JP2004193343A - Manufacturing apparatus of anode foil for aluminum electrolytic capacitor - Google Patents

Manufacturing apparatus of anode foil for aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2004193343A
JP2004193343A JP2002359531A JP2002359531A JP2004193343A JP 2004193343 A JP2004193343 A JP 2004193343A JP 2002359531 A JP2002359531 A JP 2002359531A JP 2002359531 A JP2002359531 A JP 2002359531A JP 2004193343 A JP2004193343 A JP 2004193343A
Authority
JP
Japan
Prior art keywords
chemical conversion
power supply
chemical treatment
foil
treatment process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002359531A
Other languages
Japanese (ja)
Other versions
JP4203311B2 (en
Inventor
Takayuki Ueda
隆之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2002359531A priority Critical patent/JP4203311B2/en
Publication of JP2004193343A publication Critical patent/JP2004193343A/en
Application granted granted Critical
Publication of JP4203311B2 publication Critical patent/JP4203311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing apparatus of anode foil with a withstand voltage stabilized in a manufacturing apparatus of the anode foil for a large sized aluminum electrolytic capacitor of a large current. <P>SOLUTION: The manufacturing apparatus is provided with a first chemical treatment process which supplies a current to aluminum foil from a DC power source, makes the current continuously run between a plurality cathode plates arranged in a chemical treatment tank, and forms a chemical treatment coating film on the surface of the aluminum foil; a depolarizing treatment process which exposes a defect part generated in the chemical treatment coating film; and a second chemical treatment process which restores the exposed defect. The apparatus has a mechanism for controlling an output voltage of the DC power source by installing a first voltage detector after the depolarizing treatment process and performing feedback to the DC power source of the first chemical treatment process, and a mechanism for controlling the output voltage of the DC power source by installing a second voltage detector after the second chemical treatment process and performing feedback to the DC power source of the second chemical treatment process. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム電解コンデンサ用陽極箔の製造装置に関するものであり、特に化成処理を行う製造装置に関するものである。
【0002】
【従来の技術】
アルミニウム電解コンデンサの陽極箔は、エッチングにより粗面化されたアルミニウム箔の表面に、誘電体となる陽極酸化皮膜を形成する化成処理が行われている。化成処理を行う製造装置は、ロール状のアルミニウム箔を引き出しつつ、アルミニウム箔と化成槽内に設けられた陰極板との間に直流を印加して化成処理を行い、次に陽極箔の漏れ電流を低減するため化成皮膜内に生成した欠陥部を露出させる減極処理を行った後、欠陥部を修復する化成を行い乾燥して巻き取っていた(例えば、非特許文献1参照)。しかし、アルミニウム箔の固有抵抗が影響し、印加電圧だけでの電源制御では化成皮膜の耐電圧を一定に保つことができず、陽極箔の長さ方向、幅方向の耐電圧にばらつきが発生するため、各化成槽の出口側に電圧検出器を設けて各化成槽毎の直流電源をフィードバック制御する方法が提案されている(例えば、特許文献1参照)。
【0003】
【非特許文献1】
永田伊佐也,「電解液陰極アルミニウム電解コンデンサ」,日本蓄電器工業株式会社,平成9年2月24日,p.328−329
【特許文献1】
特開2002−8949号公報(第2−3頁、図1−2)
【0004】
【課題を解決するための手段】
図2は特開2002−8949号公報で開示された技術を用いた陽極箔の製造装置である。エッチングされたアルミニウム箔1は、厚さ70〜120μm、幅が500mmのものが一般的に用いられている。アルミニウム箔1は第1直流電源の陽極側に接続された給電ローラー2に接触し、駆動ローラー3を介して化成槽4に送られる。化成槽4ではアルミニウム箔1と対向するように複数の陰極板5が配置されており、アルミニウム箔を陽極として陽極酸化され誘電体となる化成皮膜がアルミニウム箔表面に形成される。形成された化成皮膜の耐電圧は、直流電源11の出力電圧によって決まるが、アルミニウム箔の実効表面積や化成液の液抵抗等により変化するため、化成槽4の出口ローラー6と陰極板5とを電圧検出器21で接続して化成皮膜の耐電圧を検出し、検出値を直流電源にフィードバックして直流電源の出力電圧を制御することで、アルミニウム箔1に形成される化成皮膜の耐電圧を一定に保っている。以後各化成段毎、同様に直流電源の出力電圧を制御する。アルミニウム箔の表面に化成皮膜が成長するに伴い、化成皮膜中に欠陥部が生成する。この欠陥部は、陽極箔の漏れ電流の原因となるため、化成の途中で減極処理と呼ばれるリン酸等の酸性溶液を満たした減極処理槽7に浸漬して化成皮膜の一部を溶解して欠陥部を露出させた後、露出した欠陥部を化成槽8で修復化成を行う。
【0005】
しかしながら、近年、装置の大型化による電源の大電流化に伴い、従来の方法では減極処理後の化成用電源の電流が大きく変動して電源電圧も大きく変動するという問題があり、特開2002−8949に提案されている各化成槽の出口ローラーで電圧検出してフィードバック制御する方法でも、減極処理後の箔の耐電圧変動が大きいため電源電圧のハンチング現象(出力電圧がオーバーシュートとアンダーシュートを繰り返す現象)が発生し、化成箔の耐電圧が大きく変動するという問題があった。
【0006】
この現象は、30V以下の低圧用陽極箔の製造装置において、特に顕著であり、化成箔の耐電圧ばらつき発生だけでなく、生産速度を高められないという問題があった。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため種々検討した結果見出したものであり、
アルミニウム電解コンデンサ用陽極箔の製造装置において、
アルミニウム箔に直流電源から電流を供給し化成槽内に設けた複数の陰極板の間を連続走行させることによりアルミニウム箔の表面に化成皮膜を形成する第1の化成工程と、化成皮膜内に生じた欠陥部を露出させる減極処理工程と、露出した欠陥部を修復する第2の化成工程とを有し、
減極処理工程後に第1の電圧検出器を設けて第1の化成工程の直流電源にフィードバックして直流電源の出力電圧を制御する機構と、第2の化成工程後に第2の電圧検出器を設けて第2の化成工程の直流電源にフィードバックして直流電源の出力電圧を制御する機構を設けたことを特徴とするアルミニウム電解コンデンサ用陽極箔の製造装置である。
【0008】
【発明の実施の形態】
本発明を図面に基づき具体的に説明する。図1は本発明による製造装置の概念図であり、従来と同様のものについては、同じ番号を付したのでその説明を省略する。従来の製造装置である図2と大きく異なる点は、本実施例は第1の直流電源を制御するための電圧検知器を化成槽4の出口ローラ6に接続するのではなく、減極処理槽の出口ローラ9と接続した点にある。アルミニウム箔の表面状態、エッチングによる実効表面積、化成条件の自然変動等により化成皮膜に生成する欠陥は一様でないため、減極処理による化成皮膜の耐電圧低下も変動する。特に近年の製造装置の大型化、生産速度の向上で顕著になってきた。そこで、本実施例では減極処理後の化成皮膜の耐電圧で直流電源の出力電圧をフィードバック制御することにより、欠陥部を修復する化成に必要な電流が安定し、直流電源のハンチング現象が抑制されるものと考えられる。
【0009】
本実施例と従来の製造装置である図2について、特にハンチング現象が出やすい生産開始後の直流電源の出力電流値の変化を調査し、図3の結果を得た。図3より本実施例は5分後に出力電流が安定しているが、従来例は25分後まで出力電流が安定していないことが分かる。
【0010】
出力電流安定後、巻始め、巻の中間、巻終わりで陽極箔をサンプリングし、陽極箔の耐電圧と静電容量を測定し、表1の結果を得た。
【0011】
【表1】

Figure 2004193343
【0012】
表1より本願発明は従来例と比較して、耐電圧・静電容量のばらつきが少なく品質が安定していることが分かる。
【0013】
なお、本発明は実施例に限定されるものではなく、化成前処理や最終化成後にリン酸アンモニウム等に浸漬する化成皮膜安定化処理等を実施してもよく、化成工程の間に熱処理工程を設ける等の公知技術を導入してもよい。
【0014】
また、本実施例では出口ローラーに電圧検出器を接続したが、第1化成の電圧検出器は減極処理後から修復化成前までのいずれかのローラーに接続すればよく、修復化成(最終化成)の電圧検出器は、修復化成後から陽極箔の巻き取りまでのいずれかのローラーに接続すればよい。
【0015】
【発明の効果】
以上のとおり、アルミニウム電解コンデンサ用陽極箔の化成を連続で行う製造装置において、減極処理後の箔の耐電圧を測定して直流電源を制御するとともに、最終化成後の箔の耐電圧を測定して最終化成用電源を制御することで、運転開始時等の変動要因が多い場合であっても、短時間で安定した化成箔を生産でき、さらに箔の長さ方向の特性ばらつきを少なくすることができる。
【図面の簡単な説明】
【図1】本発明による実施例の製造装置概念図である。
【図2】従来の製造装置の概念図である。
【図3】実施例と従来例による生産開始直後の電源出力電流の経時変化である。
【符号の説明】
1 エッチング箔
2 給電ローラー
3 駆動ローラー
4 第1化成槽
5 陰極板
6 化成槽出口ローラー
7 減極処理槽
8 第2化成槽(修復化成槽)
9 減極処理槽出口ローラー
10 乾燥炉
11 第1化成用電源
12 第2化成用電源
21 第1化成用電圧検出器
22 第2化成用電圧検出器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing an anode foil for an aluminum electrolytic capacitor, and more particularly to an apparatus for performing a chemical conversion treatment.
[0002]
[Prior art]
The anode foil of an aluminum electrolytic capacitor is subjected to a chemical conversion treatment for forming an anodic oxide film serving as a dielectric on the surface of the aluminum foil roughened by etching. The production apparatus for performing the chemical conversion treatment performs a chemical conversion treatment by applying a direct current between the aluminum foil and the cathode plate provided in the chemical conversion tank while pulling out the roll-shaped aluminum foil, and then performing the leakage current of the anode foil. After the depolarization treatment for exposing the defective portion formed in the chemical conversion film is performed to reduce the occurrence of the chemical conversion film, a chemical conversion for repairing the defective portion is performed, followed by drying and winding up (for example, see Non-Patent Document 1). However, due to the specific resistance of the aluminum foil, it is not possible to keep the withstand voltage of the chemical conversion film constant with power supply control using only the applied voltage, and the withstand voltage in the length and width directions of the anode foil varies. For this reason, a method has been proposed in which a voltage detector is provided at the outlet side of each chemical conversion tank and the DC power supply for each chemical conversion tank is feedback-controlled (for example, see Patent Document 1).
[0003]
[Non-patent document 1]
Isaya Nagata, "Electrolyte Cathode Aluminum Electrolytic Capacitors", Nippon Denki Co., Ltd., February 24, 1997, p. 328-329
[Patent Document 1]
JP-A-2002-8949 (page 2-3, FIG. 1-2)
[0004]
[Means for Solving the Problems]
FIG. 2 shows an anode foil manufacturing apparatus using the technique disclosed in JP-A-2002-8949. The etched aluminum foil 1 generally has a thickness of 70 to 120 μm and a width of 500 mm. The aluminum foil 1 comes into contact with the power supply roller 2 connected to the anode side of the first DC power supply, and is sent to the formation tank 4 via the drive roller 3. In the chemical conversion tank 4, a plurality of cathode plates 5 are arranged so as to face the aluminum foil 1, and an aluminum oxide is used as an anode to oxidize and form a chemical conversion film serving as a dielectric on the surface of the aluminum foil. The withstand voltage of the formed chemical conversion film is determined by the output voltage of the DC power supply 11, but varies depending on the effective surface area of the aluminum foil, the liquid resistance of the chemical conversion solution, and the like. The withstand voltage of the chemical conversion film formed on the aluminum foil 1 is controlled by connecting the voltage detector 21 to detect the withstand voltage of the chemical conversion film and feeding back the detected value to the DC power source to control the output voltage of the DC power source. Kept constant. Thereafter, the output voltage of the DC power supply is similarly controlled for each chemical conversion stage. As the chemical conversion film grows on the surface of the aluminum foil, a defect is generated in the chemical conversion film. Since this defective portion causes a leakage current of the anode foil, it is immersed in a depolarization treatment tank 7 filled with an acidic solution such as phosphoric acid, which is called depolarization treatment, during the chemical conversion to dissolve a part of the chemical conversion film. After exposing the defective portion, the exposed defective portion is repaired and formed in a chemical conversion tank 8.
[0005]
However, in recent years, with an increase in the power supply current due to an increase in the size of the apparatus, the conventional method has a problem in that the current of the formation power supply after the depolarization processing fluctuates greatly and the power supply voltage also fluctuates greatly. In the method of feedback control by detecting the voltage at the outlet roller of each chemical conversion tank proposed in -8949, the hunting phenomenon of the power supply voltage (the output voltage is overshoot and undervoltage) because the withstand voltage fluctuation of the foil after the depolarization is large. This causes a problem that the withstanding voltage of the chemical conversion foil fluctuates greatly.
[0006]
This phenomenon is particularly remarkable in an apparatus for manufacturing an anode foil for low voltage of 30 V or less, and there is a problem that not only the withstand voltage variation of the formed foil but also the production speed cannot be increased.
[0007]
[Means for Solving the Problems]
The present invention has been found as a result of various studies to solve the above problems,
In the production equipment of anode foil for aluminum electrolytic capacitor,
A first chemical conversion step of forming a chemical conversion film on the surface of an aluminum foil by supplying a current from a DC power supply to the aluminum foil and continuously running between a plurality of cathode plates provided in the chemical conversion tank; and a defect generated in the chemical conversion film. A depolarizing step of exposing the portion, and a second chemical conversion step of repairing the exposed defective portion,
A mechanism for providing a first voltage detector after the depolarization process and feeding back to the DC power supply in the first formation step to control the output voltage of the DC power supply; and a second voltage detector after the second formation step. An apparatus for producing an anode foil for an aluminum electrolytic capacitor, further comprising a mechanism for controlling the output voltage of the DC power supply by feeding back to the DC power supply in the second chemical conversion step.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described with reference to the drawings. FIG. 1 is a conceptual diagram of a manufacturing apparatus according to the present invention, and the same elements as those in the related art are denoted by the same reference numerals and will not be described. This embodiment is significantly different from the conventional manufacturing apparatus shown in FIG. 2 in that the present embodiment does not connect a voltage detector for controlling the first DC power supply to the outlet roller 6 of the chemical conversion tank 4, but a depolarization processing tank. At the point where it is connected to the exit roller 9. Defects generated in the chemical conversion film due to the surface state of the aluminum foil, the effective surface area due to etching, natural fluctuations in the chemical conversion conditions, and the like are not uniform, so that the withstand voltage of the chemical conversion film due to the depolarization treatment also fluctuates. In particular, it has become remarkable due to the recent increase in size of production equipment and improvement in production speed. Therefore, in this embodiment, by performing feedback control of the output voltage of the DC power supply with the withstand voltage of the chemical conversion film after the depolarization treatment, the current necessary for the formation of the defective portion to be repaired is stabilized, and the hunting phenomenon of the DC power supply is suppressed. It is thought that it is done.
[0009]
A change in the output current value of the DC power supply after the start of production, in which the hunting phenomenon is likely to occur, was examined for the present embodiment and FIG. 2 which is a conventional manufacturing apparatus, and the results of FIG. 3 were obtained. FIG. 3 shows that the output current is stable after 5 minutes in the present embodiment, but the output current is not stable until 25 minutes in the conventional example.
[0010]
After the output current was stabilized, the anode foil was sampled at the beginning of the winding, in the middle of the winding, and at the end of the winding, and the withstand voltage and the electrostatic capacity of the anode foil were measured.
[0011]
[Table 1]
Figure 2004193343
[0012]
From Table 1, it can be seen that the present invention has less variation in withstand voltage and capacitance and is more stable in quality than the conventional example.
[0013]
Note that the present invention is not limited to the examples, and a chemical conversion film stabilizing treatment of dipping in ammonium phosphate or the like after chemical conversion pretreatment or final chemical conversion may be performed. A well-known technique such as provision may be introduced.
[0014]
Further, in this embodiment, the voltage detector is connected to the outlet roller. However, the voltage detector of the first formation may be connected to any roller from after the depolarization treatment to before the restoration formation, and the restoration formation (final formation) is performed. The voltage detector of the above ()) may be connected to any of the rollers from after the restoration formation to the winding of the anode foil.
[0015]
【The invention's effect】
As described above, in a manufacturing apparatus that continuously forms anode foil for aluminum electrolytic capacitors, the withstand voltage of the foil after depolarization treatment is measured to control the DC power supply, and the withstand voltage of the foil after final formation is measured. By controlling the final formation power supply, even if there are many fluctuation factors at the start of operation, etc., a stable chemical conversion foil can be produced in a short time, and furthermore, the characteristic variation in the length direction of the foil is reduced. be able to.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a conventional manufacturing apparatus.
FIG. 3 is a graph showing a temporal change of a power supply output current immediately after the start of production according to an embodiment and a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Etching foil 2 Power supply roller 3 Drive roller 4 1st formation tank 5 Cathode plate 6 Conversion tank exit roller 7 Depolarization processing tank 8 2nd formation tank (repair formation tank)
9 Depolarization treatment tank outlet roller 10 Drying furnace 11 First chemical power supply 12 Second chemical power supply 21 First chemical voltage detector 22 Second chemical voltage detector

Claims (1)

アルミニウム電解コンデンサ用陽極箔の製造装置において、アルミニウム箔に直流電源から電流を供給し化成槽内に設けた複数の陰極板の間を連続走行させることによりアルミニウム箔の表面に化成皮膜を形成する第1の化成工程と、化成皮膜内に生じた欠陥部を露出させる減極処理工程と、露出した欠陥部を修復する第2の化成工程とを有し、
減極処理工程後に第1の電圧検出器を設けて第1の化成工程の直流電源にフィードバックして直流電源の出力電圧を制御する機構と、第2の化成工程後に第2の電圧検出器を設けて第2の化成工程の直流電源にフィードバックして直流電源の出力電圧を制御する機構を設けたことを特徴とするアルミニウム電解コンデンサ用陽極箔の製造装置。
In an apparatus for manufacturing an anode foil for an aluminum electrolytic capacitor, a first method for forming a chemical conversion film on the surface of an aluminum foil by supplying a current to the aluminum foil from a direct current power supply and continuously running between a plurality of cathode plates provided in a chemical conversion tank. A chemical conversion step, a depolarization processing step of exposing a defective portion generated in the chemical conversion film, and a second chemical conversion step of repairing the exposed defective portion,
A mechanism for providing a first voltage detector after the depolarization process and feeding back to the DC power supply in the first formation step to control the output voltage of the DC power supply; and a second voltage detector after the second formation step. An apparatus for manufacturing an anode foil for an aluminum electrolytic capacitor, further comprising a mechanism for controlling the output voltage of the DC power supply by feeding back to the DC power supply in the second chemical conversion step.
JP2002359531A 2002-12-11 2002-12-11 Manufacturing apparatus and manufacturing method for anode foil for aluminum electrolytic capacitor Expired - Fee Related JP4203311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359531A JP4203311B2 (en) 2002-12-11 2002-12-11 Manufacturing apparatus and manufacturing method for anode foil for aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359531A JP4203311B2 (en) 2002-12-11 2002-12-11 Manufacturing apparatus and manufacturing method for anode foil for aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004193343A true JP2004193343A (en) 2004-07-08
JP4203311B2 JP4203311B2 (en) 2008-12-24

Family

ID=32758900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359531A Expired - Fee Related JP4203311B2 (en) 2002-12-11 2002-12-11 Manufacturing apparatus and manufacturing method for anode foil for aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4203311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282994A (en) * 2007-05-10 2008-11-20 Nichicon Corp Method of manufacturing electrode foil for aluminum electrolytic capacitor
CN105977061A (en) * 2016-06-29 2016-09-28 宝兴县剑锋制箔电子有限公司 Electrode foil production line with equal voltage protection circuit
CN113192754A (en) * 2021-04-23 2021-07-30 新疆众和股份有限公司 Control method of aluminum formed foil voltage withstanding value for aluminum electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282994A (en) * 2007-05-10 2008-11-20 Nichicon Corp Method of manufacturing electrode foil for aluminum electrolytic capacitor
CN105977061A (en) * 2016-06-29 2016-09-28 宝兴县剑锋制箔电子有限公司 Electrode foil production line with equal voltage protection circuit
CN113192754A (en) * 2021-04-23 2021-07-30 新疆众和股份有限公司 Control method of aluminum formed foil voltage withstanding value for aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP4203311B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
EP3575445B1 (en) Metallic foil manufacturing method and cathode for manufacturing metallic foil
JP2009114524A (en) Method for anodizing aluminum pipe for base of photoconductor drum, and base of photoconductor drum
JP3705457B2 (en) Method for anodizing aluminum material
JP4203311B2 (en) Manufacturing apparatus and manufacturing method for anode foil for aluminum electrolytic capacitor
US6726825B2 (en) Method and apparatus for manufacturing positive electrode foil of aluminum electrolytic capacitor
JP3416099B2 (en) Capacitor and manufacturing method thereof
JP4474802B2 (en) Formation method of electrode foil for aluminum electrolytic capacitor
JP4428074B2 (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
US20190013511A1 (en) Electrode sheet manufacturing method
JP4060519B2 (en) Planographic printing plate manufacturing apparatus and manufacturing method
JP4481680B2 (en) Etching foil manufacturing equipment for electrolytic capacitors
JPH1145827A (en) Manufacture of high-pressure level aluminum electroytic capacitor electrode foil
JP3589157B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4470741B2 (en) Electrolytic capacitor electrode foil manufacturing equipment
JP2007324151A (en) Method of manufacturing solid-state electrolytic capacitor
JP2002008950A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2008098532A (en) Method for chemical conversion of electrode foil for use in electrolytic capacitor
JP3614081B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
CN109097817A (en) A kind of method and device improving low-voltage anode foil rippled edge
JP5137666B2 (en) Method for producing metal foil for electrolytic capacitor, and electrolytic capacitor
JP2715346B2 (en) Electrolytic treatment of aluminum support for printing plate
JP2005166977A (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JPH11154626A (en) Method and device of manufacture of electrode foil for aluminum electrolytic capacitor
JP2005252115A (en) Apparatus for producing etching foil for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Ref document number: 4203311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees