表面に微細な粗面が形成される。微細な粗面は後に貼り付ける電極物質を繋ぎ止めるくさびとなる。   ST02: The aluminum foil is etched in an etching solution containing hydrochloric acid. By this etching, a fine rough surface is formed on the surface of the foil. The fine rough surface serves as a wedge for retaining the electrode material to be applied later.

粗面の形成が終了したら、箔を中和処理し、所定の洗浄する。所定の洗浄とは残留塩素濃度が管理基準(1.0mg/m以下)を満足する程度に実施することを意味する。これにより、過剰な洗浄作業を行わぬ様にする。 After the formation of the rough surface is completed, the foil is subjected to a neutralization treatment and is subjected to predetermined cleaning. The predetermined cleaning means that the cleaning is performed to such an extent that the residual chlorine concentration satisfies the control standard (1.0 mg / m 2 or less). This prevents excessive cleaning work.

ST03:静電容量を測定する前処理として、箔から切出した箔片を、アジピン酸アンモニウムの水溶液に浸漬し、皮膜耐電圧65.5ボルトの電圧を印加することにより化成処理を施す。   ST03: As a pretreatment for measuring the capacitance, a foil piece cut out of the foil is immersed in an aqueous solution of ammonium adipate, and a chemical conversion treatment is performed by applying a voltage of 65.5 volts with a coating withstand voltage.

ST04:箔の静電容量Cを測定する。
図4は静電容量測定原理図であり、試験容器30にアジピン酸アンモニウムの水溶液31を満たし、そこに箔片21を浸漬し、この箔片21を囲う位置に対向電極32を配置し、箔片21と対向電極32と通電しつつ静電容量計33により、箔片21の静電容量を測定する。これで箔単体の静電容量Cが測定できたことになる。
ST04: The capacitance C of the foil is measured.
FIG. 4 is a diagram illustrating the principle of capacitance measurement. A test vessel 30 is filled with an aqueous solution 31 of ammonium adipate, a foil piece 21 is immersed therein, and a counter electrode 32 is arranged at a position surrounding the foil piece 21. The capacitance of the foil piece 21 is measured by the capacitance meter 33 while applying electricity to the piece 21 and the counter electrode 32. This means that the capacitance C of the foil alone has been measured.

図3に戻る。
ST05:箔単体の静電容量Cが、(1.7〜2.3)μF/cmの範囲にあるか否かを調べる。この範囲の根拠は後述する。YESであれば次に進むが、NOであれば、不合格品扱いとする。
Referring back to FIG.
ST05: It is checked whether or not the capacitance C of the foil alone is in the range of (1.7 to 2.3) μF / cm 2 . The basis for this range will be described later. If YES, proceed to the next step, but if NO, treat it as a rejected product.

ST06:箔の引張り強さTSを測定する。箔から幅10mm、長さ(50mm+掴み代)のテストピースを切出し、このテストピースを、JIS B 7721の引張り試験機に掛けることで、箔の引張り強さTSを測定することができる。   ST06: Measure the tensile strength TS of the foil. A test piece having a width of 10 mm and a length (50 mm + gripping allowance) is cut out from the foil, and the test piece is set on a tensile tester of JIS B 7721, whereby the tensile strength TS of the foil can be measured.

ST07:引張り強さTSが、9000N/cm以上であるか否かを調べる。この値未満であれば、捲回時などに加えるテンションにより破断する虞があるため不合格品扱いとする。YESであれば次に進む。 ST07: Check whether or not the tensile strength TS is 9000 N / cm 2 or more. If it is less than this value, it may be broken due to tension applied at the time of winding or the like, so it is treated as a rejected product. If YES, proceed to the next step.

ST08:箔の残留塩素濃度CLを測定する。具体的には、箔の塩素イオンを水酸化ナトリウム水溶液で抽出する。この抽出液を硫酸添加加熱、及び遠心分離で清澄化したのち硝酸銀の水溶液を加えて塩化銀として白濁させる。この白濁の程度を、標準液と比較して濃度を確定する。   ST08: The residual chlorine concentration CL of the foil is measured. Specifically, chloride ions of the foil are extracted with an aqueous sodium hydroxide solution. The extract is clarified by adding sulfuric acid, heating, and centrifuging, and then an aqueous solution of silver nitrate is added to make it opaque as silver chloride. The degree of the cloudiness is compared with a standard solution to determine the concentration.

ST09:箔の残留塩素濃度CLが、1.0mg/m以下であるか否かを調べる。この範囲の根拠は後述する。YESであれば次に進むが、NOであれば、不合格品扱いとする。 ST09: Check whether the residual chlorine concentration CL of the foil is 1.0 mg / m 2 or less. The basis for this range will be described later. If YES, proceed to the next step, but if NO, treat it as a rejected product.

ST10:以上の検査をクリアーした箔についてのみ、電極物質をシート状にして接着などにより貼り付ける。
ST11:セパレータと共に捲回する。
ST12:容器に収納する。
ST13:封止板を取付ける。
ST14:電解液を注入する。
以上で、図1に示す円筒型電気二重層コンデンサを得ることができる。
ST10: The electrode substance is formed into a sheet and attached by bonding or the like only for the foil that has passed the above inspection.
ST11: Wound with the separator.
ST12: Store in a container.
ST13: Attach the sealing plate.
ST14: Inject electrolyte.
Thus, the cylindrical electric double layer capacitor shown in FIG. 1 can be obtained.

なお、ST03〜ST09は、抜き取り検査にすることができる。この場合は主たる製造フローは、ST01→ST02→ST10→ST11〜ST14になり、ST03〜ST09はサブフローとする。   ST03 to ST09 can be a sampling inspection. In this case, the main manufacturing flow is ST01 → ST02 → ST10 → ST11 to ST14, and ST03 to ST09 are sub-flows.

また、ST03〜ST09は、順序を入れ替えることは差し支えない。   In addition, the order of ST03 to ST09 may be changed.

本発明に係る実施例を次に説明する。比較実験のために11個のサンプルを造る。
1.サンプルの材料:
1−1.集電箔:
1−1−1.実施例1〜5及び比較例1〜6のための集電箔:
40〜50℃(実施例、比較例により異なる。個別の条件は次項に示す。)に加熱された5%塩酸に原料アルミニウム箔を、浸漬し、電解電流密度0.25A/cm、電気量25〜40A・min/dm(実施例、比較例により異なる。個別の条件は次項に示す。)とした50Hz交流電流により表面をエッチングした。
エッチング槽から取出した箔を、30℃〜50℃(区別は次項で説明)に加温されたpH1の酸性水溶液で30秒又は1分間(区別は次項で説明)洗浄処理を行い、さらに180℃の温風で乾燥した。
An embodiment according to the present invention will be described below. Make 11 samples for comparative experiments.
1. Sample material:
1-1. Current collector foil:
1-1-1. Current collector foils for Examples 1-5 and Comparative Examples 1-6:
The raw aluminum foil was immersed in 5% hydrochloric acid heated to 40 to 50 ° C. (depending on the examples and comparative examples; individual conditions are shown in the next section), the electrolytic current density was 0.25 A / cm 2 , and the quantity of electricity was The surface was etched with a 50 Hz alternating current of 25 to 40 A · min / dm 2 (depending on the examples and comparative examples; individual conditions are shown in the next section).
The foil taken out of the etching bath is subjected to a cleaning treatment with an acidic aqueous solution of pH 1 heated at 30 ° C. to 50 ° C. (discrimination is described in the next section) for 30 seconds or 1 minute (discrimination is described in the next section), and further 180 ° C. And dried with warm air.

1−1−2.個別条件:
実施例1では、液温度は45℃、電気量は35A・min/dmとし、洗浄は50℃に加温されたpH1の酸性水溶液で1分間洗浄した。
実施例2では、液温度は47℃、電気量は35A・min/dmとし、洗浄は実施例1と同様にした。
実施例3では、液温度は50℃、電気量は35A・min/dmとし、洗浄は実施例1と同様にした。
実施例4では、液温度は50℃、電気量は38A・min/dmとし、洗浄は実施例1と同様にした。
実施例5では、液温度は50℃、電気量は40A・min/dmとし、洗浄は実施例1と同様にした。
1-1-2. Individual conditions:
In Example 1, the solution temperature was 45 ° C., the amount of electricity was 35 A · min / dm 2 , and the washing was performed for 1 minute with an acidic aqueous solution of pH 1 heated to 50 ° C.
In Example 2, the liquid temperature was 47 ° C., the amount of electricity was 35 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Example 3, the liquid temperature was 50 ° C., the amount of electricity was 35 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Example 4, the liquid temperature was 50 ° C., the amount of electricity was 38 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Example 5, the liquid temperature was 50 ° C., the amount of electricity was 40 A · min / dm 2 , and the cleaning was the same as in Example 1.

比較例1では、液温度は40℃、電気量は25A・min/dmとし、洗浄は実施例1と同様にした。
比較例2では、液温度は40℃、電気量は28A・min/dmとし、洗浄は実施例1と同様にした。
比較例3では、液温度は42.5℃、電気量は40A・min/dmとし、洗浄は実施例1と同様にした。
比較例4では、液温度は45℃、電気量は45A・min/dmとし、洗浄は実施例1と同様にした。
In Comparative Example 1, the liquid temperature was 40 ° C., the amount of electricity was 25 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Comparative Example 2, the liquid temperature was 40 ° C., the amount of electricity was 28 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Comparative Example 3, the liquid temperature was 42.5 ° C., the amount of electricity was 40 A · min / dm 2 , and the cleaning was the same as in Example 1.
In Comparative Example 4, the liquid temperature was 45 ° C., the amount of electricity was 45 A · min / dm 2 , and the cleaning was the same as in Example 1.

比較例5では、液温度は50℃、電気量は30A・min/dmとし、洗浄は40℃に加温されたpH1の酸性水溶液で30秒間洗浄した。
比較例6では、液温度は50℃、電気量は30A・min/dmとし、洗浄は30℃に加温されたpH1の酸性水溶液で30秒間洗浄した。
In Comparative Example 5, the solution temperature was 50 ° C., the amount of electricity was 30 A · min / dm 2 , and the washing was performed with an acidic aqueous solution of pH 1 heated to 40 ° C. for 30 seconds.
In Comparative Example 6, the liquid temperature was 50 ° C., the amount of electricity was 30 A · min / dm 2 , and the cleaning was performed with an acidic aqueous solution of pH 1 heated to 30 ° C. for 30 seconds.

以上の述べた各種集電箔に、以下の説明は共通に適用する。
1−2.電極物質:
活性炭90重量部、黒鉛粉末5重量部及び四フッ化エチレン5重量部を混合し、混練し、成形し、圧延することで、厚さ145μm×幅100mm×長さ1200mmのシート状電極物質を造る。
1−3.接着剤:
PVA(ポリビニルアルコール)、黒鉛及び不定形炭素からなる導電性接着剤
The following description is commonly applied to the above-described various current collector foils.
1-2. Electrode material:
90 parts by weight of activated carbon, 5 parts by weight of graphite powder and 5 parts by weight of ethylene tetrafluoride are mixed, kneaded, molded, and rolled to produce a sheet-like electrode material having a thickness of 145 μm, a width of 100 mm, and a length of 1200 mm. .
1-3. adhesive:
Conductive adhesive composed of PVA (polyvinyl alcohol), graphite and amorphous carbon

1−4.セパレータ:
人造絹糸セパレータ。厚さ75μm×幅105mmの多孔性フィルム。
1−5.容器:
径が40mmで高さが130mmの容器
1−6.電解液:
有機系電解液としてのTEMA・BF/PC。なお、TEMA・BFはトリエチルメチルアンモニウムテトラフルオロボーレート、PCはプロピレンカーボネートである。
1-4. Separator:
Artificial silk separator. A porous film having a thickness of 75 μm and a width of 105 mm.
1-5. container:
Container having a diameter of 40 mm and a height of 130 mm 1-6. Electrolyte:
TEMA.BF 4 / PC as an organic electrolyte. TEMA.BF 4 is triethylmethylammonium tetrafluoroborate, and PC is propylene carbonate.

2.サンプルの造り方:
上記集電箔の両面に、上記接着剤を用いて電極物質を貼り付ける。上記セパレータとともに捲回して、容器に収め、電解液を注入することで、円筒型電気二重層コンデンサを造る。比較実験に供するために11種類のサンプルを造る。
2. How to make a sample:
An electrode material is attached to both sides of the current collector foil using the adhesive. It is wound together with the separator, placed in a container, and injected with an electrolytic solution to produce a cylindrical electric double layer capacitor. Eleven types of samples are prepared for comparison experiments.

3.測定
3−1.静電容量 上述の測定方法で測定する。
3−2.引張り強さの測定: 上述の測定方法で測定する。
3−3.残留塩素濃度の測定: 上述の測定方法で測定する。
3. Measurement 3-1. The capacitance is measured by the above-described measuring method.
3-2. Measurement of tensile strength: Measured by the above-mentioned measuring method.
3-3. Measurement of residual chlorine concentration: Measured by the above-mentioned measuring method.

3−4.セル抵抗率の測定:
未使用のサンプルを対象とする。図1の正負極端子16、17に抵抗計を接続し、抵抗値A(Ω)を測定する。これに正負極用集電箔の面積B(cm)を乗じることにより、セル抵抗率(Ωcm)を求める。すなわち、セル抵抗率(Ωcm)=抵抗値A(Ω)×正負極用集電箔の面積B(cm)となる。ただし、これは電極物質の厚さが145μm(1−2.参照)であるときの値である。
3-4. Measurement of cell resistivity:
For unused samples. A resistance meter is connected to the positive and negative terminals 16 and 17 in FIG. 1 to measure a resistance value A (Ω). This is multiplied by the area B (cm 2 ) of the positive and negative electrode current collector foil to determine the cell resistivity (Ωcm 2 ). That is, the cell resistivity (Ωcm 2 ) = the resistance value A (Ω) × the area B (cm 2 ) of the positive and negative electrode current collector foils. However, this is a value when the thickness of the electrode material is 145 μm (see 1-2.).

3−5.2000hr後抵抗上昇率の測定:
前記セル抵抗率を測定した後に、45℃の環境で、2.5ボルトの連続印加を行う。2000時間経過したら、印加を止める。
そして、常温の環境で、30アンペアに保ちながら定圧放電を開始し、2.5ボルトが1.0ボルトに低下したときに放電を終了する。
3-5. Measurement of resistance increase rate after 2000 hours:
After measuring the cell resistivity, a continuous application of 2.5 volts is performed in a 45 ° C. environment. After 2000 hours, the application is stopped.
Then, in a normal temperature environment, constant-pressure discharge is started while maintaining 30 amps, and the discharge ends when 2.5 volts is reduced to 1.0 volt.

この時点で、3−4.セル抵抗率の測定で述べたのと同手順で、2000hrセル抵抗率を求め、この2000hrセル抵抗率が、3−4.で求めたセル抵抗率に対して何%増加したかを計算する。この計算値を2000hr後抵抗上昇率と呼ぶことにする。   At this point, 3-4. According to the same procedure as described in the measurement of cell resistivity, a cell resistivity of 2000 hr was obtained. Calculate what percentage has increased with respect to the cell resistivity obtained in the above. This calculated value will be referred to as a resistance increase rate after 2000 hours.

3−6.電極剥離性:
2000hr後抵抗上昇率を計測した後、サンプルを分解し、箔及び電極物質を目視検査する。そして、シート状電極物質が箔に接着したままであれば「剥離無し」、シート状電極物質が箔から一部剥離していれば「一部剥離」、シート状電極物質の大部分が箔から剥離していれば「剥離あり」とした。
3-6. Electrode peelability:
After measuring the resistance increase rate after 2000 hours, the sample is disassembled, and the foil and the electrode material are visually inspected. And, if the sheet-like electrode material remains adhered to the foil, "no peeling", if the sheet-like electrode material partially peels from the foil, "partially peeling", most of the sheet-like electrode material comes from the foil. If it was peeled, it was regarded as "peeled".

表1は、実施例1〜5及び比較例1〜6について、静電容量、引張り強さ、残留塩素濃度、セル抵抗率、2000hr後抵抗上昇率及び電極剥離性を記録した表である。この表の数値から各種のグラフを作成し、評価する。   Table 1 is a table in which, for Examples 1 to 5 and Comparative Examples 1 to 6, the capacitance, the tensile strength, the residual chlorine concentration, the cell resistivity, the resistance increase after 2000 hours, and the electrode peeling property are recorded. Various graphs are created from the values in this table and evaluated.

Figure 2004193560
Figure 2004193560

図5は2000hr後抵抗上昇率の評価グラフであり、横軸は静電容量、グラフ中の○は実施例、△は比較例を意味する。
2000hr後抵抗上昇率は、経年変化の度合いを示し、経年劣化が大きいほど値は大きくなるから、値が小さいほど良好であると言える。○は全てが15.0%の近傍にあり、△より格段に小さい。
このグラフから、65.5V静電容量は、1.7〜2.3μF/cmの範囲にあれば良いと言える。
FIG. 5 is an evaluation graph of the rate of increase in resistance after 2000 hours, in which the horizontal axis represents the capacitance, ○ in the graph represents an example, and Δ represents a comparative example.
The resistance increase rate after 2000 hours indicates the degree of aging. The larger the aging deterioration, the larger the value. Therefore, it can be said that the smaller the value, the better. The circles are all around 15.0%, which is much smaller than the triangle.
From this graph, it can be said that the 65.5 V electrostatic capacitance only needs to be in the range of 1.7 to 2.3 μF / cm 2 .

図6は静電容量とセル抵抗率との関係を示すグラフであり、横軸は静電容量、グラフ中の○は実施例、△は比較例を意味する。
セル抵抗率は初期比抵抗であるが、この値が小さいほど良いことは言うまでもない。図5で見出した1.7〜2.3μF/cmの範囲を図6に適用すると、○は概ね△より小さい。この点からも箔の65.5V静電容量は、1.7〜2.3μF/cmの範囲に収める収めることが適当であると言える。
FIG. 6 is a graph showing the relationship between the capacitance and the cell resistivity. The horizontal axis represents the capacitance, ○ in the graph represents an example, and Δ represents a comparative example.
The cell resistivity is the initial specific resistance, but it goes without saying that the smaller this value is, the better. When the range of 1.7 to 2.3 μF / cm 2 found in FIG. 5 is applied to FIG. 6, ○ is generally smaller than △. From this point as well, it can be said that it is appropriate to keep the 65.5 V electrostatic capacity of the foil within the range of 1.7 to 2.3 μF / cm 2 .

図7は静電容量と引張り強さの関係を示すグラフであり、横軸は静電容量、グラフ中の○は実施例、△は比較例を意味する。
静電容量は、エッチングにより平滑な箔の表面に粗面を形成することで増加させる。一方、表面に粗面ができることにより箔の断面積が減少し、引張り強さは低下する。グラフはその傾向が表われている。
FIG. 7 is a graph showing the relationship between the capacitance and the tensile strength. The horizontal axis represents the capacitance, 、 in the graph represents the example, and Δ represents the comparative example.
The capacitance is increased by forming a rough surface on the smooth foil surface by etching. On the other hand, the formation of a rough surface reduces the cross-sectional area of the foil and decreases the tensile strength. The graph shows that trend.

横軸で2.3μF/cmであれば、少なくとも9000N/cmの引張り強さは確保できる。横軸で1.7μF/cmであれば、11000N/cmの引張り強さが得られる。この点からも箔の65.5V静電容量は、1.7〜2.3μF/cmの範囲に収める収めることが適当であると言える。 If 2.3μF / cm 2 in the horizontal axis, at least 9000 N / cm tensile strength of 2 can be secured. If 1.7μF / cm 2 in the horizontal axis, the tensile strength of 11000N / cm 2 is obtained. From this point as well, it can be said that it is appropriate to keep the 65.5 V electrostatic capacity of the foil within the range of 1.7 to 2.3 μF / cm 2 .

図8は残留塩素の評価のために作成したグラフであり、横軸は残留塩素濃度、縦軸は2000hr後抵抗上昇率である。
△で示す比較例5、6は2000hr後抵抗上層率が格段に大きいため、好ましくない。この点、○で示す実施例1〜5は、2000hr後抵抗上層率が格段に小さく、良好である。横軸で1.0mg/cm以内であれば良いことになる。
すなわち、残留塩素濃度が1.0mg/cmを超えない箔を採用すれば、経年劣化を抑えることができると言える。
FIG. 8 is a graph created for the evaluation of residual chlorine. The horizontal axis represents the residual chlorine concentration, and the vertical axis represents the resistance increase rate after 2000 hours.
Comparative Examples 5 and 6 indicated by Δ are not preferable because the upper layer ratio of the resistance after 2,000 hours is remarkably large. In this regard, in Examples 1 to 5 indicated by が, the upper layer ratio of the resistance after 2,000 hours is remarkably small and good. It suffices if the horizontal axis is within 1.0 mg / cm 2 .
That is, it can be said that aging can be suppressed by using a foil having a residual chlorine concentration not exceeding 1.0 mg / cm 2 .

以上の表1及び図5〜図8から、箔単体の単位表面積当りの静電容量が(1.7〜2.3)μF/cmに収め、箔に残留する単位面積当りの塩素濃度が1.0mg/mを超えぬようにすることが、経年劣化を抑える上で重要であることが確認できた。製造中の破断トラブルを回避する上で、引張り強さを9000N/cm以上に管理することが必要であることは言うまでもない。 From the above Table 1 and FIGS. 5 to 8, the capacitance per unit surface area of the foil alone is contained in (1.7 to 2.3) μF / cm 2, and the chlorine concentration per unit area remaining on the foil is It was confirmed that it is important to keep the amount not to exceed 1.0 mg / m 2 in order to suppress aging deterioration. Needless to say, it is necessary to control the tensile strength to 9000 N / cm 2 or more in order to avoid breakage trouble during production.

尚、集電箔はアルミニウム箔で説明したが、その他の金属箔でも良い。
また、本発明は円筒型コンデンサの他、平板型コンデンサにも適用できるため、コンデンサの外観的形状は任意である。
Although the current collector foil is described as an aluminum foil, other metal foils may be used.
In addition, since the present invention can be applied to a flat capacitor as well as a cylindrical capacitor, the external shape of the capacitor is arbitrary.

本発明に係る電気二重層コンデンサは、車載バッテリに好適である。   The electric double layer capacitor according to the present invention is suitable for a vehicle-mounted battery.

本発明に係る電気二重層コンデンサの斜視図である。It is a perspective view of the electric double layer capacitor concerning the present invention. 電気二重層コンデンサの断面拡大図である。FIG. 3 is an enlarged cross-sectional view of the electric double layer capacitor. 本発明に係る電気二重層コンデンサの製造フロー、特に集電箔の製造を詳しく説明するフロー図である。FIG. 2 is a flowchart illustrating in detail a production flow of an electric double layer capacitor according to the present invention, particularly production of a current collector foil. 静電容量測定原理図である。It is a capacitance measurement principle diagram. 2000hr後抵抗上昇率の評価グラフである。It is an evaluation graph of a resistance rise rate after 2000 hours. 静電容量とセル抵抗率との関係を示すグラフである。5 is a graph showing a relationship between capacitance and cell resistivity. 静電容量と引張り強さの関係を示すグラフである。It is a graph which shows the relationship between capacitance and tensile strength. 残留塩素の評価のために作成したグラフである。It is the graph created for the evaluation of residual chlorine.

符号の説明Explanation of reference numerals

10…電気二重層コンデンサ、11…正極電極、12…負極電極、13…セパレータ、21…集電箔(箔)、22…電極物質。   DESCRIPTION OF SYMBOLS 10 ... Electric double layer capacitor, 11 ... Positive electrode, 12 ... Negative electrode, 13 ... Separator, 21 ... Current collecting foil (foil), 22 ... Electrode material.

Claims (1)

一対の集電箔に各々活性炭を主体とした電極物質を貼り付けることで正極電極及び負極電極を造り、これらの正負極電極間にセパレータを介在させると共に電解液を介在させ、前記一対の集電箔を通じて充電及び放電を行うことのできる電気二重層コンデンサにおいて、
電極物質を貼り付ける段階での前記集電箔は、以下の条件を満足するものを用いたことを特徴とする電気二重層コンデンサ。
・集電箔は、塩素イオンを含むエンチング液によるエンチング処理を施す。
上記エッチング処理は、皮膜耐電圧65.5ボルトにて化成処理した場合における箔単体の単位表面積当りの静電容量が(1.7〜2.3)μF/cmに収まる様に実施する。
・箔の引張り強さは、9000N/cmを下回らぬこと。
・箔に残留する単位面積当りの塩素濃度は、1.0mg/mを超えぬこと。
A positive electrode and a negative electrode are produced by attaching an electrode material mainly composed of activated carbon to a pair of current collecting foils, and a separator is interposed between the positive and negative electrodes and an electrolytic solution is interposed therebetween. In electric double layer capacitors that can be charged and discharged through foil,
An electric double layer capacitor, wherein the current collector foil used in the step of attaching an electrode material satisfies the following conditions.
-The collector foil is subjected to an etching treatment with an etching solution containing chlorine ions.
The etching treatment is performed so that the capacitance per unit surface area of the foil alone in the case where the chemical conversion treatment is performed at a coating withstand voltage of 65.5 volts falls within (1.7 to 2.3) μF / cm 2 .
Tensile strength of the foil, that which is not less than the 9000N / cm 2.
Chlorine concentration per unit area remaining in the foil, it, not exceed 1.0 mg / m 2.
JP2003343762A 2002-11-29 2003-10-01 Electric double layer capacitor Expired - Fee Related JP4018612B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003343762A JP4018612B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor
US10/724,352 US6845003B2 (en) 2002-11-29 2003-12-01 Metal collector foil for electric double layer capacitor, method of producing the metal collector foil, and electric double layer capacitor using the metal collector foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002348904 2002-11-29
JP2003343762A JP4018612B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2004193560A true JP2004193560A (en) 2004-07-08
JP4018612B2 JP4018612B2 (en) 2007-12-05

Family

ID=32774951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343762A Expired - Fee Related JP4018612B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4018612B2 (en)

Also Published As

Publication number Publication date
JP4018612B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
RU2492540C2 (en) Negative electrode current collector for heterogeneous electrochemical capacitor and method for production thereof
JP2005508081A (en) Electrochemical double layer capacitor with carbon powder electrode (1)
JPWO2008078777A1 (en) Coating electrode and organic electrolyte capacitor
JPH097896A (en) Electric double-layer capacitor
SK286579B6 (en) Capacitor with dual electric layer
US9190221B2 (en) Aqueous-based electric double-layer capacitor
JP2000021453A (en) Nonaqueous electrolyte secondary battery
US6845003B2 (en) Metal collector foil for electric double layer capacitor, method of producing the metal collector foil, and electric double layer capacitor using the metal collector foil
JP6085752B2 (en) Electric double layer capacitor charging method
JP4018613B2 (en) Electric double layer capacitor
JP4018612B2 (en) Electric double layer capacitor
KR100523728B1 (en) Supercapacitor with reduced internal resistance
JP2007095772A (en) Electric double-layer capacitor
JP3933618B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2010245086A (en) Method for manufacturing lithium ion capacitor
KR101812376B1 (en) Sealing Material, Flexible Thin-film type Super-Capacitor Device Manufacturing Method having the same and Super-Capacitor Device thereof
JP2014521231A5 (en)
JP2001176757A (en) Electric double-layer capacitor
JPH0974052A (en) Method for manufacturing polarizable electrode
CN207966756U (en) A kind of graphene ultracapacitor
JP2001217166A (en) Electric double-layer capacitor and determination method for service life of electric double-layer capacitor
JP4018614B2 (en) Electric double layer capacitor
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector
TWI471881B (en) Supercapacitor with a core-shell electrode
JPH10177935A (en) Electric double-layered capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees