JP2004191486A - Polarization maintaining optical fiber and optical connector - Google Patents

Polarization maintaining optical fiber and optical connector Download PDF

Info

Publication number
JP2004191486A
JP2004191486A JP2002356806A JP2002356806A JP2004191486A JP 2004191486 A JP2004191486 A JP 2004191486A JP 2002356806 A JP2002356806 A JP 2002356806A JP 2002356806 A JP2002356806 A JP 2002356806A JP 2004191486 A JP2004191486 A JP 2004191486A
Authority
JP
Japan
Prior art keywords
optical fiber
stress applying
polarization
stress
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356806A
Other languages
Japanese (ja)
Inventor
Shigeru Hirai
茂 平井
Shinji Ishikawa
真二 石川
Kenji Tamano
研治 玉野
Ichiro Tsuchiya
一郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002356806A priority Critical patent/JP2004191486A/en
Publication of JP2004191486A publication Critical patent/JP2004191486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization maintaining optical fiber and an optical connector that reduce cracking of a stress-imparted part in end surface working of the polarization maintaining optical fiber, make small recess of the stress-imparted part in high-temperature, high-humidity environment, minimize projection of the stress-imparted part on an optical fiber end surface, and never impede PC connection of the optical connector. <P>SOLUTION: The polarization maintaining optical fiber 1 has the stress-imparted part 4, to which B<SB>2</SB>O<SB>3</SB>is added, at a clad part at the outer periphery of a core part 2 across the core part 2, and the quantity of projection of the stress-imparted part 4 from the optical fiber end surface in specified high-temperature, high-humidity environment is ≤0.1 μm. Further, the mean concentration of B<SB>2</SB>O<SB>3</SB>of the stress-imparted part 4 is 14 to 16 wt%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光源から出射される直線偏向の光を合分波する偏向制御部品やコヒーレントな光を利用した光通信、センサなどに用いられる応力付与型の偏波保持光ファイバ及び光コネクタに関する。
【0002】
【従来の技術】
偏波保持光ファイバは、2つの偏波モード間に伝播定数差を生じさせ、それぞれの偏波モードからもう一方の偏波モードへの結合を抑制する。例えば、直線偏波の光の偏波軸を光ファイバの偏波モードに合わせて入射すると、偏波状態が保たれたまま光ファイバ中を伝播し、出射端においても同じ偏波光のみを得ることができ、偏波状態を保持したまま光を伝播させるには不可欠な光ファイバである。
【0003】
偏波保持光ファイバ(Polarization Maintaining Fiber)は、一般に、コア部に直交する2方向から異なる応力を与えることにより、等価的に複屈折性を持たせている。この偏波保持光ファイバ1としては、例えば、図1に示すようにコア部2の外周を取り囲むクラッド部3に、コア部2を挟むようにコア部2の両側に応力付与部4を設けた形状のもの知られている。この形状の代表的なものとして、図1(A)に示すように応力付与部4を円柱状に形成したパンダ型光ファイバ、また、図1(B)に示すように応力付与部4を扇形に形成したボータイ型光ファイバが知られている。
【0004】
応力付与部4は、通常、SiOのガラス成分にBを添加したガラスで形成され、Bを添加することにより、SiOと比べて熱膨張率を大きくすることができる。コア部を挟むようにして応力付与部材を配したガラス母材を光ファイバに線引きする際に、その加熱溶融から冷却される過程で、応力付与部4の収縮でコア部2に対して引っ張り応力Xが残り、これと直交する方向からは圧縮応力Yが残る。コア部2に方向によって異なる応力が加わると、これに応じて屈折率が異なるため複屈折が発生する。Bの濃度が高いほどコア部2に作用する応力差も大きくなり、複屈折特性も大きくなる。
【0005】
しかし、応力付与部4のBの濃度を大きくすると、ガラス母材の加熱延伸時にクラッド部3との界面で気泡が生じやすく、光コネクタを形成するために端面研磨を行なうと、応力付与部4にクラックが発生し、結果として複屈折特性が劣化するといわれている(例えば、特許文献1参照)。このため、前記特許文献1においては、応力付与部4のBの濃度を中心ほど大きくなるようにすると共に、クラッド部3と接する外周部のBの濃度が15wt%以下となるようにしている。また、応力付与部4のBの平均濃度は、約20wt%になるようにされている。
【0006】
また、応力付与部4の中心のB濃度が高濃度であると、湿熱環境下で応力付与部4が溶解し、応力付与部4に凹みが生じることがある。そして、応力付与部4に凹みが生じると、コア部2に一定の応力付与ができなくなるため、偏波保持依存特性が低下し、偏波クロストークが起こる場合があるといわれている(例えば、特許文献2参照)。このため、前記特許文献2においては、応力付与部4のBの平均濃度が17〜21wt%であり、かつBの最大濃度が17〜22wt%になるようにされている。
【0007】
【特許文献1】
特開平8−101323号公報
【特許文献2】
特開2002−214465号公報
【0008】
【発明が解決しようとする課題】
応力付与部4のBの濃度が低い場合、偏波保持光ファイバ1を高温、高湿の環境下に長時間曝すと、応力付与部が光ファイバ端面から突き出るという現象が生じることがある。偏波保持光ファイバ1を用いて光コネクタを形成する場合、応力付与部4が光ファイバ端面から突き出ると、コア部2の先端同士が接触する前に、応力付与部の突き出た部分での接触が生じ、コア部2の接合(PhysicalContact:通称PC接合といわれている)が妨げられ、接続損失や反射にバラツキが生じる。
【0009】
また、上記特許文献2において、応力付与部4のB濃度の最大値が22wt%を超えると、湿熱環境下では、Bの潮解性により侵食されるとされている。しかし、Bの濃度が17wt%の場合でも湿気により侵食が生じることがある。さらに、上記特許文献2において、Bの濃度が17wt%未満であると、コア部に十分な応力を与えることができず、偏波面が保存されなくなるとされている。しかし、応力付与部4のBの平均濃度が14wt%であっても、コア部2と応力付与部4との間隔を小さくすることにより、偏波保持の性能を維持することができる。
【0010】
本発明は、上述した実情に鑑みてなされたもので、偏波保持光ファイバの端面加工で応力付与部にクラックの発生、及び湿熱環境下で応力付与部の凹みを小さくすると共に、光ファイバ端面での応力付与部の突き出しを最小限に抑えて、光コネクタのPC接合を妨げない偏波保持光ファイバ及び光コネクタの提供を課題とする。
【0011】
【課題を解決するための手段】
本発明による偏波保持光ファイバは、コア部外周のクラッド部にコア部を挟むようにBを添加した応力付与部が配された偏波保持光ファイバであって、所定の高温高湿環境下で応力付与部の光ファイバ端面からの突き出し量を0.1μm以下とする。また、応力付与部のBの平均濃度を14wt%〜16wt%とする。さらに、本発明による光コネクタは、この偏波保持光ファイバを用いて、フェルールと共に端面研磨して構成するものである。なお、所定の高温高湿環境下とは、温度85℃,湿度85RH%、336hをいうものとする。
【0012】
【発明の実施の形態】
図により本発明の実施の形態を説明する。図1は、従来技術の説明において用いたもので、偏波保持光ファイバの断面を示し、図1(A)はパンダ型光ファイバ、図1(B)はボータイ型光ファイバを示す図である。図中、1は偏波保持光ファイバ、2はコア部、3はクラッド部、4は応力付与部を示す。
【0013】
本発明の対象とする偏波保持光ファイバ1は、従来技術で説明したのと同様に、コア部2に直交する2方向から異なる応力を与えることにより、等価的に複屈折性を持たせたものである。この偏波保持光ファイバ1としては、図1に示すようにコア部2の外周を取り囲むクラッド部3に、コア部2を挟むようにコア部2の両側に応力付与部4を設けた形状のものである。この形状の代表的なものとして、図1(A)に示すように応力付与部を円柱状に形成したパンダ型光ファイバ、また、図1(B)に示すように応力付与部を扇形に形成したボータイ型光ファイバがある。
【0014】
応力付与部4は、SiOのガラス成分にBを添加することにより、クラッド部3を形成するSiOガラスと比べて熱膨張率を大きくすることができる。応力付与部材をコア部両側に配したガラス母材を光ファイバに線引きした際に、加熱溶融から冷却される過程で、応力付与部4の収縮でコア部2に対して引っ張り応力Xがファイバ内に残り、これと直交する方向からは圧縮応力Yがファイバ内に残る。コア部2にX方向とY方向の2方向で異なる応力が加わると、これに応じて屈折率が異なりコア部2に複屈折が発生する。
【0015】
上述の偏波保持光ファイバ1を高湿高温の環境下で長時間使用していると、応力付与部4が光ファイバ端面から突き出る現象が生じる。図2は応力付与部の突き出し形状の観測例を示す図で、最大値が1.5μmに達する山形状に突き出る。このような現象は、特にBの平均濃度が13wt%以下の場合に多く見られる。
【0016】
この現象についての調査、解明を行なったところ、応力付与部4に添加したホウ素(B)が消失されていることが判明した。ホウ素(B)の消失理由は明らかでないが、ホウ素(B)消失後のシリコン(Si)の結合手が高温高湿下の水酸基(OH)と結びついて、結合手の長いSi−OHが形成され、これにより体積変化が生じ、応力付与部の突き出しが生じるものと考えられる。
【0017】
図3は高温高湿試験後における応力付与部のBの平均濃度と突き出し量の関係を調べた図である。高温高湿試験には、プレッシャクッカ試験装置を用い、温度120℃、湿度90RE%、圧力0.12MPa、54hで行なった。なお、このプレッシャクッカ試験条件(温度120℃、湿度90RE%、圧力0.12MPa)は、通常の高温高湿試験における温度85℃、湿度85%の10倍程度に相当する加速試験である。この図3の結果から、応力付与部における凹凸が0.1μm前後の小さくなる範囲は、Bの平均濃度が14.0〜14.5wt%の範囲で、この範囲未満では応力付与部の突き出しが生じ、この範囲を超えると凹む傾向にあることも判明した。
【0018】
の平均濃度が大きくなると、上述した特許文献2においても開示されているように、湿気によりホウ素(B)の侵食が進行し、光ファイバ端面で応力付与部に凹みが生じる。応力付与部のBの平均濃度が小さくなると、湿気によるホウ素(B)の侵食よりもシリコン(Si)の結合手の水酸基(OH)との反応の方が支配的となり、応力付与部が突き出すと考えられる。なお、プレッシャクッカ試験装置で同様な試験を100hで行なったが、図3とほぼ同様な結果で、応力付与部の凹凸が小さくなる範囲は、Bの平均濃度が14.0〜14.5wt%の範囲であった。
【0019】
図4は上述の偏波保持光ファイバを用いて光コネクタ接続を行なう一例を説明する図である。図4(A)は光コネクタの断面図、図4(B)は光ファイバ端面の拡大図を示す。図中、5はフェルール、5aはフェルール端面、5bは光ファイバ孔、5cはファイバ被覆挿入孔、6は接続キー、7は保持具、7aは貫通孔、8は接着剤を示す。その他の符号は、図1で用いたのと同じ符号を用いることにより説明を省略する。
【0020】
光コネクタは、図4(A)に示すように、フェルール5内に偏波保持光ファイバ1を挿入固定し、フェルール5を保持具7等に保持固定して構成される。偏波保持光ファイバ1は、被覆を除去した先端部を、フェルール5の先端部側に形成した光ファイバ孔5bに挿入して位置決めされ、ファイバ被覆挿入孔5c及び保持具7の貫通孔7aに接着剤8を充填して接着固定される。なお、フェルール5又は保持具7には、偏波方向を一致させて接続するための接続キー6等を設けてある。
【0021】
光コネクタを用いて光ファイバを突き合わせ接続する場合、光ファイバ同士がPC接合されるように、光ファイバ端面1aをフェルール端面5aと共に凸面に研磨してフェルール端面から突出させることがある。これにより、図4(B)に光ファイバ同士の接合状態を拡大して示すように、弧状に研磨された光ファイバ端面1aは、中心位置のコア部2の先端が互いに物理的に接触して低損失の接続を形成することができる。
【0022】
しかし、応力付与部3に突き出し部4aが生じると、コア部2が接触する前に突き出し部分での接触が生じ、コア部2同士の接合が妨げられる。このため、コア部端面からの反射や、突き合わせ間隔が広がって一定とならず、接続損失の増加やバラツキが起こる。
【0023】
上述の調査、検証により、本発明においては、偏波保持光ファイバを所定の高温高湿の環境下(温度85℃,湿度85RH%、336h)に曝した後の光ファイバ端面からの応力付与部の突き出し量Δを、0.1μm以下とした。突き出し量Δが0.1μm以下であれば、光コネクタでフェルール端面5aと共に光ファイバ端面1aを凸面に研磨した場合、コア部2同士の接合の妨げにはならず、接続損失の増加やバラツキの発生を低減することができる。
【0024】
応力付与部の突き出し量を0.1μm以下とするには、図3の結果から応力付与部のBの平均濃度を、14wt%以上とするのが望ましい。一方、応力付与部のBの平均濃度が大きくなると、応力付与部の端面で凹みが生じるが、これは光コネクタの接合に対しての妨げにはならない。しかし、応力付与部のBの濃度が大きくなると、特許文献1においても開示されているように光ファイバ端面の研磨時に、応力付与部にクラックが発生しやすくなる。また、特許文献2で開示されているように、湿熱環境下にされると応力付与部が侵食され、偏波クロストークが劣化する恐れがある。
【0025】
しかし、応力付与部のBの平均濃度を16wt%以下とすることにより、応力付与部におけるクラックの発生及び凹み量の増加によるクロストーク劣化については、実質的に障害となるような問題は生じなかった。したがって、偏波保持光ファイバの応力付与部のB平均濃度を、14wt%〜16wt%とすることにより、高温高湿の環境下で使用される光コネクタに対して、応力付与部の突き出しを最小限に抑え、端面研磨によるクラックの発生を少なくし、凹みの発生に対しては実質的に問題ない程度に抑えることができる。
【0026】
また、応力付与部のBの平均濃度を14wt%〜16wt%に維持して、中央部側の濃度を大きくすることによって、クラッドと接する外周面側のBの濃度を小さくすることができる。このため、前記特許文献1で開示されているように応力付与部材を配したガラス母材を延伸加熱する時、クラッド部と応力付与部材との界面における気泡の発生が少なく、クラックの発生をさらに少なくすることができる。
【0027】
上述の所定の高温高湿環境下(温度85℃,湿度85RH%、336h)に曝した後の光ファイバ端面からの応力付与部の突き出し量が、0.1μm以下である偏波保持光ファイバ、又は、応力付与部のBの平均濃度を14wt%〜16wt%とした偏波保持光ファイバ用いて、図4に示すような光コネクタを作成した。このとき接続端面側をフェルールの端面といっしょに中央の曲率半径25mm以下(例えば、20mm)の凸面に研磨して、光ファイバ端面がフェルール面から突出するようにした。
【0028】
上記の構成で作製された光コネクタは、端面研磨によって応力付与部にクラックが発生することは全くなかった。また、上記の高温高湿の環境下に曝した後の応力付与部の突き出し量は0.1μm以下であった。さらに、光コネクタの着脱による接続特性について検証したが、接続損失のバラツキは±0.1dB以下であり、反射減衰量についても45dB〜50dBで、光コネクタ着脱によるバラツキは小さかった。
【0029】
【発明の効果】
上述したように、本発明によれば、偏波保持光ファイバの端面加工で応力付与部にクラックの発生を少なくし、かつ高温多湿の環境下での使用に対して、応力付与部の凹みの発生を実質的には影響がない程度に抑えて、光ファイバ端面での応力付与部の突き出しを最小限に抑えることができる。この結果、偏波保持光ファイバを光コネクでPC接合する場合にも、偏波特性を損なわずに接続損失の増加とバラツキを少なくすることが可能となる。
【図面の簡単な説明】
【図1】偏波保持光ファイバの構成を説明する図である。
【図2】偏波保持光ファイバの応力付与部の突き出し状態を説明する図である。
【図3】偏波保持光ファイバの応力付与部のB平均濃度と突き出し量の関係を説明する図である。
【図4】偏波保持光ファイバを用いた光コネクタの構成を説明する図である。
【符号の説明】
1…偏波保持光ファイバ、1a…光ファイバ端面、2…コア部、3…クラッド部、4…応力付与部、4a…突き出し部、5…フェルール、5a…フェルール端面、5b…光ファイバ孔、5c…ファイバ被覆挿入孔、6…接続キー、7…保持具、7a…貫通孔、8…接着剤。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polarization control component for multiplexing and demultiplexing linearly polarized light emitted from a light source, an optical communication using coherent light, and a stress imparting type polarization maintaining optical fiber and an optical connector used for a sensor and the like.
[0002]
[Prior art]
The polarization maintaining optical fiber causes a propagation constant difference between the two polarization modes, and suppresses coupling from each polarization mode to the other polarization mode. For example, if the polarization axis of the linearly polarized light is incident on the optical fiber according to the polarization mode, the light propagates through the optical fiber while maintaining the polarization state, and only the same polarized light is obtained at the output end. It is an indispensable optical fiber for propagating light while maintaining the polarization state.
[0003]
Generally, a polarization-maintaining optical fiber has equivalent birefringence by giving different stresses from two directions orthogonal to the core. As the polarization maintaining optical fiber 1, for example, as shown in FIG. 1, a stress applying portion 4 is provided on both sides of the core portion 2 so as to sandwich the core portion 2 in a clad portion 3 surrounding the outer periphery of the core portion 2. Known in shape. Representative examples of this shape include a panda-type optical fiber in which the stress applying section 4 is formed in a cylindrical shape as shown in FIG. 1A, and a fan-shaped optical fiber in which the stress applying section 4 is formed as shown in FIG. A bow-tie type optical fiber formed as described above is known.
[0004]
Stress applying unit 4 is typically formed by glass doped with B 2 O 3 in the glass component SiO 2, by adding B 2 O 3, it is possible to increase the thermal expansion coefficient in comparison with the SiO 2 . When a glass preform on which a stress applying member is arranged so as to sandwich the core is drawn into an optical fiber, in the process of being cooled from the heating and melting, the tensile stress X with respect to the core 2 due to shrinkage of the stress applying section 4. The compressive stress Y remains from the direction orthogonal to this. When a different stress is applied to the core portion 2 depending on the direction, birefringence occurs because the refractive index changes accordingly. The higher the concentration of B 2 O 3, the greater the difference in stress acting on the core 2 and the greater the birefringence characteristics.
[0005]
However, if the concentration of B 2 O 3 in the stress applying section 4 is increased, bubbles are likely to be generated at the interface with the clad section 3 when the glass base material is heated and stretched. It is said that a crack occurs in the imparting section 4 and as a result, the birefringence characteristic deteriorates (for example, see Patent Document 1). Therefore, in the above Patent Document 1, as well as to increase the concentration of B 2 O 3 stress applying portions 4 as the center, the concentration of B 2 O 3 of the outer peripheral portion in contact with the cladding portion 3 below 15 wt% and I am trying to become. The average concentration of B 2 O 3 in the stress applying section 4 is set to be about 20 wt%.
[0006]
If the concentration of B 2 O 3 at the center of the stress applying section 4 is high, the stress applying section 4 may be dissolved in a moist heat environment, and the stress applying section 4 may be dented. It is said that if a depression occurs in the stress applying section 4, a constant stress cannot be applied to the core section 2, so that the polarization maintaining dependence characteristic is reduced and polarization crosstalk may occur (for example, Patent Document 2). For this reason, in Patent Document 2, the average concentration of B 2 O 3 in the stress applying section 4 is 17 to 21 wt%, and the maximum concentration of B 2 O 3 is 17 to 22 wt%. .
[0007]
[Patent Document 1]
JP-A-8-101323 [Patent Document 2]
JP-A-2002-214465
[Problems to be solved by the invention]
When the concentration of B 2 O 3 in the stress applying section 4 is low, if the polarization maintaining optical fiber 1 is exposed to a high temperature and high humidity environment for a long time, a phenomenon that the stress applying section protrudes from the end face of the optical fiber may occur. is there. When an optical connector is formed using the polarization maintaining optical fiber 1, when the stress applying portion 4 protrudes from the end face of the optical fiber, the contact at the projecting portion of the stress applying portion occurs before the tips of the core portions 2 come into contact with each other. Occurs, and the bonding (Physical Contact: so-called PC bonding) of the core portion 2 is hindered, and connection loss and reflection vary.
[0009]
Further, in Patent Document 2, when the maximum value of the B 2 O 3 concentration of the stress applying section 4 exceeds 22 wt%, it is eroded by the deliquescence of B 2 O 3 in a moist heat environment. However, even when the concentration of B 2 O 3 is 17 wt%, erosion may occur due to moisture. Further, in Patent Document 2, when the concentration of B 2 O 3 is less than 17 wt%, sufficient stress cannot be applied to the core portion, and the polarization plane is not preserved. However, even if the average concentration of B 2 O 3 in the stress applying section 4 is 14 wt%, the polarization maintaining performance can be maintained by reducing the distance between the core section 2 and the stress applying section 4. .
[0010]
The present invention has been made in view of the above-described circumstances, and it is possible to reduce the occurrence of cracks in a stress applying section by processing the end face of a polarization maintaining optical fiber, and to reduce the dent of the stress applying section in a wet heat environment, and to reduce the optical fiber end face. An object of the present invention is to provide a polarization maintaining optical fiber and an optical connector which minimize the protrusion of the stress applying section in the optical fiber and do not hinder the PC joining of the optical connector.
[0011]
[Means for Solving the Problems]
The polarization-maintaining optical fiber according to the present invention is a polarization-maintaining optical fiber in which a stress-applying portion to which B 2 O 3 is added is disposed in a clad portion on the outer periphery of the core portion so as to sandwich the core portion. The amount of protrusion of the stress applying portion from the end face of the optical fiber in a wet environment is set to 0.1 μm or less. The average concentration of B 2 O 3 in the stress applying portion is set to 14 wt% to 16 wt%. Further, the optical connector according to the present invention is constructed by using the polarization maintaining optical fiber and polishing the end face together with the ferrule. The predetermined high-temperature and high-humidity environment means a temperature of 85 ° C. and a humidity of 85 RH% for 336 hours.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross section of a polarization maintaining optical fiber used in the description of the prior art, and FIG. 1A shows a panda type optical fiber, and FIG. 1B shows a bowtie type optical fiber. . In the figure, 1 is a polarization maintaining optical fiber, 2 is a core portion, 3 is a cladding portion, and 4 is a stress applying portion.
[0013]
The polarization-maintaining optical fiber 1 to which the present invention is applied is given birefringence equivalently by applying different stresses from two directions orthogonal to the core portion 2 as described in the related art. Things. As shown in FIG. 1, the polarization-maintaining optical fiber 1 has a shape in which stress applying portions 4 are provided on both sides of the core portion 2 so as to sandwich the core portion 2 in a clad portion 3 surrounding the outer periphery of the core portion 2. Things. As typical examples of this shape, a panda-type optical fiber in which a stress applying portion is formed in a columnar shape as shown in FIG. 1A, and a fan-shaped stress applying portion is formed as shown in FIG. 1B. There is a bow-tie type optical fiber.
[0014]
By adding B 2 O 3 to the glass component of SiO 2 , the stress applying section 4 can increase the coefficient of thermal expansion as compared with the SiO 2 glass forming the clad section 3. When a glass preform having a stress applying member disposed on both sides of the core portion is drawn into an optical fiber, a tensile stress X is applied to the core portion 2 by shrinkage of the stress applying portion 4 in the process of cooling from heating and melting. , And a compressive stress Y remains in the fiber from a direction orthogonal to this. When different stresses are applied to the core portion 2 in two directions, the X direction and the Y direction, the refractive index changes accordingly and birefringence occurs in the core portion 2.
[0015]
If the above-described polarization maintaining optical fiber 1 is used for a long time in a high-humidity and high-temperature environment, a phenomenon occurs in which the stress applying section 4 protrudes from the end face of the optical fiber. FIG. 2 is a diagram showing an example of observation of the protruding shape of the stress applying portion, which protrudes into a mountain shape whose maximum value reaches 1.5 μm. Such a phenomenon is often observed particularly when the average concentration of B 2 O 3 is 13 wt% or less.
[0016]
Investigation and elucidation of this phenomenon revealed that the boron (B) added to the stress applying part 4 had disappeared. Although the reason for the disappearance of boron (B) is not clear, the bond of silicon (Si) after the disappearance of boron (B) is combined with the hydroxyl group (OH) under high temperature and high humidity to form Si-OH having a long bond. It is considered that this causes a change in volume and causes the stress applying portion to protrude.
[0017]
FIG. 3 is a diagram illustrating the relationship between the average concentration of B 2 O 3 and the amount of protrusion in the stress applying part after the high temperature and high humidity test. The high-temperature and high-humidity test was performed using a pressure cooker test apparatus at a temperature of 120 ° C., a humidity of 90 RE%, and a pressure of 0.12 MPa for 54 hours. The pressure cooker test condition (temperature 120 ° C., humidity 90 RE%, pressure 0.12 MPa) is an acceleration test corresponding to about 10 times the temperature 85 ° C. and humidity 85% in a normal high temperature and high humidity test. From the results of FIG. 3, the range where the unevenness in the stress applying portion is reduced to around 0.1 μm is the range where the average concentration of B 2 O 3 is 14.0 to 14.5 wt%. Was found to protrude, and it was also found that when this range was exceeded, there was a tendency to dent.
[0018]
When the average concentration of B 2 O 3 increases, the erosion of boron (B) proceeds due to moisture, and a dent is formed in the stress applying portion at the end face of the optical fiber as disclosed in Patent Document 2 described above. When the average concentration of B 2 O 3 in the stress applying portion becomes small, the reaction with the hydroxyl group (OH) of the bond of silicon (Si) becomes more dominant than the erosion of boron (B) by moisture. Is thought to stick out. A similar test was performed at 100 h using a pressure cooker test apparatus. The results were almost the same as those in FIG. 3 and the range where the unevenness of the stress applying portion was small was that the average concentration of B 2 O 3 was 14.0 to 14 It was in the range of 0.5 wt%.
[0019]
FIG. 4 is a view for explaining an example in which an optical connector is connected using the above-mentioned polarization maintaining optical fiber. FIG. 4A is a sectional view of an optical connector, and FIG. 4B is an enlarged view of an end face of an optical fiber. In the figure, 5 is a ferrule, 5a is a ferrule end face, 5b is an optical fiber hole, 5c is a fiber coating insertion hole, 6 is a connection key, 7 is a holder, 7a is a through hole, and 8 is an adhesive. The description of other symbols is omitted by using the same symbols as used in FIG.
[0020]
As shown in FIG. 4A, the optical connector is configured by inserting and fixing the polarization maintaining optical fiber 1 in a ferrule 5 and holding and fixing the ferrule 5 to a holder 7 or the like. The polarization-maintaining optical fiber 1 is positioned by inserting the distal end with the coating removed into the optical fiber hole 5 b formed on the distal end side of the ferrule 5, and into the fiber coating insertion hole 5 c and the through-hole 7 a of the holder 7. The adhesive 8 is filled and fixed. The ferrule 5 or the holder 7 is provided with a connection key 6 and the like for making connections in the same polarization direction.
[0021]
When butt-connecting optical fibers using an optical connector, the optical fiber end face 1a may be polished to a convex surface together with the ferrule end face 5a so as to project from the ferrule end face so that the optical fibers are PC-bonded. As a result, as shown in an enlarged manner in FIG. 4B, the joined state of the optical fibers is such that the ends of the optical fiber end faces 1a polished in an arc shape are in physical contact with the ends of the core portions 2 at the center position. A low-loss connection can be formed.
[0022]
However, when the projecting portion 4a occurs in the stress applying portion 3, contact occurs at the projecting portion before the core portion 2 comes into contact, and the bonding between the core portions 2 is hindered. For this reason, the reflection from the end face of the core portion and the butting interval are widened and are not constant, so that the connection loss increases and varies.
[0023]
According to the above investigation and verification, in the present invention, the stress applying section from the optical fiber end face after exposing the polarization maintaining optical fiber to a predetermined high temperature and high humidity environment (temperature 85 ° C., humidity 85 RH%, 336 h). Is set to 0.1 μm or less. When the protrusion amount Δ is 0.1 μm or less, when the optical fiber end face 1a is polished to a convex face together with the ferrule end face 5a by an optical connector, it does not hinder the joining between the core portions 2 and increases the connection loss and the variation. Occurrence can be reduced.
[0024]
In order to make the protrusion amount of the stress applying portion 0.1 μm or less, it is desirable that the average concentration of B 2 O 3 in the stress applying portion be 14 wt% or more based on the results of FIG. On the other hand, when the average concentration of B 2 O 3 in the stress applying portion is increased, a dent is formed on the end surface of the stress applying portion, but this does not hinder the joining of the optical connector. However, when the concentration of B 2 O 3 in the stress applying portion increases, cracks are likely to occur in the stress applying portion during polishing of the end face of the optical fiber as disclosed in Patent Document 1. Further, as disclosed in Patent Document 2, when subjected to a moist heat environment, the stress applying portion is eroded, and there is a possibility that the polarization crosstalk is deteriorated.
[0025]
However, when the average concentration of B 2 O 3 in the stress applying portion is set to 16 wt% or less, the generation of cracks in the stress applying portion and the degradation of crosstalk due to the increase in the amount of dents substantially hinder the problem. Did not occur. Therefore, by setting the B 2 O 3 average concentration of the stress applying section of the polarization maintaining optical fiber to 14 wt% to 16 wt%, the stress applying section of the stress applying section can be used for an optical connector used in a high temperature and high humidity environment. The protrusion can be minimized, the occurrence of cracks due to the end face polishing can be reduced, and the occurrence of dents can be suppressed to substantially no problem.
[0026]
Further, by maintaining the average concentration of B 2 O 3 in the stress applying portion at 14 wt% to 16 wt% and increasing the concentration on the central portion side, the concentration of B 2 O 3 on the outer peripheral surface side in contact with the clad is reduced. can do. Therefore, when the glass base material provided with the stress applying member is stretched and heated as disclosed in Patent Document 1, the generation of bubbles at the interface between the cladding portion and the stress applying member is small, and the generation of cracks is further reduced. Can be reduced.
[0027]
A polarization maintaining optical fiber in which the amount of protrusion of the stress applying portion from the end face of the optical fiber after exposure to the above-mentioned predetermined high temperature and high humidity environment (temperature 85 ° C., humidity 85 RH%, 336 h) is 0.1 μm or less; Alternatively, an optical connector as shown in FIG. 4 was prepared using a polarization maintaining optical fiber in which the average concentration of B 2 O 3 in the stress applying section was 14 wt% to 16 wt%. At this time, the connection end surface side was polished together with the end surface of the ferrule to a central convex surface having a radius of curvature of 25 mm or less (for example, 20 mm) so that the end surface of the optical fiber protruded from the ferrule surface.
[0028]
In the optical connector manufactured with the above configuration, no crack was generated in the stress applying portion due to the end surface polishing. Further, the amount of protrusion of the stress applying portion after exposure to the above-mentioned high temperature and high humidity environment was 0.1 μm or less. Further, the connection characteristics due to the attachment / detachment of the optical connector were verified. The variation in the connection loss was ± 0.1 dB or less, the return loss was also 45 dB to 50 dB, and the variation due to the attachment / detachment of the optical connector was small.
[0029]
【The invention's effect】
As described above, according to the present invention, the occurrence of cracks in the stress applying portion by processing the end face of the polarization maintaining optical fiber is reduced, and the use of the dent of the stress applying portion for use in a high-temperature and high-humidity environment. It is possible to suppress the occurrence of the stress applying portion from the end face of the optical fiber to a minimum by suppressing the occurrence thereof to such an extent that the influence is not substantially affected. As a result, even when the polarization maintaining optical fiber is PC-joined by an optical connector, it is possible to reduce the increase and the variation in the connection loss without deteriorating the polarization characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a polarization maintaining optical fiber.
FIG. 2 is a diagram illustrating a state in which a stress applying section of a polarization maintaining optical fiber protrudes.
FIG. 3 is a diagram illustrating the relationship between the average concentration of B 2 O 3 and the amount of protrusion in a stress applying section of the polarization maintaining optical fiber.
FIG. 4 is a diagram illustrating a configuration of an optical connector using a polarization maintaining optical fiber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polarization maintaining optical fiber, 1a ... Optical fiber end face, 2 ... Core part, 3 ... Clad part, 4 ... Stress giving part, 4a ... Protruding part, 5 ... Ferrule, 5a ... Ferrule end face, 5b ... Optical fiber hole, 5c: Fiber coating insertion hole, 6: Connection key, 7: Holder, 7a: Through hole, 8: Adhesive.

Claims (5)

コア部外周のクラッド部に前記コア部を挟むようにBを添加した応力付与部が配された偏波保持光ファイバであって、所定の高温高湿の環境下で前記応力付与部の光ファイバ端面からの突き出し量を0.1μm以下としたことを特徴とする偏波保持光ファイバ。A polarization-maintaining optical fiber in which a stress applying portion to which B 2 O 3 is added is disposed on a cladding portion around a core portion so as to sandwich the core portion, and the stress applying portion is provided under a predetermined high temperature and high humidity environment. Wherein the amount of protrusion from the optical fiber end face is 0.1 μm or less. コア部外周のクラッド部に前記コア部を挟むようにBを添加した応力付与部が配された偏波保持光ファイバであって、前記応力付与部のBの平均濃度を14wt%〜16wt%としたことを特徴とする偏波保持光ファイバ。A polarization maintaining optical fiber in which a stress applying portion to which B 2 O 3 is added is disposed on a cladding portion around a core portion so as to sandwich the core portion, and the average concentration of B 2 O 3 in the stress applying portion is A polarization maintaining optical fiber having a content of 14 wt% to 16 wt%. 前記応力付与部のBの濃度が、中央部ほど大きくなっている濃度分布を有していることを特徴とする請求項2に記載の偏波保持光ファイバ。The concentration of B 2 O 3 stress applying section, a polarization-maintaining optical fiber according to claim 2, characterized in that it has a concentration distribution which increases as the center. 請求項2に記載の偏波保持光ファイバがフェルールに固定され、前記偏波保持光ファイバが突出するように前記フェルールの端面が研磨されていることを特徴とする光コネクタ。An optical connector, wherein the polarization-maintaining optical fiber according to claim 2 is fixed to a ferrule, and an end face of the ferrule is polished so that the polarization-maintaining optical fiber protrudes. 前記フェルールの端面中央が曲率半径25mm以下の凸面であることを特徴とする請求項4に記載の光コネクタ。The optical connector according to claim 4, wherein the center of the end surface of the ferrule is a convex surface having a radius of curvature of 25 mm or less.
JP2002356806A 2002-12-09 2002-12-09 Polarization maintaining optical fiber and optical connector Pending JP2004191486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356806A JP2004191486A (en) 2002-12-09 2002-12-09 Polarization maintaining optical fiber and optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356806A JP2004191486A (en) 2002-12-09 2002-12-09 Polarization maintaining optical fiber and optical connector

Publications (1)

Publication Number Publication Date
JP2004191486A true JP2004191486A (en) 2004-07-08

Family

ID=32757038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356806A Pending JP2004191486A (en) 2002-12-09 2002-12-09 Polarization maintaining optical fiber and optical connector

Country Status (1)

Country Link
JP (1) JP2004191486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071312A (en) * 2016-02-26 2018-12-21 科拉克蒂夫高科技公司 Manufacture the optical fiber with the longitudinal protrusion for destroying symmetry
CN115385567A (en) * 2022-08-10 2022-11-25 江苏法尔胜光电科技有限公司 Variable stress region shape polarization maintaining optical fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071312A (en) * 2016-02-26 2018-12-21 科拉克蒂夫高科技公司 Manufacture the optical fiber with the longitudinal protrusion for destroying symmetry
CN115385567A (en) * 2022-08-10 2022-11-25 江苏法尔胜光电科技有限公司 Variable stress region shape polarization maintaining optical fiber and preparation method thereof
CN115385567B (en) * 2022-08-10 2023-08-29 江苏法尔胜光电科技有限公司 Shape polarization maintaining optical fiber with variable stress area and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH01237507A (en) Absolute single polarizing optical fiber
US7289687B2 (en) Polarization-maintaining optical fiber
CA2074860C (en) Method of reinforcing optical fiber coupler
US6535655B1 (en) Fiberoptic polarizer and method of making the same
JP2004133389A (en) Polarization maintaining optical fiber coupler and its manufacturing method
JP2004191486A (en) Polarization maintaining optical fiber and optical connector
JPH06509427A (en) optical coupler housing
JP2015152692A (en) Optical connector and manufacturing method thereof
JP2007226120A (en) Mode field converter and manufacturing method therefor
JP4096936B2 (en) Optical fiber, optical fiber end face sealing method, optical fiber connection structure, and optical connector
JP2004177504A (en) Optical fiber and optical components with optical fiber
JPH0750216B2 (en) Polarization-maintaining optical fiber fixing method
WO2023119925A1 (en) Bent optical fiber, method for manufacturing bent optical fiber, and optical connection component
JP3801148B2 (en) Optical connector
JPH0356907A (en) Production of polarization maintaining type optical fiber coupler
JP2006011119A (en) Optical component, wavelength multiplexer/demultiplexer, and method of manufacturing optical component
JP2002214465A (en) Polarization maintaining optical fiber
JPH07128545A (en) Method for connecting optical waveguide and optical fiber
JP3747382B2 (en) Ferrule, optical waveguide module using the ferrule, and manufacturing method thereof
JP2003140002A (en) Optical connector
JPH05224075A (en) Polarization maintaining optical fiber coupler
JP2004037645A (en) Polarization holding optical fiber coupler
JP2828467B2 (en) Absolute polarization fiber
JP2957321B2 (en) Optical fiber coupler reinforcement method
JPH0350505A (en) Single polarization optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701