JP2004191446A - Led dot matrix - Google Patents

Led dot matrix Download PDF

Info

Publication number
JP2004191446A
JP2004191446A JP2002356265A JP2002356265A JP2004191446A JP 2004191446 A JP2004191446 A JP 2004191446A JP 2002356265 A JP2002356265 A JP 2002356265A JP 2002356265 A JP2002356265 A JP 2002356265A JP 2004191446 A JP2004191446 A JP 2004191446A
Authority
JP
Japan
Prior art keywords
led
light
dot matrix
transmitting member
led dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356265A
Other languages
Japanese (ja)
Inventor
Shinichi Komori
伸一 小森
Shinya Yamazaki
信哉 山崎
Masahiro Hirayama
正博 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERUTERU KK
SWCC Corp
Original Assignee
ERUTERU KK
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERUTERU KK, Showa Electric Wire and Cable Co filed Critical ERUTERU KK
Priority to JP2002356265A priority Critical patent/JP2004191446A/en
Publication of JP2004191446A publication Critical patent/JP2004191446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED dot matrix with which a flat light distribution property can be obtained with a simple construction. <P>SOLUTION: The LED 10 is provided with two metal lead frames 11a, 11b arranged in parallel, an LED element 13 mounted on a metal base 12 provided at the end of one lead frame, a bonding wire 15 for electrically connecting the end of the other lead frame and the LED element, and a light transparent member 16 provided so as to cover the one end of the lead frame, the LED element, the bonding wire, etc. A plurality of LED 10 are arranged on a substrate 17 having a prescribed electric path, and each lead frame is electrically connected to the electric path with solder 18, and the light from each LED element of an LED unit serving as a light source passes through a lens face of the light transparent member and spreads long sideways. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数のLED(発光ダイオード)を基板に二次元的に配列してなるもので、道路の料金所等で車のナンバープレート、人物を撮影するときに被写体に光を照射するLED赤外線照明装置や、文字、記号等のLED表示器、信号機等に使用されるLEDドットマトリックスに関する。
【0002】
【従来の技術】
従来のLEDは、LED素子を包覆した透光部材のレンズ面(頂部)が砲弾型をなしており、図7にその配光特性を示している。図7に示されるように、砲弾型透光部材のLED30から放射された光は、中央部分31の光量が大きく、周辺部分32の光量は小さくなるという山の形状の配光特性を示す。この従来のLEDの複数を、所定の基板に集積してなるLEDユニットも、合成された配光特性が図7に示したような山の形状になると考えられる。
【0003】
従って、このような従来のLEDユニットを、例えば、撮影用照明装置として使用した場合、配光特性が山の形状になっていることから、照射範囲の中央と周辺で光量が異なり、このため、輝度むらが生じ所望の画質が得られないことがあるので好ましくない。
輝度むらが生じないようにするには、図8に示すように、LED40から放射された光が中央部分も周辺部分もほぼ同等の光量となる、なるべくフラットな形状の配光特性41になることが望まれる。
【0004】
この従来のLEDを所定の基板に集積し並べただけのLEDユニットは、フラットな照明とすることができない。
また、光源から被写体までの距離が大きくなる程、照射光が拡散してしまい、光の強度が弱くなってしまうため、LED自体の発光強度を大きくしなければならない。しかし、LED自体の発光強度を大きくすると、LEDの発熱が大きくなり、LEDの寿命が短くなり、照明の消費電力が多くなる。
【0005】
ところで、複数のLEDを基板に配置しフラットな配光特性を得るようにしたLED赤外線照明装置は公知である(例えば、特許文献1、特許文献2参照)。特許文献1の照明装置は、反射形LEDを使用し、これらを基板に集積してなるLEDユニットの照射角度を、基板の直角軸に対してそれぞれ傾斜させたものである。また、特許文献2の照明装置は、複数のLEDユニットのうち、内側のLEDユニットに、外側のLEDユニットより小さい値の定電流を供給するようにしたものである。
【0006】
【特許文献1】
特開平11―195307号公報
【特許文献1】
特開平11―195317号公報
【0007】
【発明が解決しようとする課題】
上記の従来の技術には次のような解決すべき課題がある。
特許文献1の照明装置は、反射形LEDを使用しているために、光の指向性が大きく中心輝度が大きくなる。このため、反射形LEDを集合し面発光のLEDユニットを形成した場合、光の干渉によりLEDユニット自体も中心輝度が大きくなる。
このことから、LEDユニットを平面に並べて面発光体を形成し、フラットな形状の配光特性を得ようとした場合、LEDユニットを集光方向に向けることができず、LEDユニットを分散方向に傾ける必要があり、光の集光効率が悪くなるものと考える。
【0008】
特許文献2の照明装置は、LEDユニット毎に流す電流値と時間を調整しフラットな配光特性を得るものであるが、次の問題があると考える。すなわち、
・LED自体がもつ仕様特性を充分に発揮できない。
・外側のLEDユニットほど、流す電流、時間が大きくなる傾向がある。
・電気回路が複雑になる。
【0009】
本発明は、上記の点に着目してなされたもので、簡易な構造でフラットな形状の配光特性を得ることができるLEDドットマトリックスを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
LED素子及び上記LED素子を包覆した透光部材を備えたLEDを、所定の電路を有する基板に複数配列してLEDユニットを形成してなるLEDドットマトリックスにおいて、上記LEDユニットの各LED素子を光源とする光が、上記透光部材のレンズ面を通過し横長に広がるようにされたことを特徴とするLEDドットマトリックス。
【0011】
前記LEDは、例えば、並列に配置された2本の金属製のリードフレームと、一方のリードフレームの一端に設けられた金属ベースに載置されたLED素子と、他方のリードフレームの頭部と前記LED素子とを電気的に接続するボンディングワイヤと、前記2本のリードフレームの各頭部、前記LED素子及びボンディングワイヤを一体に包覆するように設けられた透光部材とから構成されている。前記2本の金属製のリードフレームを介してLED素子に定電流が供給されることにより発光(赤外線)し、前記透光部材頂部のレンズ面から外部に放射される。
また、LEDを、所定の電路を有する基板に複数配列し、各LEDのリードフレームを、それぞれ前記基板の電路に半田で電気的に接続してLEDユニットが形成される。
なお、前記透光部材のレンズ面とは、前記LED素子と対面する前記透光部材頂部における光透過面である。
【0012】
前記LEDユニットの各LED素子を光源とする光が、前記透光部材のレンズ面を通過し横長に広がるようにされたことにより、前記LEDユニットがフラットな形状の配光特性を示し、輝度むらのない良好な光照射が得られる。
【0013】
〈構成2〉
構成1記載のLEDドットマトリックスにおいて、上記透光部材のレンズ面を、横断面楕円形の部分球面としたことを特徴とするLEDドットマトリックス。
【0014】
前記横断面楕円形の部分球面とは、例えばラクビーボール状物体を長軸に沿って縦断することにより得られる立体形状である。このような立体形状とすることにより、長軸には図8に示されるようなフラットな形状の配光特性を示し、短軸には山の形状の配光特性を示す。すなわち、前記LEDユニットの各LED素子を光源とする光が、前記透光部材のレンズ面を通過し横長に広がるようにされたこととなり、全体的にはほぼ均一な光強度で横長スクリーン状の照射範囲となる。
【0015】
〈構成3〉
構成1記載のLEDドットマトリックスにおいて、上記LEDユニットの各LED素子を、上記透光部材のレンズ面に対して横長の直方体としたことを特徴とするLEDドットマトリックス。
【0016】
前記LED素子を、前記透光部材のレンズ面に対して横長の直方体とすることにより、前記LEDユニットの各LED素子を光源とする光が、前記透光部材のレンズ面を通過し横長に広がるようにされたこととなり、全体的にはほぼ均一な光強度で横長スクリーン状の照射範囲となる。
【0017】
〈構成4〉
構成1ないし3のいずれかに記載のLEDドットマトリックスにおいて、上記複数のLEDユニットを同一平面に対して互いに傾いた状態で横並びに配置したことを特徴とするLEDドットマトリックス。
【0018】
前記複数のLEDユニットを互いに傾いた状態で横並びに配置することによって、各LEDユニットから放射された光が重複されて合成された配光特性を示し、あるいは横方向にずれて合成された配光特性を示すこととなる。放射光が重複されて合成された場合は光強度が倍加され、また、放射光が横方向にずれて合成された場合はフラットな形状の配光特性を示す照射範囲が広がるようになる。使用目的に応じて使い分けをすることができる。
【0019】
〈構成5〉
構成4に記載のLEDドットマトリックスにおいて、同一平面に対して互いに傾いた状態で横並びに配置された上記LEDユニットの対を、複数配置したことを特徴とするLEDドットマトリックス。
【0020】
互いに傾いた状態で横並びに配置された前記LEDユニットの対を、複数配置することにより、光強度を倍加し、かつフラットな形状の配光特性を示す範囲を広げたものとすることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1は本発明のLEDドットマトリックスに使用されるLED及びその取付け状況を示している。
このLED10は、基板17に並列に配置される2本のリードフレーム11a、11bと、一方のリードフレーム11aの頭部に係止されている金属ベース12と、金属ベース12の上に載置されたLED素子13と、このLED素子13と他方のリードフレーム11bの頭部とを電気的に接続するボンディングワイヤ15と、2本のリードフレーム11a、11bの各頭部、LED素子13及びボンディングワイヤ15を一体に包覆する透光部材16とを有している。
【0022】
透光部材16は、光を透視しうる透明なエポキシ樹脂等の透明樹脂により成形されている。そして、図2に示すように、透光部材16のレンズ面16aは、横断面楕円形の部分球面、すなわち、ラクビーボール状物体を長軸に沿って縦断することにより得られる立体形状とされている。
【0023】
透光部材16のレンズ面16aとは、LED素子13と対面する透光部材頂部における光透過面であり、LED素子13から発光される赤外線を任意の屈折率で透過させるレンズの効果を奏するものである。
【0024】
図1において、基板17には予め所定の配線パターンを形成する電路と、複数のLED10を縦横に配列するために2本のリードフレーム11a、11bを挿通させるスルーホールとが設けられている。
各LED10のリードフレーム11a、11bは、基板17のスルーホールに挿入され裏面から突出され、そして電路に半田18で電気的に接続固定される。
【0025】
図3は、図2に示したLED10を使用したLEDドットマトリックスの一実施例を示している。
例えば、図3に示されるように、縦が約14cm、横が約10cmの四辺形をなす基板17に、透光部材16の直径が約6mm級のLED10を、400個配列して構成されている。このとき、400個のLEDは、基板17に、一方向(図の上下方向)からみて半ピッチずつ間隔を置いて互いに密着させた、いわゆる俵積み状態で配列されている。
【0026】
この俵積み状態の配列とすることによって、縦、横に同列に同ピッチで正四辺形に配列した場合に比べて配列面積を約20%縮小することができる。
なお、図3において、符号25は基板17の取付け用貫通孔を示し、基板の四隅に設けられている。また、符号26〜28は、それぞれ基板17の電路に連結された電気端子を示している。
【0027】
上記のように構成された本発明に係るLEDドットマトリックスは、透光部材16のレンズ面16aを横断面楕円形の部分球面とすることが、LEDユニットの各LED素子を光源とする光が透光部材のレンズ面を通過し横長に広がるようにすることであり、LEDユニットが図8に示すようなフラットな形状の配光特性を示し、輝度むらのない良好な光照射を行う。
【0028】
本発明においては、図2に示したLED10の代りに、図4に示すLED19を使用して各LEDのLED素子を光源とする光が透光部材のレンズ面16aを通過し横長に広がるようにすることができる。
すなわち、図4において、リードフレーム11aの頭部に係止されている金属ベース12の上に載置されたLED素子14は、透光部材のレンズ面16aに対して横長の直方体とされている。なお、図4には、図1、図2に示した部分と共通する部分に同一の符号を付している。
【0029】
LED素子14を、レンズ面16aに対して横長の直方体とすることにより、LEDユニットの各LED素子14を光源とする光が透光部材のレンズ面16aを通過し横長に広がるようにされたこととなり、LED19が図8に示すようなフラットな形状の配光特性を示し、全体的にはほぼ均一な光強度の横長スクリーン状の照射範囲となる。
【0030】
また本発明においては、図5に概略を示すように、複数のLEDユニット50a、50bを、各一辺を付き合わせ同一平面に対して互いに傾いた状態で横並びに配置するようにしてもよい。これらのLEDユニット50a、50bは、図1に示されたLED10あるいは図4に示されたLED19により、図3に示されるように平板状に構成されている。
図5に示されるように、各LEDユニット50a、50bから放射された光は、それぞれ符号51a、51bで示す配光特性となり、これらの光が横方向にずらすことにより、合成されたフラットな形状の配光特性52を示すようになる。すなわち、照射範囲が横方向に広がるようになる。
【0031】
さらに本発明においては、図6に示すように、複数のLEDユニット50a、50b、50c、50dを対毎にそれぞれ互いに傾いた状態で横並びに配置してもよい。
この場合には、各LEDユニット50a、50b、50c、50dから放射された光がそれぞれ51a、51b、51c、51dの配光特性を示し、これらが横方向にずれて合成された配光特性53がフラットな形状を示すようになる。すなわち、光強度が倍加し、かつフラットな形状の配光特性53を示した状態で照射範囲を横方向に広げたものとなる。
【図面の簡単な説明】
【図1】本発明に係るLEDドットマトリックスの一実施例の一部を示す縦断面図である。
【図2】同実施例の要部を示す図で、(a)は斜視図、(b)は(a)のA−A線に沿う横断面図である。
【図3】同実施例における複数のLEDの配列状態を示す平面図である。
【図4】本発明に係るLEDドットマトリックスの他の実施例の要部を示す図で、(a)は縦断面図、(b)は(a)のB−B線に沿う横断面図である。
【図5】本発明に係るLEDドットマトリックスの配光特性を説明するための概略図である。
【図6】本発明に係る他の実施例の配光特性を説明するための概略図である。
【図7】従来のLEDの配光特性を示す図である。
【図8】LEDの配光特性を示す図である。
【符号の説明】
10、19、30、40 LED
11a、11b リードフレーム
12 金属ベース
13 LED素子
15 ボンディングワイヤ
16 透光部材
17 基板
18 半田
50a、50b、50c、50d LEDユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention comprises a plurality of LEDs (light emitting diodes) arranged two-dimensionally on a substrate, and illuminates the subject with light when photographing a license plate or a person at a tollgate on a road. The present invention relates to an LED dot matrix used for a lighting device, an LED display of characters and symbols, a traffic light, and the like.
[0002]
[Prior art]
In the conventional LED, the lens surface (top) of the light-transmitting member that covers the LED element has a shell shape, and FIG. 7 shows its light distribution characteristics. As shown in FIG. 7, the light emitted from the LED 30 of the shell-type light transmitting member has a mountain-shaped light distribution characteristic in which the light amount in the central portion 31 is large and the light amount in the peripheral portion 32 is small. An LED unit in which a plurality of the conventional LEDs are integrated on a predetermined substrate is considered to have a combined light distribution characteristic having a mountain shape as shown in FIG.
[0003]
Therefore, when such a conventional LED unit is used, for example, as a lighting device for photographing, the light distribution characteristic is in the shape of a mountain, so that the light amount differs between the center and the periphery of the irradiation range. It is not preferable because luminance unevenness occurs and a desired image quality cannot be obtained.
In order to prevent luminance unevenness, as shown in FIG. 8, the light radiated from the LED 40 should have a light distribution characteristic 41 having a flat shape as much as possible in both the central portion and the peripheral portion. Is desired.
[0004]
An LED unit in which conventional LEDs are simply integrated and arranged on a predetermined substrate cannot provide flat illumination.
Further, as the distance from the light source to the subject increases, the irradiation light diffuses and the intensity of the light decreases, so the emission intensity of the LED itself must be increased. However, when the emission intensity of the LED itself is increased, the heat generation of the LED increases, the life of the LED is shortened, and the power consumption of the lighting increases.
[0005]
By the way, an LED infrared illuminating device in which a plurality of LEDs are arranged on a substrate to obtain a flat light distribution characteristic is known (for example, see Patent Documents 1 and 2). The illuminating device of Patent Document 1 uses a reflective LED, and the illumination angle of an LED unit in which these are integrated on a substrate is inclined with respect to a perpendicular axis of the substrate. Further, the lighting device of Patent Literature 2 supplies a constant current of a value smaller than that of the outer LED unit to the inner LED unit among the plurality of LED units.
[0006]
[Patent Document 1]
JP-A-11-195307 [Patent Document 1]
JP-A-11-195317
[Problems to be solved by the invention]
The above prior art has the following problems to be solved.
Since the illumination device of Patent Document 1 uses a reflective LED, the directivity of light is large and the central luminance is large. For this reason, when the reflection type LEDs are assembled to form a surface-emitting LED unit, the center brightness of the LED unit itself also increases due to light interference.
For this reason, when the LED units are arranged in a plane to form a surface light emitter and a light distribution characteristic of a flat shape is to be obtained, the LED units cannot be oriented in the light-condensing direction, and the LED units are oriented in the dispersion direction. It is necessary to incline, and it is considered that the light collection efficiency becomes poor.
[0008]
The lighting device of Patent Document 2 adjusts the current value and time for each LED unit to obtain a flat light distribution characteristic. However, the following problems are considered. That is,
-The specification characteristics of the LED itself cannot be sufficiently exhibited.
-There is a tendency that the outer LED unit has a larger current and time to flow.
-The electric circuit becomes complicated.
[0009]
The present invention has been made in view of the above points, and has as its object to provide an LED dot matrix capable of obtaining a flat shape light distribution characteristic with a simple structure.
[0010]
[Means for Solving the Problems]
The present invention employs the following configuration to solve the above points.
<Configuration 1>
In an LED dot matrix formed by arranging a plurality of LED elements and LEDs having a light-transmitting member covering the LED elements on a substrate having a predetermined electrical path, forming an LED unit, each LED element of the LED unit is An LED dot matrix, wherein light serving as a light source passes through the lens surface of the light transmitting member and spreads horizontally.
[0011]
The LED includes, for example, two metal lead frames arranged in parallel, an LED element mounted on a metal base provided at one end of one lead frame, and a head of the other lead frame. A bonding wire for electrically connecting the LED element; and a light-transmitting member provided so as to integrally cover each head of the two lead frames, the LED element and the bonding wire. I have. When a constant current is supplied to the LED element through the two metal lead frames, the LED element emits light (infrared light) and is emitted to the outside from the lens surface on the top of the light transmitting member.
Also, a plurality of LEDs are arranged on a substrate having a predetermined electric path, and a lead frame of each LED is electrically connected to the electric path of the substrate by solder, thereby forming an LED unit.
The lens surface of the light transmitting member is a light transmitting surface at the top of the light transmitting member facing the LED element.
[0012]
The light from each LED element of the LED unit as a light source passes through the lens surface of the light transmitting member and spreads horizontally, so that the LED unit exhibits a light distribution characteristic of a flat shape and uneven brightness. And good light irradiation free of light.
[0013]
<Configuration 2>
2. The LED dot matrix according to Configuration 1, wherein a lens surface of the light transmitting member is a partial spherical surface having an elliptical cross section.
[0014]
The partial sphere having an elliptical cross section is, for example, a three-dimensional shape obtained by traversing a rugby ball-like object along a long axis. With such a three-dimensional shape, the long axis shows the light distribution characteristics of a flat shape as shown in FIG. 8 and the short axis shows the light distribution characteristics of a mountain shape. That is, light having each LED element of the LED unit as a light source passes through the lens surface of the light-transmitting member and spreads horizontally, so that the entire screen has a substantially uniform light intensity and has a horizontally long screen shape. The irradiation range.
[0015]
<Configuration 3>
2. The LED dot matrix according to Configuration 1, wherein each LED element of the LED unit is a rectangular parallelepiped that is horizontally long with respect to the lens surface of the light transmitting member.
[0016]
By making the LED element a rectangular parallelepiped that is horizontally long with respect to the lens surface of the light transmitting member, light having each LED element of the LED unit as a light source passes through the lens surface of the light transmitting member and spreads horizontally. As a result, an irradiation area in a horizontally long screen shape with substantially uniform light intensity as a whole is obtained.
[0017]
<Configuration 4>
4. The LED dot matrix according to any one of Configurations 1 to 3, wherein the plurality of LED units are arranged side by side in a state of being inclined with respect to the same plane.
[0018]
By arranging the plurality of LED units side by side in a tilted state, the light emitted from each LED unit shows a light distribution characteristic combined and synthesized, or a light distribution combined with a shift in the lateral direction. Characteristics. When the radiated lights are overlapped and combined, the light intensity is doubled. When the radiated lights are shifted in the horizontal direction and combined, the irradiation range showing a flat light distribution characteristic is expanded. It can be used properly according to the purpose of use.
[0019]
<Configuration 5>
The LED dot matrix according to Configuration 4, wherein a plurality of pairs of the LED units arranged side by side in a state of being inclined with respect to the same plane are arranged.
[0020]
By arranging a plurality of pairs of the LED units arranged side by side in an inclined state, the light intensity can be doubled and the range showing the light distribution characteristics of a flat shape can be widened.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an LED used in the LED dot matrix of the present invention and the mounting state thereof.
The LED 10 is mounted on two lead frames 11 a and 11 b arranged in parallel on a substrate 17, a metal base 12 locked on the head of one lead frame 11 a, and a metal base 12. LED element 13, bonding wire 15 for electrically connecting LED element 13 and the head of the other lead frame 11 b, heads of two lead frames 11 a and 11 b, LED element 13 and bonding wire And a light-transmitting member 16 that integrally covers the light-transmitting member 15.
[0022]
The light transmitting member 16 is formed of a transparent resin such as a transparent epoxy resin that can see through light. Then, as shown in FIG. 2, the lens surface 16a of the light transmitting member 16 has a partial spherical surface having an elliptical cross section, that is, a three-dimensional shape obtained by traversing a rugby ball-like object along a long axis. I have.
[0023]
The lens surface 16a of the light-transmitting member 16 is a light-transmitting surface at the top of the light-transmitting member facing the LED element 13, and has a lens effect of transmitting infrared light emitted from the LED element 13 at an arbitrary refractive index. It is.
[0024]
In FIG. 1, a substrate 17 is provided with an electric path for forming a predetermined wiring pattern in advance, and a through-hole through which two lead frames 11a and 11b are inserted for arranging a plurality of LEDs 10 vertically and horizontally.
The lead frames 11a and 11b of each LED 10 are inserted into through holes of the substrate 17 and protrude from the back surface, and are electrically connected and fixed to the electric paths with solder 18.
[0025]
FIG. 3 shows an embodiment of an LED dot matrix using the LED 10 shown in FIG.
For example, as shown in FIG. 3, 400 LEDs 10 each having a diameter of about 6 mm are arranged on a substrate 17 having a quadrilateral shape of about 14 cm in length and about 10 cm in width. I have. At this time, the 400 LEDs are arranged on the substrate 17 in a so-called bale-stacked state in which they are in close contact with each other at an interval of half a pitch when viewed from one direction (vertical direction in the drawing).
[0026]
By arranging in a bale-stacked state, the arrangement area can be reduced by about 20% as compared with the case of arranging in a regular quadrilateral with the same pitch vertically and horizontally at the same pitch.
In FIG. 3, reference numeral 25 denotes a through hole for mounting the substrate 17 and is provided at four corners of the substrate. Reference numerals 26 to 28 indicate electric terminals connected to the electric paths of the board 17 respectively.
[0027]
In the LED dot matrix according to the present invention configured as described above, the lens surface 16a of the light transmitting member 16 is formed to have a partial spherical surface having an elliptical cross section, so that light using each LED element of the LED unit as a light source is transmitted. The LED unit passes through the lens surface of the optical member and spreads horizontally. The LED unit has a flat light distribution characteristic as shown in FIG. 8 and performs favorable light irradiation without luminance unevenness.
[0028]
In the present invention, instead of the LED 10 shown in FIG. 2, an LED 19 shown in FIG. 4 is used so that light from the LED element of each LED as a light source passes through the lens surface 16a of the light transmitting member and spreads horizontally. can do.
That is, in FIG. 4, the LED element 14 mounted on the metal base 12 locked on the head of the lead frame 11a is a rectangular parallelepiped that is horizontally long with respect to the lens surface 16a of the light transmitting member. . In FIG. 4, the same reference numerals are given to portions common to the portions shown in FIGS.
[0029]
By making the LED element 14 a rectangular parallelepiped that is horizontally long with respect to the lens surface 16a, light from each LED element 14 of the LED unit as a light source passes through the lens surface 16a of the translucent member and spreads horizontally. Thus, the LED 19 exhibits a light distribution characteristic of a flat shape as shown in FIG. 8, and as a whole, a horizontally long screen-shaped irradiation range having substantially uniform light intensity is obtained.
[0030]
Further, in the present invention, as schematically shown in FIG. 5, a plurality of LED units 50a and 50b may be arranged side by side in a state where one side is attached to each other and inclined with respect to the same plane. These LED units 50a and 50b are formed in a flat plate shape as shown in FIG. 3 by the LED 10 shown in FIG. 1 or the LED 19 shown in FIG.
As shown in FIG. 5, the light emitted from each of the LED units 50a and 50b has light distribution characteristics indicated by reference numerals 51a and 51b, respectively. The light distribution characteristic 52 of FIG. That is, the irradiation range is expanded in the horizontal direction.
[0031]
Further, in the present invention, as shown in FIG. 6, a plurality of LED units 50a, 50b, 50c, 50d may be arranged side by side in a state of being inclined with respect to each other for each pair.
In this case, the light emitted from each of the LED units 50a, 50b, 50c, and 50d shows the light distribution characteristics of 51a, 51b, 51c, and 51d, respectively. Shows a flat shape. In other words, the irradiation range is expanded in the horizontal direction while the light intensity is doubled and the light distribution characteristic 53 having a flat shape is exhibited.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a part of an embodiment of an LED dot matrix according to the present invention.
FIGS. 2A and 2B are views showing a main part of the embodiment, in which FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view along the line AA in FIG.
FIG. 3 is a plan view showing an arrangement state of a plurality of LEDs in the embodiment.
4A and 4B are diagrams showing a main part of another embodiment of the LED dot matrix according to the present invention, wherein FIG. 4A is a longitudinal sectional view, and FIG. 4B is a transverse sectional view along the line BB of FIG. is there.
FIG. 5 is a schematic diagram for explaining light distribution characteristics of the LED dot matrix according to the present invention.
FIG. 6 is a schematic diagram for explaining light distribution characteristics of another embodiment according to the present invention.
FIG. 7 is a diagram showing light distribution characteristics of a conventional LED.
FIG. 8 is a diagram showing light distribution characteristics of an LED.
[Explanation of symbols]
10, 19, 30, 40 LED
11a, 11b Lead frame 12 Metal base 13 LED element 15 Bonding wire 16 Light transmitting member 17 Substrate 18 Solder 50a, 50b, 50c, 50d LED unit

Claims (5)

LED素子及び前記LED素子を包覆した透光部材を備えたLEDを、所定の電路を有する基板に複数配列してLEDユニットを形成してなるLEDドットマトリックスにおいて、
前記LEDユニットの各LED素子を光源とする光が、前記透光部材のレンズ面を通過し横長に広がるようにされたことを特徴とするLEDドットマトリックス。
In an LED dot matrix formed by arranging a plurality of LED elements and LEDs having a light-transmitting member covering the LED elements on a substrate having a predetermined electric path to form an LED unit,
An LED dot matrix, wherein light having each LED element of the LED unit as a light source is passed through a lens surface of the light transmitting member and spreads horizontally.
請求項1記載のLEDドットマトリックスにおいて、
前記透光部材のレンズ面を、横断面楕円形の部分球面としたことを特徴とするLEDドットマトリックス。
The LED dot matrix according to claim 1,
An LED dot matrix, wherein a lens surface of the light transmitting member is a partial spherical surface having an elliptical cross section.
請求項1記載のLEDドットマトリックスにおいて、
前記LEDユニットの各LED素子を、前記透光部材のレンズ面に対して横長の直方体としたことを特徴とするLEDドットマトリックス。
The LED dot matrix according to claim 1,
An LED dot matrix, wherein each LED element of the LED unit is a rectangular parallelepiped that is horizontally long with respect to a lens surface of the light transmitting member.
請求項1ないし3のいずれかに記載のLEDドットマトリックスにおいて、
前記複数のLEDユニットを同一平面に対して互いに傾いた状態で横並びに配置したことを特徴とするLEDドットマトリックス。
The LED dot matrix according to any one of claims 1 to 3,
An LED dot matrix, wherein the plurality of LED units are arranged side by side in a state of being inclined with respect to the same plane.
請求項4に記載のLEDドットマトリックスにおいて、
同一平面に対して互いに傾いた状態で横並びに配置された前記LEDユニットの対を、複数配置したことを特徴とするLEDドットマトリックス。
The LED dot matrix according to claim 4,
An LED dot matrix, comprising a plurality of pairs of the LED units arranged side by side in a state of being inclined with respect to the same plane.
JP2002356265A 2002-12-09 2002-12-09 Led dot matrix Pending JP2004191446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356265A JP2004191446A (en) 2002-12-09 2002-12-09 Led dot matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356265A JP2004191446A (en) 2002-12-09 2002-12-09 Led dot matrix

Publications (1)

Publication Number Publication Date
JP2004191446A true JP2004191446A (en) 2004-07-08

Family

ID=32756650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356265A Pending JP2004191446A (en) 2002-12-09 2002-12-09 Led dot matrix

Country Status (1)

Country Link
JP (1) JP2004191446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180520A (en) * 2005-10-25 2007-07-12 Philips Lumileds Lightng Co Llc Compound light-emitting diode comprising different auxiliary optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180520A (en) * 2005-10-25 2007-07-12 Philips Lumileds Lightng Co Llc Compound light-emitting diode comprising different auxiliary optical element

Similar Documents

Publication Publication Date Title
JP6629359B2 (en) Light emitting element, light emitting device and device base
CN1928425B (en) Low profile light source utilizing a flexible circuit carrier
US6578998B2 (en) Light source arrangement
US7049746B2 (en) Light-emitting unit and illuminator utilizing the same
US7857497B2 (en) LED lighting fixture
US7473019B2 (en) Lighting apparatus
US7172325B2 (en) Backlight unit of liquid crystal display
US7098485B2 (en) Optical semiconductor unit
JP4091233B2 (en) Dot matrix display
US20030147055A1 (en) Light source device, optical device, and liquid-crystal display device
JP2018029182A (en) Light emission module and lens
US9404626B2 (en) Illuminating apparatus
JP2006339147A (en) Light source using flexible circuit carrier
JP2004327955A (en) Led lamp
JP3454123B2 (en) LED lighting module
JP2007059905A (en) Optoelectronic package, and method and system of manufacturing and using the same
US6204938B1 (en) Linear illumination device and image reading apparatus using the same
US20060146516A1 (en) LED light source structure
JP2012059737A (en) Light emitting device, backlight unit, liquid crystal display device, and lighting system
JP2004039778A (en) Light emitting device for illumination
CN201062755Y (en) Light source module unit
JP2004191446A (en) Led dot matrix
KR100869076B1 (en) Light emitting diode dot matrix module
JP3142808B2 (en) Surface emitting device
JPH10200166A (en) Support structure of light emitting diode, lead frame for light emitting diode lamp and substrate for light emitting diode device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060619