JP2004192824A - Fuel cell/methane fermentation cycle system - Google Patents

Fuel cell/methane fermentation cycle system Download PDF

Info

Publication number
JP2004192824A
JP2004192824A JP2002355637A JP2002355637A JP2004192824A JP 2004192824 A JP2004192824 A JP 2004192824A JP 2002355637 A JP2002355637 A JP 2002355637A JP 2002355637 A JP2002355637 A JP 2002355637A JP 2004192824 A JP2004192824 A JP 2004192824A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
methane fermentation
methane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355637A
Other languages
Japanese (ja)
Other versions
JP4124636B2 (en
Inventor
Tadashi Kamiyanagida
正 上柳田
Akihiro Nakanishi
顕宏 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2002355637A priority Critical patent/JP4124636B2/en
Publication of JP2004192824A publication Critical patent/JP2004192824A/en
Application granted granted Critical
Publication of JP4124636B2 publication Critical patent/JP4124636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell/methane fermentation cycle system using gas produced by methane fermentation and efficiently converting it into electrical energy, inexpensively separating, recovering and using carbon dioxide, and converting as much organic waste into methane gas to eliminate sludge. <P>SOLUTION: In the fuel cell/methane fermentation cycle system, a fuel cell system is combined with a methane fermentation system. It is provided with a methane fermentor 28, and a fuel cell 12 basically having an oxygen electrode (a cathode) 14 and a fuel electrode (an anode: a hydrogen electrode) 18. Biogas (produced gas) produced in the methane fermentor 28 is introduced to the anode 18, gas flowing out from the anode (anode outflow gas) to the methane fermentor 28 is passed through a carbon dioxide separation and recovery process, and cycle introduction of carbon dioxide or gas mainly comprising carbon dioxide to the methane fermentor 28 is carried out. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は、燃料電池の燃料極の燃料として、メタン発酵槽で生成されるバイオガスを利用する燃料電池・メタン発酵サイクルシステムに関する。
【0002】
特に、食品リサイクル法の適用事業所や大量の生ごみを処理している地方自治体施設、また、二酸化炭素の排出削減対象事業所、さらには、新エネルギーによる発電に対して発行される証書RPS(Renewable Portfolio Standard)の取得を予定している事業所に好適な発明である。
【0003】
【背景技術】
生ごみ等の水分を多く含む有機性廃棄物の嫌気性発酵処理(メタン発酵)は、エネルギーとして資源回収する技術が注目され、数多くの技術が提案また実用化されている。
【0004】
しかし、通常、投入廃棄物量の約25%が汚泥として、焼却や埋立て処分されているのが現状である。
【0005】
また、本発明の発明性に影響を与えるものではないが、メタン発酵に関する公知技術(特許文献)として下記のようなものがある。
【0006】
特許文献1:生成したガスを高分子膜によりメタンガスとCOガスに分離し、メタンガス濃度を高めるとともに、COガスはバイオガス混合して再度消化槽内に送りメタンに還元してメタンガス量の増加を図るメタン発酵方法。
【0007】
特許文献2:メタン発酵で得られたバイオガスを用いて浸漬膜表面の洗浄と槽内の攪拌を同時に実施する浸漬型膜利用メタン発酵システム。
【0008】
また、同じく燃料電池に関する公知技術(公知文献)として下記のようなものがある。
【0009】
特許文献3:天然ガスを燃料とした高温型燃料電池を用いた発電プラントで、燃料電池で発生した電気にて水を電気分解し、得られた酸素にて未反応の水素を水に戻す方式の技術。
【0010】
しかし、これらは何れも単発的な技術であり、総合的な技術的及び経済的な課題が解決されていない。
【0011】
【特許文献1】
特開昭61−178016号公報
【特許文献2】
特開2000−94000公報
【特許文献3】
特開平10−144322号公報
【0012】
【発明の開示】
本発明は、上記にかんがみて、メタン発酵で生成したガスを利用して高効率に電気エネルギーに変換するとともに、低コストで炭酸ガスを分離・回収・利用し、しかも有機性廃棄物を可能な限りメタンガスに変換して、無汚泥化する燃料電池・メタン発酵サイクルシステムを提供することを目的とする。
【0013】
上記課題を解決するために、本発明は、下記各構成の燃料電池・メタン発酵サイクルシステムとする。
【0014】
メタン発酵槽と、基本的に空気極(酸素極:カソード)と燃料極(水素極:アノード)とを有する燃料電池とを備え、
メタン発酵槽で発生するバイオガスをアノードへ導入するとともに、アノードから発生する排ガス(アノード流出ガス:HO+CO+H)をメタン発酵槽に導入することを特徴とする。
【0015】
上記構成において、アノード流出ガスをCO分離塔に導入して、一部のCOを分離回収し、CO分離塔から流出する炭酸ガス又は炭酸ガスを主体とした排ガスをメタン発酵槽に導入することが望ましい。
【0016】
上記構成において、燃料電池を低温型とする場合は、バイオガスを水素リッチにする水蒸気改質工程を経てアノードへ導入することが望ましい。
【0017】
また、燃料電池を高温型とする場合は、バイオガスを水蒸気改質工程を経ずに直接的にアノードへ導入することが望ましい。
【0018】
上記燃料電池を高温型とする場合において、アノード流出ガスの未反応水素を触媒燃焼により除去したアノード流出ガスをCO分離塔に導入することが望ましい。
【0019】
上記各構成において、メタン発酵槽の排水口にメタン菌が流出しない固液分離膜を配することが望ましい。
【0020】
上記各構成により、本発明は、下記のような作用・効果を奏するものである。
【0021】
生ごみなどの有機性廃棄物をメタン発酵(消化)させたバイオガスは、メタン(CH)と炭酸ガス(CO)が主成分であり、水蒸気改質することにより、水素(H)と炭酸ガス(CO)となる。バイオガスは精製後改質し燃料電池のアノード極へ供給する。水素は、カソード極の酸素と反応し、電気エネルギーへ変換されるととともに、水となって排出される。このため、アノード極の排ガスは、高濃度のCOガスと低濃度の未反応水素ガス(H)及び水蒸気(HO)であり、熱回収することによりCO分離が容易にできる。そこで、熱回収したガスを直接メタン発酵槽へ導入することもできるし、アノード流出ガスをCO分離塔に導入することにより、COを一部分離回収するとともに、水蒸気を水として回収することもできる。
【0022】
メタン発酵槽内に膜を設置してメタン菌の流出防止(メタン菌の蓄積)を図ることにより、有機物の分解能力が向上する。COと未反応Hを膜表面に散気することにより、膜表面洗浄と発酵槽内の攪拌及び発酵液内のCO含有濃度を高める効果がある。
【0023】
メタン発酵の前段で生成される脂肪酸やアルコール等、水素発酵物を介してメタン菌がCOをメタンガスに還元する作用を活用することにより、メタン生成反応が促進され、メタンガスの増量が期待できる。
【0024】
燃料電池による高効率発電と同時にCOの回収・利用及び消化汚泥の発生を極限まで減少可能であり、資源化サイクルシステムの構築が可能となる。
【0025】
【構成の詳細な説明】
以下、本発明の燃料電池・メタン発酵サイクルシステムの一例について、主として図1に基づいて説明をする。
【0026】
本発明は、基本的に燃料電池システムとメタン発酵(嫌気性処理)システムとを結合させたものである。
【0027】
すなわち、燃料電池システムは、燃料電池12と、燃料電池12の空気極(酸素極:カソード)14に酸素を供給する空気供給配管16と、燃料極(水素極:アノード)18に燃料(水素含有ガス)を供給する燃料供給配管20とを備えている。そして、空気供給配管16は、空気供給口にブロアー22、中間に空冷型熱交換器24を備えている。
【0028】
ここで、燃料電池12は、りん酸形(PAFC)、固体高分子形(PEFC)等の低温型である。
【0029】
また、メタン発酵システムは、メタン発酵槽28と、メタン発酵槽28に投入する生ごみを保管する生ごみ保管庫30と、メタン発酵槽28の処理水を廃棄・浄化する排水槽32と、およびメタン発酵槽28で発生したガスを精製・収納する精製・収納タンク33とを備え、それらの間は、それぞれ、粉砕ポンプ(図示せず)を備えた供給配管34、気体輸送機35を備えたメタンガス配管36及び、メタン発酵槽28内に配設された水中ポンプ29に接続された排水配管38で接続されている。そして、水中ポンプ29の手前には、メタン菌の流出防止を図るための固液分離膜31が配されている。なお、精製・収納タンク33内には、メタンガスに含まれている硫黄酸化物を始めとする不純物の精製手段が内蔵されている。
【0030】
そして、本システムでは、さらに、燃料電池システムとメタン発酵システムとの間に炭酸ガス(CO)分離回収システムが介在されている。
【0031】
炭酸ガス分離回収システムは、燃料極(アノード)18から排出される混合ガスを冷却して一次分離をする熱交換器40と、該熱交換器40から流出する水蒸気含有炭酸ガス中の炭酸ガスを水蒸気から分離・回収する炭酸ガス分離塔(CO分離塔)42とを備えている。該CO分離塔42は、炭酸ガスタンク44及び貯留水タンク46とを備えている。さらに、本システムでは、CO分離塔42とメタン発酵槽28との間には、CO分離塔42内から排出された炭酸ガス含有気体(H+CO)を、気体輸送機48を介してメタン発酵槽28の攪拌及び槽内のCO含有濃度を高めることを目的として炭酸ガス送気配管50が配されている。
【0032】
次に、上記構成のシステムの使用態様について説明をする。
【0033】
先ず、生ごみ保管庫30に保管されている生ごみをメタン発酵槽28に投入して、嫌気性処理であるメタン発酵(消化法)を行う。すると、メタンガスが主成分であるバイオガス(CH:CO=6:4)が発生する。そして、バイオガスは、改質器54で水蒸気改質(下記反応をさせる。)することにより、水素リッチのガスとなり、熱交換器40を経て燃料極18に供給が可能となる。
【0034】
CH+2HO→4HO+CO
なお、天然ガスの場合も、水蒸気改質して水素とCOにして、燃料極へ供給している。
【0035】
そして、燃料極(アノード)18から流出するアノード流出ガスは、水(HO)と炭酸ガス(CO)及び未反応残水素(H)からなり、熱交換器40で熱回収(冷却)する一次分離工程を経て、CO分離塔CO分離塔42に流入させることにより、簡便にCO/H成分と水とを分離・回収できる。
【0036】
また、CO分離塔42で、分離された未反応残水素はCOとともに、メタン発酵槽28の底部に投入すれば、処理は容易となる。COとHとは比重差が大きいため、CO2分離塔42内にある整流板等の簡単な機構で分離できる。また、このメタン発酵槽に導入するCO含有ガスを、メタン発酵槽28の曝気/攪拌に利用すると共に、燃料電池12の燃料として使用する場合は、含有するH濃度が高い方が燃料電池12の発電効率が高くなるため、未反応残水素は除去する必要はない。
【0037】
COを利用する場合、液化あるいはドライアイスを製造する過程においては水素の存在は大きな問題とならない。
【0038】
このとき、水素は空気極(酸素極:カソード)14の酸素と反応して水となるため、燃料極18からはCOと水とが排出される(流出する。)。このCOと水とは冷却することにより、簡単に分離することができる。この特性を利用して、高効率発電と同時に、COを簡単に効率よく分離回収が可能となる。そして、回収したCOは、メタン発酵槽28内の攪拌と、メタンガス生成反応の促進ガスとして利用できる。
【0039】
なお、図1のCO分離塔42において微量の水素含有が支障となる場合は、図2に示すごとく燃焼器52を用いる(すなわち、酸素にて触媒燃焼させる)ことにより、簡単に水素を除去して高濃度のCOが得られる(図2参照)。
【0040】
また、高温型の固体酸化物形燃料電池(SOFC)を使用する場合は、図2に示すシステムとする。
【0041】
すなわちSOFCでは、電池内部にてメタンが改質される。このため、改質器なしでメタンガスを主成分とするバイオガスを直接、燃料極18に供給でき、燃料極から排出される排ガスを、熱回収(冷却)することにより容易にCO/H成分と水とを分離・回収できる。
【0042】
図2の機器構成は基本的に図1と同様であるため、対応図符号を付して、その違いのみについて説明をする。
【0043】
SOFCにおいては、排熱温度が高いので排熱回収器56をカソード14出口に設置して、排熱の利用を図る(温水を作り利用する等。)とともにカソード14への供給空気を加熱することにより熱効率を高める。アノード18出口からのガスは燃焼器52を通過させてHを除去した後、二次空冷型熱交換器40によりアノード18への供給ガスを加熱して熱回収を図る。さらに、一次空冷型熱交換器40Aによりカソード14への供給空気をさらに加熱することにより再度熱回収を行う。炭酸ガス送気配管50によりメタン発酵槽28に送られるガスは、燃焼器52を介しているためCOのみとなる。
【0044】
天然ガスは、メタンが略100%であるが、嫌気性発酵で得られるバイオガスの場合、CH:CO=6:4である。メタンを水蒸気改質すると、水素とCOとのモル比は、前述の如く4:1となる。したがって、COの回収量からみると、バイオガスの場合、天然ガスに比して、1.5倍以上のCOの回収が可能となる。
【0045】
固形の難溶性有機物は、先ず、加水分解菌(hydrolytic bacteria)にて、高分子有機物が溶解性有機物となり、発酵菌(fermentative bacteria)にて低分子の中間生成物であるアルコールや有機酸に変わり、溶解性となる。その後、酢酸菌(Acetogenic bacteria)やメタン菌(Methanogenic bacteria)によりCOとメタンガスに分解される。
【0046】
また、嫌気性発酵するメタン菌には、脂肪酸(有機酸)やアルコールが存在する環境下においてCOを分解しメタンガスに還元する作用があると言われている。
【0047】
メタン発酵槽18内には固液分離機構がある膜(微生物を含む有機物などの固形物を通さないろ過膜)31を設置した場合、回収したCOを膜表面に散気・バブリングして、上昇流にて膜表面の洗浄と滞留による槽内の攪拌および消化液中に混入させるに際して、有用なメタン菌の流出を膜にて防止することによりメタン菌の濃縮ができる。このため、有機物を徹底的に分解するとともに、COを分解してメタンガスに積極的に還元させることにより、メタンガスの生成反応が促進されて、メタンガス量の大幅な増加が期待できる。
【0048】
また、固液分離膜31から排出された排水は、固形物が含まれていないため、環境負荷が小さく、簡易な排水槽(水処理装置)32で処理が可能となる。
【0049】
【発明の効果】
本発明の効果を再度まとめると下記の如くになる。
【0050】
▲1▼燃料電池の排ガスをメタン発酵槽に設置した浸漬膜の下部から散気することにより、上昇流による膜表面の洗浄と発酵槽内の攪拌ができる。
【0051】
▲2▼燃料電池の排ガスは、高濃度のCOと未反応の水素であり、消化液へのCO溶け込みによる酸発酵生成物(アルコールや脂肪酸とメタン菌によるCO分解)が還元されて、メタンガスへの転換が促進され、メタンガスの増量が期待できる。
【0052】
未反応の水素は、そのまま燃料電池に供給されるため、100%COガスに比して、可燃成分が多く、燃料電池の高性能を維持できる。
【0053】
浸漬膜の固液分離機能によりメタン菌の流出防止が図れ、有機物の効果的に分解できるため、排出される汚泥を大幅に低減できる。
【0054】
高温型燃料電池では、電池内部にてメタンの改質が行われるため、消化ガスはそのまま燃料電池のアノード極へ供給でき、水素とCOとなる。そして、水素は、カソード極の酸素と反応して、電気エネルギーに変換されるとともに水となって排出される。このため、排ガスは高濃度のCOガスと低濃度の未反応残水素ガスおよび水蒸気で構成されたものとなる。
【0055】
燃料電池の排ガスの反応残水素に補助燃料を加えOにて燃焼させ、ガスタービンにて発電後、熱エネルギーとして回収すると共に、COと水の分離回収も可能である。
【0056】
生ごみ等の有機性廃棄物をメタン発酵槽内にてメタン菌が流出しないような浸透膜によりメタン菌を蓄積すると共に、水素発酵物とメタン菌によるCOをメタンガスに還元する作用を複合的に活用することにより、有機物を徹底的に分解し、メタン生成反応を促進させて、メタンガスの増量を行う。したがって、きわめて環境負荷の少ない高温形の燃料電池による高効率発電とCOの回収/利用及び消化汚泥の発生を極限まで減少可能なサイクルシステムの構築が可能となる。
【図面の簡単な説明】
【図1】本発明の低温型燃料電池を用いる場合のサイクルシステムの一例を示す概略流れ図。
【図2】同じく高温型燃料電池を用いる場合の変形例を示す概略流れ図
【符号の説明】
12、12A・・・燃料電池
14・・・空気極(酸素極:カソード)
18・・・燃料極(水素極:アノード)
20・・・燃料供給配管
28・・・メタン発酵槽(消化槽)
40・・・熱交換器
42・・・CO分離塔
50・・・炭酸ガス送気配管
[0001]
【Technical field】
The present invention relates to a fuel cell / methane fermentation cycle system that uses biogas generated in a methane fermentation tank as fuel for a fuel electrode of a fuel cell.
[0002]
In particular, businesses that are subject to the Food Recycling Law, local government facilities that process large amounts of garbage, businesses that are subject to reductions in carbon dioxide emissions, and certificates RPS issued for power generation using new energy ( This is an invention suitable for a business establishment planning to acquire Renewable Portfolio Standard.
[0003]
[Background Art]
In the anaerobic fermentation treatment (methane fermentation) of organic waste containing much water such as garbage, a technique of recovering resources as energy has attracted attention, and many techniques have been proposed and put into practical use.
[0004]
However, at present, about 25% of the input waste is incinerated or landfilled as sludge.
[0005]
Although not affecting the invention of the present invention, the following are known technologies (patent documents) relating to methane fermentation.
[0006]
Patent Document 1: Generated gas is separated into methane gas and CO 2 gas by a polymer membrane to increase the methane gas concentration, and the CO 2 gas is mixed with biogas and sent to the digestion tank again to be reduced to methane to reduce the amount of methane gas. Methane fermentation method to increase.
[0007]
Patent Literature 2: An immersion-type methane fermentation system using a membrane that simultaneously performs washing of the surface of the immersion membrane and stirring in the tank using biogas obtained by methane fermentation.
[0008]
In addition, the following are known technologies (known documents) regarding fuel cells.
[0009]
Patent Document 3: A power plant using a high-temperature fuel cell using natural gas as a fuel, in which water generated by the fuel cell is electrolyzed and unreacted hydrogen is returned to water with the obtained oxygen. Technology.
[0010]
However, these are all one-off technologies, and the overall technical and economic problems have not been solved.
[0011]
[Patent Document 1]
JP-A-61-178016 [Patent Document 2]
JP 2000-94000 [Patent Document 3]
JP-A-10-144322
DISCLOSURE OF THE INVENTION
In view of the above, the present invention converts gas produced by methane fermentation into electric energy with high efficiency, separates, collects and uses carbon dioxide at low cost, and enables organic waste. It is an object of the present invention to provide a fuel cell / methane fermentation cycle system which converts methane gas as much as possible and makes it sludge-free.
[0013]
In order to solve the above problems, the present invention provides a fuel cell / methane fermentation cycle system having the following configurations.
[0014]
A methane fermentation tank, and a fuel cell basically having an air electrode (oxygen electrode: cathode) and a fuel electrode (hydrogen electrode: anode),
Biogas generated in the methane fermentation tank is introduced into the anode, and exhaust gas (anode outflow gas: H 2 O + CO 2 + H 2 ) generated from the anode is introduced into the methane fermentation tank.
[0015]
In the above configuration, the anode effluent gas is introduced into the CO 2 separation tower, a part of CO 2 is separated and recovered, and the carbon dioxide gas or the exhaust gas mainly containing the carbon dioxide gas flowing out of the CO 2 separation tower is introduced into the methane fermentation tank. It is desirable to do.
[0016]
In the above configuration, when the fuel cell is of a low temperature type, it is desirable to introduce the biogas into the anode through a steam reforming step of making the biogas hydrogen-rich.
[0017]
When the fuel cell is of a high temperature type, it is desirable to directly introduce biogas to the anode without going through a steam reforming step.
[0018]
When the fuel cell is of a high-temperature type, it is desirable to introduce the anode effluent gas obtained by removing unreacted hydrogen in the anode effluent gas by catalytic combustion into a CO 2 separation column.
[0019]
In each of the above configurations, it is desirable to dispose a solid-liquid separation membrane that does not allow methane bacteria to flow out of the drain port of the methane fermentation tank.
[0020]
With the above configurations, the present invention has the following operations and effects.
[0021]
The biogas obtained by methane fermentation (digestion) of organic waste such as garbage is mainly composed of methane (CH 4 ) and carbon dioxide (CO 2 ), and hydrogen (H 2 ) is obtained by steam reforming. And carbon dioxide (CO 2 ). After purification, the biogas is reformed and supplied to the anode of the fuel cell. Hydrogen reacts with oxygen at the cathode electrode, is converted into electric energy, and is discharged as water. Therefore, the exhaust gas at the anode is a high-concentration CO 2 gas, a low-concentration unreacted hydrogen gas (H 2 ) and water vapor (H 2 O), and CO 2 separation can be easily performed by heat recovery. Therefore, the heat-recovered gas can be directly introduced into the methane fermentation tank, or the anode effluent gas can be introduced into the CO 2 separation column to partially separate and recover CO 2 and also recover water vapor as water. it can.
[0022]
By installing a membrane in the methane fermentation tank to prevent the outflow of methane bacteria (accumulation of methane bacteria), the ability to decompose organic substances is improved. By diffusing CO 2 and unreacted H 2 on the membrane surface, there is an effect of cleaning the membrane surface, stirring in the fermenter, and increasing the CO 2 content in the fermentation solution.
[0023]
By utilizing the action of methane bacteria reducing CO 2 to methane gas through hydrogen fermentation products such as fatty acids and alcohols generated in the previous stage of methane fermentation, the methane production reaction is promoted, and an increase in methane gas can be expected.
[0024]
At the same time as the high-efficiency power generation by the fuel cell, the recovery and use of CO 2 and the generation of digested sludge can be reduced to the utmost limit, and a recycling cycle system can be constructed.
[0025]
[Detailed description of configuration]
Hereinafter, an example of the fuel cell / methane fermentation cycle system of the present invention will be described mainly with reference to FIG.
[0026]
The present invention is basically a combination of a fuel cell system and a methane fermentation (anaerobic treatment) system.
[0027]
That is, the fuel cell system includes a fuel cell 12, an air supply pipe 16 for supplying oxygen to an air electrode (oxygen electrode: cathode) 14 of the fuel cell 12, and a fuel (hydrogen-containing And a fuel supply pipe 20 for supplying gas. The air supply pipe 16 includes a blower 22 at an air supply port, and an air-cooled heat exchanger 24 in the middle.
[0028]
Here, the fuel cell 12 is of a low temperature type such as a phosphoric acid type (PAFC) and a polymer electrolyte type (PEFC).
[0029]
Further, the methane fermentation system includes a methane fermentation tank 28, a garbage storage 30 for storing garbage to be put into the methane fermentation tank 28, a drainage tank 32 for discarding and purifying treated water of the methane fermentation tank 28, and A purification / storage tank 33 for purifying and storing gas generated in the methane fermentation tank 28 is provided, and a supply pipe 34 provided with a pulverizing pump (not shown) and a gas transporter 35 are provided therebetween. A methane gas pipe 36 and a drain pipe 38 connected to a submersible pump 29 disposed in the methane fermentation tank 28 are connected. In front of the submersible pump 29, a solid-liquid separation membrane 31 for preventing the outflow of methane bacteria is provided. The purifying / storing tank 33 has a built-in means for purifying impurities such as sulfur oxides contained in the methane gas.
[0030]
Further, in the present system, a carbon dioxide (CO 2 ) separation and recovery system is interposed between the fuel cell system and the methane fermentation system.
[0031]
The carbon dioxide separation and recovery system cools the mixed gas discharged from the fuel electrode (anode) 18 to perform primary separation, and converts the carbon dioxide in the water vapor-containing carbon dioxide flowing out of the heat exchanger 40 into carbon dioxide. A carbon dioxide separation tower (CO 2 separation tower) 42 for separating and recovering from steam. The CO 2 separation tower 42 includes a carbon dioxide gas tank 44 and a stored water tank 46. Further, in the present system, between the CO 2 separation tower 42 and the methane fermentation tank 28, the carbon dioxide-containing gas (H 2 + CO 2 ) discharged from the inside of the CO 2 separation tower 42 is passed through the gas transporter 48. A carbon dioxide gas supply pipe 50 is provided for the purpose of stirring the methane fermentation tank 28 and increasing the CO 2 content in the tank.
[0032]
Next, a usage mode of the system having the above configuration will be described.
[0033]
First, garbage stored in the garbage storage 30 is put into the methane fermentation tank 28, and methane fermentation (digestion method), which is an anaerobic treatment, is performed. Then, biogas methane as the main component (CH 4: CO 2 = 6 : 4) occurs. Then, the biogas is subjected to steam reforming (performing the following reaction) in the reformer 54 to become a hydrogen-rich gas, and can be supplied to the fuel electrode 18 via the heat exchanger 40.
[0034]
CH 4 + 2H 2 O → 4H 2 O + CO 2
In the case of natural gas, steam and water are reformed into hydrogen and CO 2 and supplied to the fuel electrode.
[0035]
The anode outflow gas flowing out of the fuel electrode (anode) 18 is composed of water (H 2 O), carbon dioxide (CO 2 ), and unreacted residual hydrogen (H 2 ), and is recovered (cooled) by the heat exchanger 40. ) through the primary separation step of, by flowing into the CO 2 separation column CO 2 separation column 42, it can conveniently be separated and recovered and the water CO 2 / H 2 components.
[0036]
Further, if the unreacted residual hydrogen separated in the CO 2 separation tower 42 is put into the bottom of the methane fermentation tank 28 together with CO 2 , the treatment becomes easy. Since the specific gravity difference between CO 2 and H 2 is large, the CO 2 and H 2 can be separated by a simple mechanism such as a current plate in the CO 2 separation tower 42. When the CO 2 -containing gas introduced into the methane fermentation tank is used for aeration / stirring of the methane fermentation tank 28 and is used as a fuel for the fuel cell 12, the higher the H 2 concentration contained, the higher the fuel cell Since the power generation efficiency of the fuel cell 12 increases, it is not necessary to remove unreacted residual hydrogen.
[0037]
When CO 2 is used, the presence of hydrogen does not pose a significant problem in the process of liquefaction or dry ice production.
[0038]
At this time, since hydrogen reacts with oxygen of the air electrode (oxygen electrode: cathode) 14 to become water, CO 2 and water are discharged (flow out) from the fuel electrode 18. This CO 2 and water can be easily separated by cooling. By utilizing this characteristic, it is possible to simply and efficiently separate and recover CO 2 simultaneously with high-efficiency power generation. Then, the recovered CO 2 can be used as a stirring gas in the methane fermentation tank 28 and as a promoting gas for the methane gas generation reaction.
[0039]
When a small amount of hydrogen is hindered in the CO 2 separation column 42 shown in FIG. 1, hydrogen is easily removed by using the combustor 52 as shown in FIG. 2 (that is, catalytic combustion with oxygen). As a result, a high concentration of CO 2 is obtained (see FIG. 2).
[0040]
When a high-temperature solid oxide fuel cell (SOFC) is used, the system shown in FIG. 2 is used.
[0041]
That is, in the SOFC, methane is reformed inside the battery. For this reason, biogas containing methane gas as a main component can be directly supplied to the fuel electrode 18 without a reformer, and the exhaust gas discharged from the fuel electrode can be easily CO 2 / H 2 by heat recovery (cooling). Components and water can be separated and recovered.
[0042]
Since the device configuration of FIG. 2 is basically the same as that of FIG. 1, the corresponding reference numerals are assigned and only the differences will be described.
[0043]
In the SOFC, since the exhaust heat temperature is high, the exhaust heat recovery unit 56 is installed at the outlet of the cathode 14 to use the exhaust heat (make and use hot water) and heat the air supplied to the cathode 14. Increases thermal efficiency. After the gas from the outlet of the anode 18 passes through the combustor 52 to remove H 2 , the gas supplied to the anode 18 is heated by the secondary air-cooled heat exchanger 40 to recover heat. Furthermore, heat recovery is performed again by further heating the air supplied to the cathode 14 by the primary air-cooled heat exchanger 40A. The gas sent to the methane fermentation tank 28 by the carbon dioxide gas supply pipe 50 is only CO 2 because it passes through the combustor 52.
[0044]
Natural gas is almost 100% methane, but in the case of biogas obtained by anaerobic fermentation, CH 4 : CO 2 = 6: 4. When methane is steam reformed, the molar ratio of hydrogen to CO 2 will be 4: 1 as described above. Therefore, from the viewpoint of the amount of recovered CO 2 , in the case of biogas, it is possible to recover 1.5 times or more of CO 2 as compared with natural gas.
[0045]
First, solid poorly soluble organic substances are converted into high-molecular organic substances by hydrolytic bacteria, and then converted into low molecular intermediates such as alcohols and organic acids by fermentative bacteria. , Becomes soluble. Then decomposed into CO 2 and methane gas by acetic acid bacteria (Acetogenic bacteria) and methane bacteria (Methanogenic bacteria).
[0046]
It is said that methane bacteria that undergo anaerobic fermentation have an action of decomposing CO 2 and reducing it to methane gas in an environment where fatty acids (organic acids) and alcohols are present.
[0047]
When a membrane (filtration membrane that does not allow passage of solid matter such as organic matter including microorganisms) 31 having a solid-liquid separation mechanism is installed in the methane fermentation tank 18, the collected CO 2 is diffused and bubbled on the membrane surface, When the membrane surface is washed and retained by an ascending flow, the methane bacterium can be concentrated by preventing the useful methane bacterium from flowing out by the membrane when the turbidity is mixed into the digestive juice and the tank. Therefore, the thorough break down organic matter, by reductive actively to decompose methane to CO 2, formation reaction of methane gas is promoted, a large increase in methane gas amount can be expected.
[0048]
Further, since the wastewater discharged from the solid-liquid separation membrane 31 does not contain solid matter, it has a small environmental load and can be treated in a simple wastewater tank (water treatment device) 32.
[0049]
【The invention's effect】
The effects of the present invention are summarized as follows.
[0050]
{Circle around (1)} By diffusing the exhaust gas of the fuel cell from the lower part of the immersion membrane installed in the methane fermentation tank, the membrane surface can be washed by the upward flow and the inside of the fermentation tank can be stirred.
[0051]
(2) Exhaust gas from the fuel cell is high-concentration CO 2 and unreacted hydrogen, and the acid fermentation products (CO 2 decomposition by alcohol and fatty acids and methane bacteria) due to the dissolution of CO 2 into the digestive juice are reduced. The conversion to methane gas is promoted, and an increase in methane gas can be expected.
[0052]
Since unreacted hydrogen is supplied to the fuel cell as it is, it has more combustible components than 100% CO 2 gas and can maintain high performance of the fuel cell.
[0053]
The solid-liquid separation function of the immersion membrane can prevent the outflow of methane bacteria and can effectively decompose organic substances, so that the sludge discharged can be significantly reduced.
[0054]
In a high-temperature fuel cell, since methane is reformed inside the cell, the digestion gas can be supplied to the anode electrode of the fuel cell as it is, and becomes hydrogen and CO 2 . Then, the hydrogen reacts with the oxygen of the cathode electrode, is converted into electric energy and is discharged as water. For this reason, the exhaust gas is composed of high-concentration CO 2 gas, low-concentration unreacted residual hydrogen gas, and water vapor.
[0055]
Auxiliary fuel is added to residual hydrogen in the exhaust gas of the fuel cell, which is burned with O 2. After power is generated by the gas turbine, it is recovered as thermal energy, and CO 2 and water can be separated and recovered.
[0056]
Organic waste such as garbage is accumulated in the methane fermentation tank through a permeable membrane that prevents methane bacteria from flowing out, and the combined action of hydrogen fermentation products and methane bacteria to reduce CO 2 to methane gas. By thoroughly utilizing organic materials, organic substances are thoroughly decomposed, the methane generation reaction is promoted, and the amount of methane gas is increased. Accordingly, it is possible to construct a cycle system capable of reducing the generation of digested sludge to the utmost with high-efficiency power generation, recovery / use of CO 2 , and generation of digested sludge by a high-temperature fuel cell with extremely low environmental load.
[Brief description of the drawings]
FIG. 1 is a schematic flow chart showing an example of a cycle system when a low-temperature fuel cell of the present invention is used.
FIG. 2 is a schematic flow chart showing a modified example when a high-temperature fuel cell is used.
12, 12A ... fuel cell 14 ... air electrode (oxygen electrode: cathode)
18 ... fuel electrode (hydrogen electrode: anode)
20: fuel supply pipe 28: methane fermentation tank (digestion tank)
40: heat exchanger 42: CO 2 separation tower 50: carbon dioxide gas supply pipe

Claims (6)

メタン発酵槽と、基本的に空気極(酸素極:カソード)と燃料極(水素極:アノード)とを有する燃料電池とを備え、
前記メタン発酵槽で発生するバイオガス(生成ガス)を前記アノードへ導入するとともに、前記アノードからの流出するガス(以下「アノード流出ガス」)を前記メタン発酵槽に導入することを特徴とする燃料電池・メタン発酵サイクルシステム。
A methane fermentation tank, and a fuel cell basically having an air electrode (oxygen electrode: cathode) and a fuel electrode (hydrogen electrode: anode),
A fuel, wherein biogas (product gas) generated in the methane fermentation tank is introduced into the anode, and gas flowing out of the anode (hereinafter, “anode outflow gas”) is introduced into the methane fermentation tank. Battery and methane fermentation cycle system.
アノード流出ガスを炭酸ガス分離塔(CO分離塔)に導入して、一部のCOを分離回収し、CO分離塔から流出する炭酸ガス又は炭酸ガスを主体とした排ガスをメタン発酵槽に導入することを特徴とする請求項1記載の燃料電池・メタン発酵サイクルシステム。The anode effluent gas is introduced into a carbon dioxide separation tower (CO 2 separation tower) to partially separate and recover CO 2, and the carbon dioxide gas or the exhaust gas mainly composed of carbon dioxide flowing out of the CO 2 separation tower is subjected to methane fermentation. The fuel cell / methane fermentation cycle system according to claim 1, wherein the system is introduced into a fuel cell. 前記燃料電池が低温型であるとともに、前記バイオガスを水蒸気改質工程を経て前記アノードへ導入することを特徴とする請求項1又は2記載の燃料電池・メタン発酵サイクルシステム。The fuel cell / methane fermentation cycle system according to claim 1 or 2, wherein the fuel cell is a low temperature type, and the biogas is introduced into the anode through a steam reforming step. 前記燃料電池が高温型であるとともに、前記バイオガスを水蒸気改質工程を経ずに直接的に前記アノードへ導入することを特徴とする請求項1又は2記載の燃料電池・メタン発酵サイクルシステム。3. The fuel cell / methane fermentation cycle system according to claim 1, wherein the fuel cell is a high-temperature fuel cell, and the biogas is directly introduced into the anode without going through a steam reforming step. 前記アノード流出ガスの未反応水素を触媒燃焼により除去したアノード流出ガスを炭酸ガス分離塔に導入することを特徴とする請求項2〜4のいずれかに記載の燃料電池・メタン発酵サイクルシステム。The fuel cell / methane fermentation cycle system according to any one of claims 2 to 4, wherein the anode effluent gas obtained by removing unreacted hydrogen from the anode effluent gas by catalytic combustion is introduced into a carbon dioxide gas separation tower. 前記メタン発酵槽の排水口にメタン菌が流出しない固液分離膜を配することを特徴とする請求項1〜5のいずれかに記載の燃料電池・メタン発酵サイクルシステム。The fuel cell / methane fermentation cycle system according to any one of claims 1 to 5, wherein a solid-liquid separation membrane from which methane bacteria do not flow is disposed at a drain port of the methane fermentation tank.
JP2002355637A 2002-12-06 2002-12-06 Fuel cell / methane fermentation cycle system Expired - Fee Related JP4124636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355637A JP4124636B2 (en) 2002-12-06 2002-12-06 Fuel cell / methane fermentation cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355637A JP4124636B2 (en) 2002-12-06 2002-12-06 Fuel cell / methane fermentation cycle system

Publications (2)

Publication Number Publication Date
JP2004192824A true JP2004192824A (en) 2004-07-08
JP4124636B2 JP4124636B2 (en) 2008-07-23

Family

ID=32756270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355637A Expired - Fee Related JP4124636B2 (en) 2002-12-06 2002-12-06 Fuel cell / methane fermentation cycle system

Country Status (1)

Country Link
JP (1) JP4124636B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
US8426073B2 (en) 2009-03-16 2013-04-23 Fujitsu Limited Fuel cell system and method of controlling same
JP6017659B1 (en) * 2015-10-26 2016-11-02 東京瓦斯株式会社 Fuel cell system
CN108468063A (en) * 2018-05-09 2018-08-31 高节义 The system and device that internal combustion engine is combined with three Room of electrolysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345200A (en) * 1992-04-01 1993-12-27 Ngk Insulators Ltd Method for treating organic sludge
JPH113723A (en) * 1997-06-09 1999-01-06 Mitsubishi Kakoki Kaisha Ltd Digestive gas-using fuel cell facility
JPH11121022A (en) * 1997-10-15 1999-04-30 Ebara Corp Power generation method using waste
JP2001023677A (en) * 1999-07-13 2001-01-26 Ebara Corp Fuel cell power generating method and fuel cell power generating system
JP2002153844A (en) * 2000-11-16 2002-05-28 Mitsubishi Heavy Ind Ltd Method for treating organic waste and system therefor
JP2003154387A (en) * 2001-11-26 2003-05-27 Toshiba Corp Wastewater treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345200A (en) * 1992-04-01 1993-12-27 Ngk Insulators Ltd Method for treating organic sludge
JPH113723A (en) * 1997-06-09 1999-01-06 Mitsubishi Kakoki Kaisha Ltd Digestive gas-using fuel cell facility
JPH11121022A (en) * 1997-10-15 1999-04-30 Ebara Corp Power generation method using waste
JP2001023677A (en) * 1999-07-13 2001-01-26 Ebara Corp Fuel cell power generating method and fuel cell power generating system
JP2002153844A (en) * 2000-11-16 2002-05-28 Mitsubishi Heavy Ind Ltd Method for treating organic waste and system therefor
JP2003154387A (en) * 2001-11-26 2003-05-27 Toshiba Corp Wastewater treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP4605992B2 (en) * 2003-03-28 2011-01-05 三井造船株式会社 Fuel cell power generation process and fuel cell system
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
US8426073B2 (en) 2009-03-16 2013-04-23 Fujitsu Limited Fuel cell system and method of controlling same
JP6017659B1 (en) * 2015-10-26 2016-11-02 東京瓦斯株式会社 Fuel cell system
CN108468063A (en) * 2018-05-09 2018-08-31 高节义 The system and device that internal combustion engine is combined with three Room of electrolysis

Also Published As

Publication number Publication date
JP4124636B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
EP0890388B1 (en) Carbon dioxide fixation system
CN1215592C (en) Fuel cell power generation method and system
JP2010013333A (en) Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
JP2006348191A (en) System for circulating biomass
Rayner et al. Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies
JP3273189B2 (en) Energy supply and utilization equipment
JP2000271472A (en) Carbon dioxide immobilizing device by anaerobic fermentation gas
CN111282962A (en) Method for co-processing organic solid waste and kitchen waste
JPH113723A (en) Digestive gas-using fuel cell facility
JP4124636B2 (en) Fuel cell / methane fermentation cycle system
JP2004303482A (en) Fuel cell power generation process and fuel cell system
JP2003277779A (en) Equipment for desulfurization of biogas
JP3851806B2 (en) Method and apparatus for producing hydrogen using microorganisms
Gandiglio et al. Design and balance-of-plant of a demonstration plant with a solid oxide fuel cell fed by biogas from waste-water and exhaust carbon recycling for algae growth
JP3891544B2 (en) Hydrogen fermentation bioreactor with built-in fuel cell
JP2000167523A (en) System for recovering energy of garbage
CN217964069U (en) Treatment system for reducing carbon emission in kitchen waste treatment
KR20140034623A (en) Biogas fuel cells system and gas supplying method thereto
CN213340447U (en) Integrated system of solid oxide fuel cell and solid oxide electrolytic cell
JP2006175406A (en) Processing method and processing apparatus of organic waste
CN210595292U (en) Ammonia recovery and fuel cell power generation system applied to sewage treatment plant
KR101845499B1 (en) Fuel cell power generating system
JP4461209B2 (en) Power generation method and apparatus using organic waste
JP2003243019A (en) Waste power generating system
JP2002151131A (en) Waste treatment power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees