JP2004193102A - Fuel cell operating method, and fuel cell operating device - Google Patents

Fuel cell operating method, and fuel cell operating device Download PDF

Info

Publication number
JP2004193102A
JP2004193102A JP2003324809A JP2003324809A JP2004193102A JP 2004193102 A JP2004193102 A JP 2004193102A JP 2003324809 A JP2003324809 A JP 2003324809A JP 2003324809 A JP2003324809 A JP 2003324809A JP 2004193102 A JP2004193102 A JP 2004193102A
Authority
JP
Japan
Prior art keywords
fuel cell
outside air
reaction gas
air temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324809A
Other languages
Japanese (ja)
Other versions
JP4498707B2 (en
Inventor
Masanori Hayashi
正規 林
Kenichiro Ueda
健一郎 上田
Yoshio Hosono
芳夫 細野
Tomoki Kobayashi
知樹 小林
Yasunori Kotani
保紀 小谷
Minoru Uoshima
稔 魚嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003324809A priority Critical patent/JP4498707B2/en
Publication of JP2004193102A publication Critical patent/JP2004193102A/en
Application granted granted Critical
Publication of JP4498707B2 publication Critical patent/JP4498707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell operating method capable of preventing freezing of a reaction gas passage, and minimizing energy necessary for drainage by draining water in a system only when it is necessary. <P>SOLUTION: In the operating method for a fuel cell 1, gaseous hydrogen and air are supplied as reaction gases to each reaction gas passage 5 and 6, and power generation is carried out by electrochemical reaction. It is characterized by that water in the reaction gas passages 5 and 6 are drained and operation of the fuel cell 1 is stopped by cutting off electric power supply from the fuel cell 1, detecting an outside air temperature, and supplying the reaction gases to the reaction gas passages 5 and 6 in response to the outside air temperature. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、燃料電池の運転方法と燃料電池運転装置に関するものである。   The present invention relates to a fuel cell operation method and a fuel cell operation device.

燃料電池の凍結を防止するために燃料電池の固体高分子電解質膜の少なくとも一部が0°C以下になる前に燃料電池の反応ガス流路から水を排出する技術が提案されている(例えば、特許文献1参照。)。
特表2000−512068号公報
In order to prevent freezing of the fuel cell, a technique has been proposed in which water is discharged from a reaction gas flow channel of the fuel cell before at least a part of the solid polymer electrolyte membrane of the fuel cell becomes 0 ° C. or less (for example, And Patent Document 1.).
JP 2000-512068 A

しかしながら、上記従来技術においては具体的な排水のための手法が開示されておらず、また、このような燃料電池を燃料電池車両に適用した場合には、固体高分子電解質膜が常に0°C以下になるわけではないのに常に水を排出するために無駄なエネルギーを消費してしまうという問題がある。
そこで、この発明は必要がある場合にのみ系内の水を排水することで、反応ガス流路の凍結を防止でき排水に必要なエネルギーを最小限に抑えることができる燃料電池運転方法と燃料電池運転装置を提供するものである。
However, the above prior art does not disclose a specific method for drainage, and when such a fuel cell is applied to a fuel cell vehicle, the solid polymer electrolyte membrane always has a temperature of 0 ° C. There is a problem that wasteful energy is consumed because water is always discharged though it is not less.
Therefore, the present invention provides a fuel cell operating method and a fuel cell that can prevent freezing of a reaction gas flow path and minimize energy required for draining by draining water in the system only when necessary. A driving device is provided.

上記課題を解決するために、請求項1に係る発明は、各々の反応ガス流路(例えば、実施形態における反応ガス流路5,6)に反応ガスとしての燃料ガス(例えば、実施形態における水素ガス)と酸化剤ガス(例えば、実施形態における空気)とを供給し電気化学反応によって発電を行う燃料電池(例えば、実施形態における燃料電池1)の運転方法であって、燃料電池からの電力の供給を遮断し、外気温度を検出し、前記外気温度に応じて前記反応ガス流路に前記反応ガスを供給することで反応ガス流路内の水を排出し、燃料電池を運転停止することを特徴とする。
このように構成することで、外気温度に応じて反応ガスを供給することで反応ガス流路内の水を排出し、燃料電池を運転停止するので、その後、燃料電池が氷点下となったとしても水が排出されているため反応ガス流路が凍結することを防止できる。
In order to solve the above problem, the invention according to claim 1 is directed to a fuel gas (for example, hydrogen in the embodiment) as a reaction gas in each of the reaction gas channels (for example, the reaction gas channels 5 and 6 in the embodiment). A fuel cell (e.g., the fuel cell 1 in the embodiment) that supplies an oxidizing gas (e.g., air in the embodiment) and an oxidant gas (e.g., air in the embodiment) to generate electric power by an electrochemical reaction. Shutting off the supply, detecting the outside air temperature, discharging the water in the reaction gas passage by supplying the reaction gas to the reaction gas passage according to the outside air temperature, and shutting down the fuel cell. Features.
With this configuration, the reaction gas is supplied in accordance with the outside air temperature, thereby discharging the water in the reaction gas flow path and shutting down the fuel cell, so that even if the fuel cell falls below freezing, Since the water is discharged, the reaction gas flow path can be prevented from freezing.

請求項2に係る発明は、前記外気温度が所定の温度以上のときは水の排出を行わないことを特徴とする。
このように構成することで、反応ガス流路が凍結する心配がない場合に排水処理をなくすことができる。
The invention according to claim 2 is characterized in that water is not discharged when the outside air temperature is equal to or higher than a predetermined temperature.
With such a configuration, drainage treatment can be eliminated when there is no concern that the reaction gas flow path freezes.

請求項3に係る発明は、水を排出する処理時間を、前記外気温度が低いほど長くすることを特徴とする。
このように構成することで、外気温度が低いほど反応ガス流路の凍結可能性が高くなることに着目して、水を排出する処理時間を長くする。
The invention according to claim 3 is characterized in that the treatment time for discharging water is made longer as the outside air temperature is lower.
With this configuration, the processing time for discharging water is lengthened, paying attention to the fact that the lower the outside air temperature, the higher the possibility of freezing the reaction gas flow path.

請求項4に係る発明は、水を排出する処理時間を、前記外気温度が所定温度より低いときは一定にすることを特徴とする。
このように構成することで、外気温度が所定温度より低いときは水を排出する時間を一定にして、反応ガス流路内の水を排出する。
The invention according to claim 4 is characterized in that the treatment time for discharging water is made constant when the outside air temperature is lower than a predetermined temperature.
With this configuration, when the outside air temperature is lower than the predetermined temperature, the water discharge time is made constant, and the water in the reaction gas flow path is discharged.

請求項5に係る発明は、前記外気温度に応じて前記反応ガスの供給量を設定することを特徴とする。
このように構成することで、外気温度に応じて反応ガスの供給量を設定することにより、燃料電池の運転停止時に必要な時間を常に同等にすることが可能となる。
The invention according to claim 5 is characterized in that the supply amount of the reaction gas is set according to the outside air temperature.
With this configuration, by setting the supply amount of the reaction gas in accordance with the outside air temperature, it is possible to always equalize the time required when the operation of the fuel cell is stopped.

請求項6に係る発明は、前記外気温度が低いほど前記反応ガスの供給量を多くすることを特徴とする。
このように構成することで、外気温度が低いほど念入りに排水を行う必要があるため、反応ガスの供給量を多くすることにより、常温状態と同等の時間で排水を完了させることが可能となる。
The invention according to claim 6 is characterized in that the supply amount of the reaction gas is increased as the outside air temperature is lower.
With this configuration, it is necessary to perform drainage more carefully as the outside air temperature is lower. Therefore, by increasing the supply amount of the reaction gas, the drainage can be completed in the same time as the normal temperature state. .

請求項7に係る発明は、各々の反応ガス流路(例えば、実施形態における反応ガス流路5,6)に反応ガスとしての燃料ガス(例えば、実施形態における水素ガス)と酸化剤ガス(例えば、実施形態における空気)とを供給し電気化学反応によって発電を行う燃料電池(例えば、実施形態における燃料電池1)と、外気温度を検出する外気温検出手段(例えば、実施形態における外気温センサ20)と、前記反応ガスの供給を制御するガス供給制御手段(例えば、実施形態におけるコンプレッサ7、水素ポンプ14)と、を備えた燃料電池運転装置において、前記燃料電池からの電力の供給を遮断し、前記外気温検出手段の検出値に応じて前記ガス供給制御手段を制御して、前記燃料電池を運転停止することを特徴とする。
このように構成することで、外気温度に応じて反応ガスを供給することで反応ガス流路内の水を排出し、燃料電池を運転停止するので、その後、燃料電池が氷点下となったとしても水が排出されているため反応ガス流路が凍結することを防止できる。
The invention according to claim 7 is characterized in that a fuel gas (for example, hydrogen gas in the embodiment) and an oxidant gas (for example, hydrogen gas in the embodiment) are used as the reaction gas in each of the reaction gas passages (for example, the reaction gas passages 5 and 6 in the embodiment). A fuel cell (for example, the fuel cell 1 in the embodiment) that supplies the air with the air in the embodiment and generates an electric power by an electrochemical reaction, and an outside air temperature detecting unit (for example, the outside air temperature sensor 20 in the embodiment) that detects the outside air temperature ) And gas supply control means (for example, the compressor 7 and the hydrogen pump 14 in the embodiment) for controlling the supply of the reaction gas, in which the supply of electric power from the fuel cell is cut off. The gas supply control unit is controlled in accordance with a detection value of the outside air temperature detection unit, and the operation of the fuel cell is stopped.
With this configuration, the reaction gas is supplied in accordance with the outside air temperature, thereby discharging the water in the reaction gas flow path and shutting down the fuel cell, so that even if the fuel cell falls below freezing, Since the water is discharged, the reaction gas flow path can be prevented from freezing.

請求項1に係る発明によれば、外気温度に応じて反応ガスを供給することで反応ガス流路内の水を排出して燃料電池を運転停止し、その後、燃料電池が氷点下となったとしても水が排出されているため反応ガス流路が凍結することを防止できる。また、運転停止時に常に水を排出する場合に比較して排水に必要なエネルギーを最小限に抑えて、燃料電池への負荷を抑えることができると共に氷点下での燃料電池の再始動性を向上できる効果がある。
更に、必要がある場合にのみ系内の水を排水することで、排水に必要なエネルギーを最小限に抑えることができる効果がある。
According to the first aspect of the present invention, it is assumed that the reaction gas is supplied in accordance with the outside air temperature, the water in the reaction gas flow path is discharged, the operation of the fuel cell is stopped, and then the fuel cell is below freezing. Also, since water is discharged, the reaction gas flow path can be prevented from freezing. In addition, the energy required for drainage can be minimized as compared with the case where water is constantly drained when the operation is stopped, the load on the fuel cell can be reduced, and the restartability of the fuel cell below freezing can be improved. effective.
Furthermore, draining the water in the system only when necessary, has the effect of minimizing the energy required for drainage.

請求項2に係る発明によれば、燃料電池の運転停止時の外気温度が所定温度よりも高いときは排水処理を行わないので、燃料電池の反応ガス流路が凍結する可能性が十分に低いときは排水処理に必要なコンプレッサなどの電力消費をなくすことが可能になり、燃料電池にかかる負荷を最小限に抑えることができる。   According to the second aspect of the present invention, when the outside air temperature when the operation of the fuel cell is stopped is higher than the predetermined temperature, the drainage processing is not performed, so that the possibility that the reaction gas flow path of the fuel cell is frozen is sufficiently low. In some cases, it is possible to eliminate the power consumption of the compressor and the like necessary for the wastewater treatment, and it is possible to minimize the load on the fuel cell.

請求項3に係る発明によれば、燃料電池の運転停止時の外気温度が低いほど反応ガス流路が凍結する可能性が高いので、排出処理の時間を長く設定することで確実に水を排出しておくことができ、反応ガス流路の凍結を確実に防止することができる。   According to the third aspect of the invention, the lower the outside air temperature when the operation of the fuel cell is stopped, the higher the possibility of the freezing of the reaction gas flow path. The freezing of the reaction gas flow path can be reliably prevented.

請求項4に係る発明によれば、外気温度が所定温度よりも低いときは一定の処理時間、排水処理を行うことができるので、処理時間の過不足なく排水処理を行うことができ、確実に水を排出しておくことができ、反応ガス流路の凍結を防止することができる。   According to the invention according to claim 4, when the outside air temperature is lower than the predetermined temperature, the wastewater treatment can be performed for a fixed treatment time, so that the wastewater treatment can be performed without excess or shortage of the treatment time. The water can be drained, and the freezing of the reaction gas channel can be prevented.

請求項5に係る発明によれば、外気温度に応じて反応ガスの供給量を設定することにより、燃料電池の運転停止時に必要な時間を常に同等にすることが可能となるので、商品性が向上する。特に、燃料電池車両に搭載した場合には、燃料電池の運転停止時に運転者に違和感を与えないようにすることができる。   According to the invention according to claim 5, by setting the supply amount of the reaction gas in accordance with the outside air temperature, the time required when the operation of the fuel cell is stopped can be always equalized, so that the commerciality is improved. improves. In particular, when mounted on a fuel cell vehicle, it is possible to prevent the driver from feeling uncomfortable when the operation of the fuel cell is stopped.

請求項6に係る発明によれば、外気温度が低いほど念入りに排水を行う必要があるため、外気温度が低いほど反応ガスの供給量を多くすることにより、常温状態と同等の時間で排水を完了させることが可能となる。   According to the invention according to claim 6, since it is necessary to perform drainage more carefully as the outside air temperature is lower, by increasing the supply amount of the reaction gas as the outside air temperature is lower, the drainage can be performed in the same time as the normal temperature state. It can be completed.

請求項7に係る発明によれば、外気温度に応じて反応ガスを供給することで反応ガス流路内の水を排出し、燃料電池を運転停止するので、その後、燃料電池が氷点下となったとしても水が排出されているため反応ガス流路が凍結することを防止できる。また、運転停止時に常に水を排出する場合に比較して排水に必要なエネルギーを最小限に抑えて、燃料電池への負荷を抑えることができると共に氷点下での燃料電池の再始動性を向上できる効果がある。
更に、必要がある場合にのみ系内の水を排水することで、排水に必要なエネルギーを最小限に抑えることができる効果がある。
According to the invention according to claim 7, since the water in the reaction gas flow path is discharged by supplying the reaction gas in accordance with the outside air temperature and the operation of the fuel cell is stopped, the fuel cell is below freezing point thereafter. Since the water is discharged, the reaction gas channel can be prevented from freezing. In addition, the energy required for drainage can be minimized as compared with the case where water is constantly drained when the operation is stopped, the load on the fuel cell can be reduced, and the restartability of the fuel cell below freezing can be improved. effective.
Furthermore, draining the water in the system only when necessary, has the effect of minimizing the energy required for drainage.

以下、この発明の実施形態を図面と共に説明する。図1に示すのは燃料電池車両に搭載された燃料電池システムの概略構成図である。
燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜2をアノード3とカソード4とで両側から挟み込んで形成されたセルを複数積層して構成されたものであり(図1では単セルのみを示す)、アノード3の反応ガス流路5に燃料ガスとして水素ガスを供給し、カソード4の反応ガス流路6に酸化剤ガスとして酸素を含む空気を供給すると、アノード3で触媒反応により発生した水素イオンが、固体高分子電解質膜2を通過してカソード4まで移動して、カソード4で酸素と電気化学反応を起こして発電し、水が生成される。カソード側で生じた生成水の一部は固体高分子電解質膜2を介してアノード側に逆拡散するため、アノード側にも生成水が存在する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fuel cell system mounted on a fuel cell vehicle.
The fuel cell 1 is configured by stacking a plurality of cells formed by sandwiching a solid polymer electrolyte membrane 2 made of, for example, a solid polymer ion exchange membrane or the like between an anode 3 and a cathode 4 from both sides (FIG. 1). Only a single cell is shown), hydrogen gas is supplied as a fuel gas to the reaction gas flow path 5 of the anode 3, and air containing oxygen is supplied as an oxidant gas to the reaction gas flow path 6 of the cathode 4. Hydrogen ions generated by the catalytic reaction pass through the solid polymer electrolyte membrane 2 and move to the cathode 4 to cause an electrochemical reaction with oxygen at the cathode 4 to generate power, thereby generating water. Since a part of the generated water generated on the cathode side is diffused back to the anode side through the solid polymer electrolyte membrane 2, the generated water also exists on the anode side.

空気はスーパーチャージャー(S/C)などのコンプレッサ7により所定圧力に加圧され、空気供給流路8を通って燃料電池1のカソード4の反応ガス流路6に供給される。燃料電池1に供給された空気は発電に供された後、燃料電池1からカソード側の生成水と共に空気排出流路9に排出され、排出ガス処理装置10に導入される。以下、燃料電池1に供給される空気を供給空気、燃料電池1から排出される空気を排出空気として区別する。   The air is pressurized to a predetermined pressure by a compressor 7 such as a supercharger (S / C) and supplied to a reaction gas flow path 6 of the cathode 4 of the fuel cell 1 through an air supply flow path 8. After the air supplied to the fuel cell 1 is used for power generation, the air is discharged from the fuel cell 1 to the air discharge passage 9 together with the water generated on the cathode side, and introduced into the exhaust gas treatment device 10. Hereinafter, the air supplied to the fuel cell 1 is identified as supply air, and the air exhausted from the fuel cell 1 is identified as exhaust air.

一方、水素タンク(H2)11から供給される水素ガスは、水素ガス供給流路(燃料ガス供給流路)12を通って燃料電池1のアノード3の反応ガス流路5に供給される。そして、消費されなかった未反応の水素ガスは、アノード側の生成水と共にアノード側から水素ガス排出流路(燃料ガス排出流路)16を経て水素ガス循環流路(燃料ガス循環流路)13に排出され、更に、水素ガス循環流路13に設けた水素ポンプ14を介して水素ガス供給流路12に合流する。つまり、燃料電池1から排出された水素ガスは、水素タンク11から供給される新鮮な水素ガスと合流して、再び燃料電池1のアノード3の反応ガス流路5に供給される。   On the other hand, the hydrogen gas supplied from the hydrogen tank (H2) 11 is supplied to the reaction gas flow path 5 of the anode 3 of the fuel cell 1 through the hydrogen gas supply flow path (fuel gas supply flow path) 12. The unreacted hydrogen gas that has not been consumed together with the generated water on the anode side passes through the hydrogen gas discharge flow path (fuel gas discharge flow path) 16 from the anode side to the hydrogen gas circulation flow path (fuel gas circulation flow path) 13. And merges with the hydrogen gas supply channel 12 via a hydrogen pump 14 provided in the hydrogen gas circulation channel 13. That is, the hydrogen gas discharged from the fuel cell 1 merges with the fresh hydrogen gas supplied from the hydrogen tank 11 and is supplied again to the reaction gas flow path 5 of the anode 3 of the fuel cell 1.

水素ガス循環流路13からは、パージ弁15を備えた水素ガスパージ流路22が分岐しており、水素ガスパージ流路22は排出ガス処理装置10に接続されている。この排出ガス処理装置10において燃料電池1の空気排出流路9から排出された排出空気と、水素ガスパージ流路22から排出された水素ガスとが希釈処理されて排出される。尚、17は水素タンク11から供給される水素ガスを遮断する遮断弁、18は燃料電池1の電気エネルギーにより駆動する車両走行用のモータを示している。   A hydrogen gas purge channel 22 having a purge valve 15 is branched from the hydrogen gas circulation channel 13, and the hydrogen gas purge channel 22 is connected to the exhaust gas treatment device 10. In the exhaust gas treatment device 10, the exhaust air discharged from the air discharge passage 9 of the fuel cell 1 and the hydrogen gas discharged from the hydrogen gas purge passage 22 are diluted and discharged. Reference numeral 17 denotes a shutoff valve for shutting off hydrogen gas supplied from the hydrogen tank 11, and reference numeral 18 denotes a motor for driving a vehicle driven by electric energy of the fuel cell 1.

前記燃料電池1は、コントロールユニットであるECU19により制御され、そのためECU19には外気温度センサ20からの信号が入力され、コンプレッサ7の回転数、水素ポンプ14の回転数、遮断弁17の開閉、パージ弁15の開閉が行われる。また、アクセルペダル21から入力される加速要求に応じて、モータ18を制御する。   The fuel cell 1 is controlled by an ECU 19 which is a control unit. Therefore, a signal from an outside air temperature sensor 20 is input to the ECU 19, and the number of revolutions of the compressor 7, the number of revolutions of the hydrogen pump 14, the opening / closing of the shut-off valve 17, and the purge The opening and closing of the valve 15 is performed. Further, it controls the motor 18 according to an acceleration request input from the accelerator pedal 21.

次に、図2のフローチャートに基づいて燃料電池車両の燃料電池の運転停止処理を説明する。尚、説明にあたっては図3のタイムチャート図、図4及び図6のグラフ図と共に説明する。
ステップS1において、燃料電池車両が停止してイグニッションスイッチがOFF(IG−OFF)となり、燃料電池1からの電力の供給が遮断される(図3においてXの時点)。このとき水素ガス供給流路12に設けられた遮断弁17を遮断し、水素タンク11からの水素の供給は停止される。
次のステップS2において、外気温度が15°C(所定温度)以上か否かを判定し、判定結果が「NO」で15°C未満の場合はステップS3に進み、判定結果が「YES」で15°C以上である場合はステップS5に進む。
Next, the fuel cell operation stop processing of the fuel cell vehicle will be described based on the flowchart of FIG. The description will be made with reference to the time chart of FIG. 3 and the graphs of FIGS. 4 and 6.
In step S1, the fuel cell vehicle stops, the ignition switch is turned off (IG-OFF), and the supply of power from the fuel cell 1 is cut off (at the point X in FIG. 3). At this time, the shutoff valve 17 provided in the hydrogen gas supply passage 12 is shut off, and the supply of hydrogen from the hydrogen tank 11 is stopped.
In the next step S2, it is determined whether or not the outside air temperature is equal to or higher than 15 ° C. (predetermined temperature). If the determination result is “NO” and the temperature is less than 15 ° C., the process proceeds to step S3, and if the determination result is “YES”. If it is 15 ° C. or higher, the process proceeds to step S5.

ここで、図3に示すように、イグニッションスイッチがOFF(IGSWOFF)の時点に至るまでは、発電電流はアイドル発電電流i(X以降は0)となっており、これに応じて、水素ポンプ14、コンプレッサ7は、各々アイドル回転数a,bとなっている。尚、パージ弁15は閉となっている。   Here, as shown in FIG. 3, the power generation current is the idle power generation current i (0 after X) until the ignition switch is turned off (IGSWOFF). The compressor 7 has idle speeds a and b, respectively. Note that the purge valve 15 is closed.

ステップS3においては、外気温度に応じて停止処理に用いるコンプレッサ7の回転数(図3において回転数d(d>b))の設定、水素ポンプ14の回転数(図3において回転数e(e=a))の設定、処理時間タイマ(図3中t1で示す時間)のセットが行われステップS4に進む。ここで、この処理時間タイマの設定値は、図4(a)に横軸を外気温度、縦軸を処理時間として示すように15°Cまでは徐々に低下する特性となり、15°C以上の場合は処理時間は0に設定されている。   In step S3, the rotation speed (rotation speed d (d> b) in FIG. 3) of the compressor 7 used for the stop processing according to the outside air temperature and the rotation speed of the hydrogen pump 14 (rotation speed e (e in FIG. 3) = A)) and a processing time timer (time indicated by t1 in FIG. 3) are set, and the process proceeds to step S4. Here, the set value of the processing time timer has a characteristic that the temperature gradually decreases to 15 ° C. as shown in FIG. In this case, the processing time is set to 0.

つまり、燃料電池車両の停止時の外気温度が低いほど燃料電池1の温度が下がり反応ガス流路が凍結する可能性が高いので、外気温度が低いほど長い処理時間をかけて確実に水を排出する。また、15°C以上の場合は燃料電池1の反応ガス流路が凍結する可能性が十分に低いので、処理時間を0にして排水処理に必要なコンプレッサ7等の電力消費をなくすことが可能となり、燃料電池1にかかる負荷を最小限に抑えることができる。   In other words, the lower the outside air temperature when the fuel cell vehicle is stopped, the lower the temperature of the fuel cell 1 and the higher the possibility that the reactant gas flow path freezes. I do. When the temperature is 15 ° C. or higher, the possibility of freezing of the reaction gas flow path of the fuel cell 1 is sufficiently low, so that the processing time can be reduced to zero and the power consumption of the compressor 7 and the like required for wastewater treatment can be eliminated. Thus, the load on the fuel cell 1 can be minimized.

なお、処理時間タイマの設定値は、図4(a)に示される例に限るものではなく、以下の変形例としてもよい。
第1の変形例として、例えば図4(b)に示すように、15°C以上の場合は水を排出する処理時間を第1の処理時間に設定し、15°Cよりも低い場合は第1の処理時間よりも長い第2の処理時間に設定することもできる。つまり、燃料電池車両の停止時の外気温度が低いほど燃料電池1の反応ガス流路が凍結する可能性があるので、より長い時間をかけて水排出処理を確実に行っておく。また、外気温度が所定の温度(15°C)よりも低いときは、一定の処理時間に設定しているので、処理時間の過不足なく水排出処理を行うことができる。
The set value of the processing time timer is not limited to the example shown in FIG. 4A, but may be the following modified examples.
As a first modification, for example, as shown in FIG. 4B, when the temperature is 15 ° C. or more, the processing time for discharging water is set to the first processing time, and when the temperature is lower than 15 ° C., The second processing time may be set to be longer than the first processing time. In other words, the lower the outside air temperature when the fuel cell vehicle is stopped, the more likely the reaction gas flow path of the fuel cell 1 is frozen, so that the water discharge process is performed for a longer time. Further, when the outside air temperature is lower than the predetermined temperature (15 ° C.), the processing time is set to a constant value, so that the water discharging process can be performed without any shortage of the processing time.

第2の変形例として、例えば図4(c)に示すように、15°C以上の場合は水を排出する処理時間を第1の処理時間に設定し、0°Cよりも低い場合は第1の処理時間よりも長い第2の処理時間に設定することもできる。このようにすることによって、燃料電池車両の停止時の外気温度が低いほど燃料電池1の反応ガス流路が凍結する可能性が高いので、排水処理の時間を長く設定することで確実に水を排出しておくことができ、反応ガス流路の凍結を確実に防止できる。また、外気温度が第1の所定温度(15°C)よりも低い第2の所定温度(0°C)よりも低いときは、第1の所定時間よりも長い第2の所定時間に排水処理時間を設定するので、排水処理に必要な時間を最小限に設定することができ、排水処理時間を長くとり過ぎることなく、コンプレッサ7などの電力消費を最小限に抑えることが可能となる。   As a second modification, for example, as shown in FIG. 4C, when the temperature is higher than 15 ° C., the processing time for discharging water is set to the first processing time, and when the temperature is lower than 0 ° C., the first processing time is set. The second processing time may be set to be longer than the first processing time. By doing so, the lower the outside air temperature when the fuel cell vehicle is stopped, the higher the possibility that the reactant gas flow path of the fuel cell 1 freezes. The reaction gas can be discharged, and freezing of the reaction gas flow path can be reliably prevented. When the outside air temperature is lower than a second predetermined temperature (0 ° C.) lower than the first predetermined temperature (15 ° C.), the drainage treatment is performed at a second predetermined time longer than the first predetermined time. Since the time is set, the time required for the wastewater treatment can be minimized, and the power consumption of the compressor 7 and the like can be minimized without taking the wastewater treatment time too long.

なお、上記第1、第2の変形例の場合には、運転停止処理におけるステップS1〜S3は、図5に示すようになる。すなわち、ステップS1でイグニッションスイッチがOFFとなった後、ステップS2において外気温度を読み込み、ステップS3において、外気温度に応じて停止処理に用いるコンプレッサ7の回転数の設定、水素ポンプ14の回転数の設定、処理時間タイマのセットが行われ、ステップS4に進む。ステップS4以降は図2のフローチャートと同じであるので、図示および説明を省略する。   In the case of the first and second modifications, steps S1 to S3 in the operation stop processing are as shown in FIG. That is, after the ignition switch is turned off in step S1, the outside air temperature is read in step S2, and in step S3, the rotation speed of the compressor 7 used for the stop processing and the rotation speed of the hydrogen pump 14 are set in accordance with the outside air temperature. Setting and setting of a processing time timer are performed, and the process proceeds to step S4. Since step S4 and subsequent steps are the same as those in the flowchart of FIG. 2, illustration and description are omitted.

また、外気温度に応じたコンプレッサ7の回転数と水素ポンプ14の回転数の設定値は、図6に示すように設定することができる。図6において横軸は外気温度、縦軸はコンプレッサ7あるいは水素ポンプ14の回転数を示している。
図6(a)の例では、15°C以上の場合は回転数をアイドル時回転数よりも高い第1の回転数に設定し、0゜Cよりも低い場合は第1の回転数よりも高い第2の回転数に設定し、0°C〜15°Cの間の場合は外気温度が低くなるにしたがって徐々に連続的に高くなるように設定する。
図6(b)の例では、15°C以上の場合は回転数をアイドル時回転数よりも高い第1の回転数に設定し、15゜Cよりも低い場合は温度が低くなるにしたがって徐々に高くなるように設定する。
図6(c)の例では、15°C以上の場合は回転数をアイドル時回転数よりも高い第1の回転数に設定し、15゜Cよりも低い場合は、第1の回転数よりも高い回転数で、且つ、所定の温度間隔ごとに段階的に回転数を上げていく。
ただし、処理時間タイマの設定を図4(a)に示すように外気温度が15゜C以上のとき処理時間タイマを0に設定した場合には、水素ポンプ14については外気温度が15゜C以上のときに前記第1の回転数を0に設定する。
Further, the set values of the rotation speed of the compressor 7 and the rotation speed of the hydrogen pump 14 according to the outside air temperature can be set as shown in FIG. 6, the horizontal axis represents the outside air temperature, and the vertical axis represents the rotation speed of the compressor 7 or the hydrogen pump 14.
In the example of FIG. 6A, the rotation speed is set to the first rotation speed higher than the idling rotation speed when the rotation speed is equal to or higher than 15 ° C., and the rotation speed is set lower than the first rotation speed when the rotation speed is lower than 0 ° C. The second rotation speed is set to a high value, and is set so as to gradually increase continuously as the outside air temperature decreases between 0 ° C. and 15 ° C.
In the example of FIG. 6B, the rotation speed is set to a first rotation speed higher than the idling rotation speed when the temperature is higher than 15 ° C., and gradually lower as the temperature becomes lower when the temperature is lower than 15 ° C. To be higher.
In the example of FIG. 6C, the rotation speed is set to a first rotation speed higher than the idling rotation speed when the rotation speed is equal to or higher than 15 ° C., and the rotation speed is set lower than the first rotation speed when the rotation speed is lower than 15 ° C. At a high rotation speed, and the rotation speed is increased stepwise at predetermined temperature intervals.
However, when the processing time timer is set to 0 when the outside air temperature is 15 ° C. or more as shown in FIG. 4A, the outside air temperature of the hydrogen pump 14 is 15 ° C. or more. At this time, the first rotation speed is set to zero.

燃料電池車両の停止時の外気温度が低いほど燃料電池1の反応ガス流路が凍結する可能性が高いので念入りに排水を行う必要があるため、このように外気温度が低くなるほどコンプレッサ7や水素ポンプ14の回転数を高くして圧縮空気や水素ガスの供給量を増やすことにより、確実に水を排出しておくことができ、反応ガス流路の凍結を確実に防止することができる。また、圧縮空気や水素ガスの供給量を増やすことで水の排出に必要な時間を短くすることが可能となるので、外気温度にかかわらず供給量を一定とする場合に比べて、外気温度が低いときに設定される前述した処理時間タイマの設定値を短くすることができる。
また、外気温度が低くなるほどコンプレッサ7や水素ポンプ14の回転数を高くし、圧縮空気や水素ガスの供給量を増やすことで、外気温度が低い場合にも常温状態と同等の時間で排水を完了させることが可能となるので、外気温度が15゜C以下のときの処理時間タイマの設定値を一定にすることも可能となり、燃料電池1の運転停止時に必要な時間を常に同等にすることが可能となる。
The lower the outside air temperature when the fuel cell vehicle is stopped, the higher the possibility that the reactant gas flow path of the fuel cell 1 is frozen. Therefore, it is necessary to carefully drain water. By increasing the supply speed of the compressed air or hydrogen gas by increasing the rotation speed of the pump 14, it is possible to reliably discharge water, and to reliably prevent the reaction gas flow path from freezing. Also, by increasing the supply amount of compressed air or hydrogen gas, it is possible to shorten the time required for discharging water, so that the outside air temperature is lower than when the supply amount is constant regardless of the outside air temperature. The set value of the processing time timer, which is set when the time is low, can be shortened.
Also, as the outside air temperature becomes lower, the rotation speed of the compressor 7 and the hydrogen pump 14 is increased, and the supply amount of the compressed air and hydrogen gas is increased. Therefore, it is possible to make the set value of the processing time timer constant when the outside air temperature is 15 ° C. or less, and to always equalize the time required when the operation of the fuel cell 1 is stopped. It becomes possible.

ステップS4においては上記ステップS3で設定された回転数でコンプレッサ7、水素ポンプ14が駆動され、処理時間タイマが0になるまで(時間t1経過まで)運転されて(ステップS5)、ステップS6に進む。これにより反応ガス流路6には空気が圧縮された状態で供給され、流速が確保された圧縮空気によって反応ガス流路6内の水は排出される。また、水素ガス循環流路13内は遮断弁17を閉じていることで水素タンク11からの水素供給はないものの、水素ガス循環流路13内に残留した水素ガスを循環させ、燃料電池1へ燃料電池1から排出された水素ガスを再供給することで、水素ガス循環流路13内の水をパージ弁15近傍に収集する。   In step S4, the compressor 7 and the hydrogen pump 14 are driven at the rotation speed set in step S3, and are operated until the processing time timer becomes 0 (until the time t1 elapses) (step S5), and the process proceeds to step S6. . As a result, air is supplied to the reaction gas passage 6 in a compressed state, and the water in the reaction gas passage 6 is discharged by the compressed air having the secured flow velocity. Further, since the shutoff valve 17 is closed in the hydrogen gas circulation channel 13 so that hydrogen is not supplied from the hydrogen tank 11, the hydrogen gas remaining in the hydrogen gas circulation channel 13 is circulated to the fuel cell 1. By re-supplying the hydrogen gas discharged from the fuel cell 1, water in the hydrogen gas circulation channel 13 is collected near the purge valve 15.

ここで、燃料電池1の運転停止以降は反応ガス流路5,6に反応ガスを供給するため、コンプレッサ7、水素ポンプ14の運転は図示しないキャパシタ、バッテリなどの補助電源からの電気エネルギーにより行われる。
燃料電池1へ供給する反応ガス(水素ガス、酸化剤ガス)によってそれぞれの反応ガス流路5,6内に残留した水を排出できるので、新たに排水のための補機を設ける必要がない。
Here, since the reaction gas is supplied to the reaction gas flow paths 5 and 6 after the operation of the fuel cell 1 is stopped, the compressor 7 and the hydrogen pump 14 are operated by electric energy from an auxiliary power supply such as a capacitor and a battery (not shown). Is
The water remaining in each of the reaction gas flow paths 5, 6 can be discharged by the reaction gas (hydrogen gas, oxidizing gas) supplied to the fuel cell 1, so that it is not necessary to newly provide an auxiliary device for drainage.

ステップS6では水素ポンプ14が停止され(図3においてYの時点で水素ポンプの回転数=0)、ステップS7ではパージ弁15による排出処理(図3におけるパージ弁15開作動)が行われる。これにより水素ガスパージ流路22から排出ガス処理装置10へ水素ガスが送られる。このとき、コンプレッサ7は回転数dのままで運転している。   In step S6, the hydrogen pump 14 is stopped (the rotation speed of the hydrogen pump = 0 at the point of time Y in FIG. 3), and in step S7, a discharge process by the purge valve 15 (opening of the purge valve 15 in FIG. 3) is performed. Thereby, the hydrogen gas is sent from the hydrogen gas purge channel 22 to the exhaust gas treatment device 10. At this time, the compressor 7 is operating at the rotational speed d.

そして、ステップS8においてコンプレッサ7を図3中Yの時点からコンプレッサ駆動時間タイマが0になるまで運転する。これにより排出ガス処理装置10に排出される水素量に応じた量の排出空気を排出ガス処理装置10に供給して排出ガス処理を行うことができる。尚、コンプレッサ駆動時間タイマの設定値t2は排出ガス処理装置10に排出される水素量に応じて決定される。このとき、水素ガス循環流路13内の水はパージ弁15近傍に収集してあるので、水を早期に排出することが可能となるとともに、排出される水素の量を少量で抑えることができるので、その後の希釈処理時におけるコンプレッサ7の駆動時間を短くすることができる。
そして、ステップS9においてコンプレッサ7を停止して(図3中Zの時点)運転停止処理を終了する。
Then, in step S8, the compressor 7 is operated from the time point Y in FIG. 3 until the compressor drive time timer becomes zero. Thus, the exhaust gas can be processed by supplying the exhaust air in an amount corresponding to the amount of hydrogen discharged to the exhaust gas processing apparatus 10 to the exhaust gas processing apparatus 10. The set value t2 of the compressor drive time timer is determined according to the amount of hydrogen discharged to the exhaust gas processing device 10. At this time, since the water in the hydrogen gas circulation channel 13 is collected near the purge valve 15, it is possible to discharge the water at an early stage and to suppress the amount of discharged hydrogen with a small amount. Therefore, the driving time of the compressor 7 during the subsequent dilution process can be shortened.
Then, in step S9, the compressor 7 is stopped (at the time point Z in FIG. 3), and the operation stop processing ends.

上記実施形態によれば、外気温度に応じて反応ガス流路5,6に反応ガスを供給することで、反応ガス流路5,6内の水を排出し、燃料電池1を運転停止することで、その後、燃料電池1が氷点下となったとしても水が排出されているため反応ガス流路5,6が凍結することはない。よって、運転停止時に常に水を排出する場合に比較して排水に必要なエネルギーを最小限に抑えて、燃料電池1への負荷を抑えることができると共に氷点下での燃料電池1の再始動性を向上できる。また、必要がある場合に必要な時間をかけて系内の水を排水することで、排水に必要なエネルギーを最小限に抑えることができる。   According to the above embodiment, by supplying the reaction gas to the reaction gas flow paths 5 and 6 according to the outside air temperature, the water in the reaction gas flow paths 5 and 6 is discharged, and the operation of the fuel cell 1 is stopped. Then, even if the fuel cell 1 is below the freezing point, since the water is discharged, the reaction gas flow paths 5, 6 do not freeze. Therefore, the energy required for drainage can be minimized as compared with the case where water is constantly drained when the operation is stopped, the load on the fuel cell 1 can be suppressed, and the restartability of the fuel cell 1 below freezing can be improved. Can be improved. In addition, when necessary, draining the water in the system for a necessary time can minimize the energy required for draining.

ここで、前記反応ガスのうち酸化剤ガスは圧縮した空気であり、圧縮した空気を供給するようにしたため、圧縮された空気により十分に流速を確保した状態で反応ガス流路6の排水が可能となり、したがって、確実に酸化剤ガスの反応ガス流路6内部の水を排出できる。   Here, the oxidizing gas of the reaction gas is compressed air, and the compressed air is supplied, so that the compressed air can drain the reaction gas flow path 6 with a sufficient flow velocity secured. Therefore, the water inside the reaction gas flow path 6 for the oxidizing gas can be reliably discharged.

また、この水素ガス循環流路13に設けられた水素ポンプ14を所定時間t1運転して、水素ポンプ14により水素ガス循環流路13内に水素ガスを循環させ、水素ガス循環流路13内に残留した水を収集した後に燃料電池1の反応ガス流路5の排水が可能となるため、確実に水素ガスの反応ガス流路5内部の水を排出でき、水を収集したことによって排水にかかるる時間を短縮することができる。   Further, the hydrogen pump 14 provided in the hydrogen gas circulation channel 13 is operated for a predetermined time t1 to circulate the hydrogen gas into the hydrogen gas circulation channel 13 by the hydrogen pump 14, After the remaining water is collected, the reaction gas flow path 5 of the fuel cell 1 can be drained, so that the water inside the reaction gas flow path 5 for the hydrogen gas can be reliably discharged, and the collected water causes the drainage. Time can be reduced.

尚、この発明は上記実施形態に限られるものではなく、例えば、所定温度である外気温度は15°Cは、一例であって、使用される地方によって変更することができる。また、この発明は外気温度に応じて排水処理を行えばよく、図4(a)〜(c)に示した一例の他にも様々な変更が可能である。例えば、図4(b)、(c)において所定温度(15°C)以上のときは排水処理を行わないことも可能であり、また、外気温度が低いほど処理時間が長くなるように段階的に処理時間を長くしてもよい。   Note that the present invention is not limited to the above-described embodiment. For example, the predetermined outside air temperature of 15 ° C. is merely an example, and can be changed depending on the region where it is used. Further, in the present invention, the drainage treatment may be performed according to the outside air temperature, and various modifications other than the example shown in FIGS. 4A to 4C are possible. For example, in FIGS. 4B and 4C, when the temperature is equal to or higher than a predetermined temperature (15 ° C.), the drainage processing may not be performed, and the processing time may be increased as the outside air temperature decreases. The processing time may be extended.

この発明の実施形態の燃料電池車両に搭載された燃料電池システムの概略構成図である。1 is a schematic configuration diagram of a fuel cell system mounted on a fuel cell vehicle according to an embodiment of the present invention. この発明の実施形態の燃料電池車両に搭載された燃料電池の運転停止処理を示すフローチャート図である。FIG. 4 is a flowchart illustrating a process of stopping operation of a fuel cell mounted on the fuel cell vehicle according to the embodiment of the present invention. この発明の実施形態のタイムチャート図である。It is a time chart figure of an embodiment of the present invention. この発明の実施形態のグラフ図であり、(a)は処理時間と停止時の外気温度との関係を示し、(b)、(c)は変形例を示す。It is a graph figure of embodiment of this invention, (a) shows the relationship between the processing time and the outside air temperature at the time of a stop, (b), (c) shows a modification. 燃料電池の運転停止処理を示すフローチャート図の別の例である。FIG. 9 is another example of a flowchart illustrating a fuel cell operation stop process. この発明の実施形態のグラフ図であり、(a)はコンプレッサあるいは水素ポンプの回転数と停止時の外気温度との関係を示し、(b)、(c)は変形例を示す。It is a graph figure of an embodiment of this invention, (a) shows the relation between the number of rotations of a compressor or a hydrogen pump, and the outside air temperature at the time of stop, and (b), (c) shows a modification.

符号の説明Explanation of reference numerals

1 燃料電池
5,6 反応ガス流路
7 コンプレッサ(ガス供給制御手段)
14 水素ポンプ(ガス供給制御手段)
18 モータ
20 外気温センサ(外気温検出手段)
1 fuel cells 5, 6 reaction gas flow path 7 compressor (gas supply control means)
14 Hydrogen pump (gas supply control means)
18 Motor 20 Outside temperature sensor (outside temperature detection means)

Claims (7)

各々の反応ガス流路に反応ガスとしての燃料ガスと酸化剤ガスとを供給し電気化学反応によって発電を行う燃料電池の運転方法であって、
燃料電池からの電力の供給を遮断し、外気温度を検出し、前記外気温度に応じて前記反応ガス流路内に前記反応ガスを供給することで反応ガス流路内の水を排出し、燃料電池を運転停止することを特徴とする燃料電池運転方法。
A method of operating a fuel cell that supplies a fuel gas and an oxidizing gas as a reaction gas to each reaction gas flow path and generates power by an electrochemical reaction,
The power supply from the fuel cell is cut off, the outside air temperature is detected, and the reaction gas is supplied into the reaction gas passage according to the outside air temperature to discharge the water in the reaction gas passage, and the fuel is discharged. A method of operating a fuel cell, comprising shutting down the operation of a battery.
前記外気温度が所定の温度以上のときは水の排出を行わないことを特徴とする請求項1に記載の燃料電池運転方法。   2. The method according to claim 1, wherein water is not discharged when the outside air temperature is equal to or higher than a predetermined temperature. 水を排出する処理時間を、前記外気温度が低いほど長くすることを特徴とする請求項1又は請求項2に記載の燃料電池運転方法。   The fuel cell operating method according to claim 1 or 2, wherein the processing time for discharging water is set longer as the outside air temperature is lower. 水を排出する処理時間を、前記外気温度が所定温度より低いときは一定にすることを特徴とする請求項1〜請求項3のいずれかに記載の燃料電池運転方法。   4. The fuel cell operating method according to claim 1, wherein the processing time for discharging water is constant when the outside air temperature is lower than a predetermined temperature. 前記外気温度に応じて前記反応ガスの供給量を設定することを特徴とする請求項1に記載の燃料電池運転方法。   2. The fuel cell operating method according to claim 1, wherein the supply amount of the reaction gas is set according to the outside air temperature. 前記外気温度が低いほど前記反応ガスの供給量を多くすることを特徴とする請求項5に記載の燃料電池運転方法。   The fuel cell operation method according to claim 5, wherein the supply amount of the reaction gas is increased as the outside air temperature is lower. 各々の反応ガス流路に反応ガスとしての燃料ガスと酸化剤ガスとを供給し電気化学反応によって発電を行う燃料電池と、
外気温度を検出する外気温検出手段と、
前記反応ガスの供給を制御するガス供給制御手段と、を備えた燃料電池運転装置において、
前記燃料電池からの電力の供給を遮断し、前記外気温検出手段の検出値に応じて前記ガス供給制御手段を制御して、前記燃料電池を運転停止することを特徴とする燃料電池運転装置。
A fuel cell that supplies fuel gas and oxidant gas as a reaction gas to each reaction gas flow path and generates power by an electrochemical reaction;
An outside air temperature detecting means for detecting an outside air temperature;
Gas supply control means for controlling the supply of the reaction gas,
A fuel cell operation device, wherein the supply of electric power from the fuel cell is cut off, the gas supply control means is controlled in accordance with a detection value of the outside air temperature detection means, and the operation of the fuel cell is stopped.
JP2003324809A 2002-11-25 2003-09-17 Operation method of fuel cell system and fuel cell operation device Expired - Fee Related JP4498707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324809A JP4498707B2 (en) 2002-11-25 2003-09-17 Operation method of fuel cell system and fuel cell operation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002340783 2002-11-25
JP2003324809A JP4498707B2 (en) 2002-11-25 2003-09-17 Operation method of fuel cell system and fuel cell operation device

Publications (2)

Publication Number Publication Date
JP2004193102A true JP2004193102A (en) 2004-07-08
JP4498707B2 JP4498707B2 (en) 2010-07-07

Family

ID=32774740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324809A Expired - Fee Related JP4498707B2 (en) 2002-11-25 2003-09-17 Operation method of fuel cell system and fuel cell operation device

Country Status (1)

Country Link
JP (1) JP4498707B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185862A (en) * 2004-12-28 2006-07-13 Honda Motor Co Ltd Fuel cell system and its control method
JP2006190616A (en) * 2005-01-07 2006-07-20 Honda Motor Co Ltd Scavenging processor for fuel cell system, and method for scavenging
JP2006331674A (en) * 2005-05-23 2006-12-07 Toyota Motor Corp Fuel cell system
JP2006338984A (en) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd Fuel cell system
JP2007324071A (en) * 2006-06-05 2007-12-13 Toyota Motor Corp Fuel cell system
JP2008034344A (en) * 2006-06-26 2008-02-14 Toyota Motor Corp Fuel cell system
JP2008077959A (en) * 2006-09-21 2008-04-03 Toyota Motor Corp Fuel battery system
JP2008186624A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Fuel cell system
JP2009004291A (en) * 2007-06-25 2009-01-08 Honda Motor Co Ltd Fuel cell system and performance recovery method therefor
DE112007003163T5 (en) 2006-12-28 2009-11-26 Toyota Jidosha Kabushiki Kaisha, Toyota-shi The fuel cell system
WO2011010365A1 (en) * 2009-07-21 2011-01-27 トヨタ自動車株式会社 Fuel cell system
US7989112B2 (en) 2004-04-12 2011-08-02 Honda Motor Co., Ltd. Fuel cell system and purging method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208422A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2002208421A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2004022198A (en) * 2002-06-12 2004-01-22 Denso Corp Fuel cell system
JP2004039527A (en) * 2002-07-05 2004-02-05 Nissan Motor Co Ltd Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208422A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2002208421A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2004022198A (en) * 2002-06-12 2004-01-22 Denso Corp Fuel cell system
JP2004039527A (en) * 2002-07-05 2004-02-05 Nissan Motor Co Ltd Fuel cell system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989112B2 (en) 2004-04-12 2011-08-02 Honda Motor Co., Ltd. Fuel cell system and purging method therefor
JP2006185862A (en) * 2004-12-28 2006-07-13 Honda Motor Co Ltd Fuel cell system and its control method
JP4675623B2 (en) * 2004-12-28 2011-04-27 本田技研工業株式会社 Fuel cell system and control method thereof
JP4542911B2 (en) * 2005-01-07 2010-09-15 本田技研工業株式会社 Scavenging treatment apparatus and scavenging treatment method for fuel cell system
JP2006190616A (en) * 2005-01-07 2006-07-20 Honda Motor Co Ltd Scavenging processor for fuel cell system, and method for scavenging
JP2006331674A (en) * 2005-05-23 2006-12-07 Toyota Motor Corp Fuel cell system
JP2006338984A (en) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd Fuel cell system
JP2007324071A (en) * 2006-06-05 2007-12-13 Toyota Motor Corp Fuel cell system
JP2008034344A (en) * 2006-06-26 2008-02-14 Toyota Motor Corp Fuel cell system
JP2008077959A (en) * 2006-09-21 2008-04-03 Toyota Motor Corp Fuel battery system
DE112007003163T5 (en) 2006-12-28 2009-11-26 Toyota Jidosha Kabushiki Kaisha, Toyota-shi The fuel cell system
US8206856B2 (en) 2006-12-28 2012-06-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008186624A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Fuel cell system
JP2009004291A (en) * 2007-06-25 2009-01-08 Honda Motor Co Ltd Fuel cell system and performance recovery method therefor
WO2011010365A1 (en) * 2009-07-21 2011-01-27 トヨタ自動車株式会社 Fuel cell system
US20120183875A1 (en) * 2009-07-21 2012-07-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9190679B2 (en) 2009-07-21 2015-11-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP4498707B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US7875399B2 (en) Stop method for fuel cell system
KR100811806B1 (en) Control device for fuel cell system, fuel cell system, fuel cell hybrid vehicle
JP2008140734A (en) Fuel cell system
JP3866187B2 (en) Fuel cell vehicle
US8691460B2 (en) Method of stopping operation of fuel cell system
JP2004193102A (en) Fuel cell operating method, and fuel cell operating device
US8895166B2 (en) Fuel cell system and activation method of fuel cell
JP4554494B2 (en) Fuel cell system and scavenging method for the system
JP2007073328A (en) Fuel cell powered vehicle and method for controlling fuel cell
JP2007220355A (en) Low-temperature starting method of fuel cell system and fuel cell
JP2006294458A (en) Fuel cell system
JP2003151592A (en) Fuel cell system
JP2004179054A (en) Power generation shutdown method of fuel cell system
US8241804B1 (en) Method for controlling fuel cell system
JP2005197156A (en) Fuel cell system
JP4675623B2 (en) Fuel cell system and control method thereof
JP4498708B2 (en) Fuel cell operation device
KR20160057319A (en) Fuel cell system and control method of the same
JP2009076261A (en) Fuel cell system and its starting method
JP2019079757A (en) Fuel cell system
JP2004178901A (en) Starting method of fuel cell system
JP2004165093A (en) Fuel cell system and its drive method
JP4397686B2 (en) Fuel cell reactive gas supply device
JP2007317363A (en) Exhaust processing apparatus for fuel cell system
JP2007157604A (en) Fuel cell system and movable body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees