JP2004191302A - Terahertz spectral device - Google Patents

Terahertz spectral device Download PDF

Info

Publication number
JP2004191302A
JP2004191302A JP2002362244A JP2002362244A JP2004191302A JP 2004191302 A JP2004191302 A JP 2004191302A JP 2002362244 A JP2002362244 A JP 2002362244A JP 2002362244 A JP2002362244 A JP 2002362244A JP 2004191302 A JP2004191302 A JP 2004191302A
Authority
JP
Japan
Prior art keywords
optical system
terahertz
light
measurement optical
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002362244A
Other languages
Japanese (ja)
Other versions
JP4002173B2 (en
Inventor
Toshiyuki Iwamoto
敏志 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Nikon Corp
Original Assignee
Tochigi Nikon Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp, Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2002362244A priority Critical patent/JP4002173B2/en
Publication of JP2004191302A publication Critical patent/JP2004191302A/en
Application granted granted Critical
Publication of JP4002173B2 publication Critical patent/JP4002173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable reflection spectrum measurement and transmission spectrum measurement, using a terahertz light with a single spectral device. <P>SOLUTION: A reflection measurement optical system for irradiating a sample S (a location A) with terahertz pulse light and detecting a reflection light reflected from the sample and a transmission measurement optical system for irradiating the sample S (a location B) with the terahertz pulse light and detecting a transmission light transmitted through the sample can be switched. A detected light, as the reflection light or the transmission light, is measured by a time-series conversion terahertz spectrum. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、テラヘルツパルス光を用いた時系列変換テラヘルツ分光装置に関するものである。
【0002】
【従来の技術】
従来の時系列変換テラヘルツ分光装置では、レーザー光源からのパルス光は2つに分岐されて、一方は、ポンプ光としてテラヘルツ光発生素子に導かれ、他方はプローブ光として検出器に導かれる。テラヘルツ光発生素子から発生するテラヘルツパルス光は試料に入射し、試料から射出する光は検出光として検出器(テラヘルツ光検出素子)に入射する。テラヘルツパルス光を試料に入射させる場合にも、試料からの射出光を検出器へ導く場合にも光学系が用いられる。試料のどのような特性を知りたいかによって、試料面で反射した反射光を検出して反射スペクトルを測定する場合と、試料を透過した透過光を検出して透過スペクトルを測定する場合とがある。
【0003】
【発明が解決しようとする課題】
反射スペクトルを測定する場合と透過スペクトルを測定する場合とでは、試料と光学系の位置関係が異なり、光学系も異なる。従来は、それぞれ専用の分光装置が使用されていたが、2台の分光装置を設置するには、多額の費用と広いスペースを必要としていた。
【0004】
本発明は、反射スペクトル測定も透過スペクトル測定も可能なテラヘルツ分光装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、テラヘルツパルス光を試料に照射し試料からの光を検出する検出光学系を有し、時系列変換テラヘルツ分光により検出光を測定するテラヘルツ分光装置に適用される。そして、本発明は以下のような特徴を有する。検出光学系は、テラヘルツパルス光を試料に照射し、その試料から反射した反射光をテラヘルツ光検出部へ導く反射測定光学系と、テラヘルツパルス光を試料に照射し、その試料を透過した透過光をテラヘルツ光検出部へ導く透過測定光学系と、反射測定光学系と透過測定光学系を択一的に切換える切換機構とを備える。さらに、切換機構により反射測定光学系を選択した場合、および透過型測定光学系を選択した場合のいずれの場合もテラヘルツ光の光路長が等しくなるようにした。
上記反射測定光学系と透過測定光学系は、光路を変換するための少なくとも一対の平面鏡を共有し、切換機構により一対の平面鏡の姿勢を変更して反射測定光学系と透過測定光学系を切換えるようにすることが好ましい。この場合、切換機構は、一対の平面鏡をそれぞれ駆動する一対の連結軸と、この一対の駆動軸を同期して回転する駆動系とから構成できる。また、切換機構により反射測定光学系を選択した場合および透過測定光学系を選択した場合のいずれの場合もテラヘルツパルス光の光路長が等しくなるように、一対の連結軸は、テラヘルツパルス光の光軸に対して所定角度傾斜している。
さらに駆動系は、一対の連結軸に回転力を伝達する歯車装置を有し、この歯車装置には所定量のバックラッシュを持たせるとともに、一対の連結軸を平面鏡の重心位置から偏心して固定し、切換機構により反射測定光学系を選択した場合に、共有する平面鏡が重力で第1のストッパに当接して反射測定位置が規定され、透過測定光学系を選択した場合に、共有する平面鏡が重力で第2のストッパに当接して反射測定位置が規定されるように構成するとよい。
このようなテラヘルツ分光装置においては、反射測定の位置または透過測定の位置にセットされた試料を検知する検知手段と、検知手段による検知結果により切換機構を駆動制御して、反射測定光学系と透過測定光学系とを切換える制御装置とを備えてもよい。
また、反射測定光学系と透過測定光学系は、少なくとも試料を除き、密閉容器中に収納するのが好ましい。
切換機構を次のように構成してもよい。反射測定光学系の一部を収容する反射測定光学系ユニットと、透過測定光学系の一部を収容する透過測定光学系ユニットと、それらのユニットを択一的に装置本体に着脱する着脱機構とを含む。
【0006】
【発明の実施の形態】
以下、本発明によるテラヘルツ分光装置の一実施の形態について、図面を参照して説明する。
【0007】
このテラヘルツ分光装置は、1台の装置で光学系を切換えるだけで、試料面で反射した反射光を検出して反射スペクトルを測定することも、試料を透過した透過光を検出して透過スペクトルを測定することもできる。反射スペクトル測定の場合でも透過スペクトル測定の場合でも、テラヘルツ光発生素子5からテラヘルツパルス光検出素子12までの光路長がほぼ等しくなるように構成されている。
【0008】
図1および図2は、一実施の形態によるテラヘルツ分光装置を模式的に示す概略構成図である。図1は、反射スペクトル測定の場合の装置構成図であり、図2は、透過スペクトル測定の場合の装置構成図である。本来、これら2つの構成図は一つにまとめて示すべきであるが、図面が煩雑になるのを避けるために2つに分けて示す。
【0009】
図1の構成図は、紙面に平行な平面をXY面とし、紙面に垂直な方向をZ軸とする。但し、図面表示の便宜上、一点鎖線で囲まれたエリアのみは、紙面に平行な平面をXZ面とし、紙面に垂直な方向をY軸とする。すなわち、平面図中に側面図(一点鎖線で囲まれたエリア)が混在した状態が示されている。
【0010】
図1において、レーザー光源1から放射されたパルス光L1が、ビームスプリッタ2で2つのパルス光L2,L3に分割される。レーザー光源1としては、例えば、フェムト秒パルスレーザーが用いられる。パルス光L1は、中心波長が近赤外領域のうちの780〜800nm程度、繰り返し周期が数kHzから100MHzのオーダー、パルス幅が10〜150fs程度の直線偏光のパルス光である。
【0011】
ビームスプリッタ2で分割された一方のパルス光L2は、テラヘルツ光発生素子5を励起してテラヘルツパルス光を発生させるためのポンプ光(励起光)となる。このポンプ光L2は、平面反射鏡3及び集光レンズ4を経て、テラヘルツ光発生素子5へ導かれる。その結果、テラヘルツ光発生素子5が励起されてテラヘルツパルス光L4を放射する。テラヘルツパルス光L4は、概ね0.01×1012から100×1012ヘルツまでの周波数領域の光である。このテラヘルツパルス光L4は、曲面鏡6、7を経て平面鏡8に到達する。曲面鏡6、7としては、例えば、放物面鏡や楕円鏡等が用いられる。
【0012】
ここで、平面鏡8は一点鎖線で囲まれたエリアに在るので、その反射面はXZ面に垂直な面であり、平面鏡8に入射した光を上向き(+Z方向)に反射させる。従って、テラヘルツパルス光L4は、上向きに進み、試料Sの下面に入射する。
【0013】
試料Sの表面で反射されたテラヘルツパルス光L5は、試料Sの特性に関する情報を含む光である。テラヘルツパルス光L5は、下向き(−Z方向)に進み、平面鏡9、曲面鏡10、11を経てテラヘルツ光検出素子12に入射する。平面鏡9は一点鎖線で囲まれたエリアに在るので、その反射面はXZ面に垂直な面である。
【0014】
テラヘルツ光検出素子12にテラヘルツパルス光L5が入射すると、電場が生じた状態になる。この部分にプローブ光L3を照射すると、電場強度に応じた光電流が流れ、これを測定することにより、試料の電気的特性や不純物濃度等が得られる。プローブ光L3は以下のようにしてテラヘルツ光検出素子12に入射する。
【0015】
ビームスプリッタ2で分割された他方のパルス光L3は、テラヘルツパルス光L5を検出するためのプローブ光となる。パルス光L3(プローブ光L3)は、移動可能な可動鏡14aと固定された平面反射鏡14bを組み合わせてなる光学系14、平面反射鏡15、16を経てテラヘルツ光検出素子12に入射する。光学系14は、2枚の平面反射鏡が組み合わされてなる可動鏡14aを図中矢印のように移動させることにより、可動鏡14aの移動量に応じてプローブ光L3の光路長を変化させる。この結果、プローブ光L3が集光レンズ15を介してテラヘルツ光検出素子12へ到達する時間が遅延する。そして、可動鏡14aにより遅延時間を変更しながらテラヘルツ光検出素子12で検出される光を観測することにより、時系列テラヘルツ分光が可能となる。なお、反射測定光学系100は、破線で囲まれたエリアである。
【0016】
このように、テラヘルツパルス光検出素子12は、受光したテラヘルツパルス光の電場強度に比例する光電流を検出し、検出信号として図示しない制御・演算装置に送る。そして、制御・演算装置は、検出信号について時系列変換を実行し、試料に関する所望の特性に応じて演算を実行する。得られたデータは液晶ディスプレイやCRT等の表示部に表示させる。
【0017】
続いて、透過スペクトル測定の場合の装置構成図を説明する。図2の構成図は、紙面に平行な平面をXY面とし、紙面に垂直な方向をZ軸とする。図2において、図1中の要素と同一又は対応する要素には同一符号を付す。
【0018】
図2において、レーザー光源1から放射されたパルス光L1が、ビームスプリッタ2で2つのパルス光L2,L3に分割される。ビームスプリッタ2で分割された一方のパルス光L2は、テラヘルツ光発生素子5を励起してテラヘルツパルス光を発生させるためのポンプ光(励起光)となる。このポンプ光L2は、平面反射鏡3、集光レンズ4を経て、テラヘルツ光発生素子5へ導かれる。このテラヘルツパルス光L4は、曲面鏡6、7を経て平面鏡8に到達する。ここまでの光路は図1と同様である。平面鏡8の反射面は、XY面に垂直であり、図1の状態と異なる。そして、平面鏡8の反射面により入射光は−Y方向に反射する。
【0019】
図2においては、平面鏡8で反射されたテラヘルツパルス光L4は、さらに平面鏡18で光路を折り曲げられ、試料Sに入射する。試料Sを透過したテラヘルツパルス光L5は、平面鏡19で光路を折り曲げられ、平面鏡9に入射する。平面鏡9の反射面は、XY面に垂直であり、図1の状態と異なる。平面鏡9で反射されたテラヘルツパルス光L5は、図1と同様の光路、すなわち、曲面鏡10、11を経てテラヘルツ光検出素子12に入射する。
【0020】
ビームスプリッタ2で分割された他方のパルス光L3がテラヘルツ光検出素子12に入射する光路は、図1と同様であり、説明を省略する。なお、透過測定光学系200は破線で囲まれたエリアである。
【0021】
図1の反射スペクトル測定の場合と図2の透過スペクトル測定の場合と対比すると、平面鏡8からの平面鏡9までの光路と光学系が異なる。その他の構成は同じである。つまり、図1の一点鎖線で囲んだ光学系100Hと、図2の一点鎖線で囲んだ光学系200Tとは異なる光学系となる。
【0022】
図3は、本発明の実施の形態によるテラヘルツ分光装置の外観を示す斜視図である。反射スペクトル測定の場合は、試料Sは容器20の上面(位置A)に水平に設置され、透過スペクトル測定の場合は、試料Sは容器20の手前側のサンプルホルダ(位置B)に鉛直に設置される。カバー21を開けると、試料Sが平面鏡18、19に挟まれて設置されているのが見える。
【0023】
本実施の形態によるテラヘルツ分光装置は、試料Sとその周辺部を除き、反射測定光学系と透過測定光学系が密閉容器20の中に収納されている。容器20内は真空に保持されていても所定のガスが充填されていてもよい。このように構成することにより、試料の交換作業の容易性は保ったまま、大気中の塵埃、水分等が光学系に悪影響を及ぼすことを防止できる。
【0024】
次に、反射測定光学系と透過測定光学系の2つの異なる光学系を切換える機構について説明する。
【0025】
図1の反射スペクトル測定の場合、平面鏡8は、テラヘルツパルス光L4を+Z方向に反射させ、試料Sから−Z方向に進むテラヘルツパルス光L5が平面鏡9に入射する。このとき、平面鏡8から試料Sまでの光軸の光路長をr1、試料Sから平面鏡9までの光軸の光路長をr2とすると、平面鏡8から平面鏡9までの光軸の光路長は、(r1+r2)となる。
【0026】
一方、図2の透過スペクトル測定の場合、平面鏡8は、テラヘルツパルス光L4を−Y方向に反射させ、平面鏡18は平面鏡8からの反射光を試料Sに向けて反射する。試料Sを透過した透過光は平面鏡19で反射して、平面鏡19から+Y方向に進むテラヘルツパルス光L5が平面鏡9に入射する。このとき、平面鏡8から平面鏡18までの光軸の光路長をt1、平面鏡18から平面鏡19までの光軸の光路長をt2、平面鏡19から平面鏡9までの光軸の光路長をt3とすると、平面鏡8から平面鏡9までの光軸の光路長は、(t1+t2+t3)となる。
【0027】
反射スペクトル測定と透過スペクトル測定の2つの異なる光学系を切り換えて使用できるようにするには、平面鏡8から平面鏡9までの光路長を略等しくする必要がある。すなわち、r1+r2≒t1+t2+t3とする必要がある。さらに、パルス光L3の光路長と、パルス光L2、テラヘルツパルス光L4およびテラヘルツパルス光L5の光路長の和とを略等しくする必要がある。このように構成することによって、反射測定光学系と透過測定光学系を切り換えて使用することができる。
【0028】
なお、平面鏡8から平面鏡9までの光路長を略等しくしなくとも、パルス光L3の光路長を変化させることによっても本発明の目的は達成できる。すなわち、パルス光L2、テラヘルツパルス光L4およびテラヘルツパルス光L5の光路長の和と略等しくなるように、可動鏡14aの移動量を調節してパルス光L3の光路長を変化させればよい。しかし、このような調節法を用いるには、移動距離の長いステージが必要になり、装置の大型化を招く。
【0029】
本実施の形態では、平面鏡8および平面鏡9を回転させることにより、r1+r2≒t1+t2+t3となるように構成されている。ストローク長の短いステージを採用可能としている。
【0030】
図4は、平面鏡と回転機構を示す部分斜視図である。図4では、反射スペクトル測定と透過スペクトル測定の2つの異なる光学系が1つの図面上に表現されている。また、光路は簡単のために光軸のみで表す。
【0031】
反射スペクトル測定の場合の平面鏡8および平面鏡9の回転位置は、位置Rで示され、透過スペクトル測定の場合の平面鏡8および平面鏡9の回転位置は、位置Tで示される。反射スペクトル測定の場合の試料Sの位置は、位置Aで示され、透過スペクトル測定の場合の試料Sの位置は、位置Bで示される。なお、以下の説明では便宜上これらを8R,9R,8T,9T,SA,SBで示す。
【0032】
反射スペクトル測定の場合、テラヘルツパルス光L4は、平面鏡8R(位置R)、試料SA(位置A)、平面鏡9R(位置R)の順に進み、テラヘルツパルス光L5として曲面鏡10へ向かう。一方、透過スペクトル測定の場合、テラヘルツパルス光L4は、平面鏡8T(位置T)、平面鏡18、試料SB(位置B)、平面鏡19、平面鏡9T(位置T)の順に進み、テラヘルツパルス光L5として曲面鏡10へ向かう。
【0033】
光学系の切り換え、すなわち平面鏡8および平面鏡9の回転は、回転軸31、複数の傘歯車32〜35および2本の連結軸36,37から成る回転切換機構30によって行われる。回転軸31には、主傘歯車32が取り付けられ、主傘歯車32は、傘歯車33、34と係合し、傘歯車34は、傘歯車35と係合している。連結軸36の一端は、平面鏡8の裏面の重心から所定距離偏心した位置に固定され、連結軸36の他端には傘歯車33が固定されている。連結軸37の一端は、平面鏡9の裏面の重心から所定距離偏心した位置に固定され、連結軸37の他端には傘歯車35が固定されている。
【0034】
反射スペクトル測定の場合は、回転軸31を回転させて、平面鏡8および平面鏡9を位置Rに設定する。位置Rで、平面鏡8および平面鏡9はそれぞれストッパ38,39にて保持されて位置決めされる。
【0035】
本実施の形態では、平面鏡8(位置R)から試料S(位置A)に進むテラヘルツパルス光L4をLr1とすると、Lr1の入射角度は、XZ平面上のZ軸に対して13°に設定される。そのためには、平面鏡8(位置R)の反射面は、XZ平面に垂直でXY平面となす角度が38.5°となるように回転位置を設定すればよい。平面鏡8(位置R)と平面鏡9(位置R)を試料S(位置A)に対して対称に配置するならば、試料S(位置A)から平面鏡9(位置R)に進む光Lr2の角度も、XZ平面上のZ軸に対して13°となる。
【0036】
一方、透過スペクトル測定の場合は、回転軸31を回転させて、平面鏡8および平面鏡9を位置Tに設定する。位置Tで、平面鏡8および平面鏡9はストッパ40,41にて保持されて位置決めされる。
【0037】
本実施の形態では、平面鏡8(位置T)から平面鏡18に進むテラヘルツパルス光L4をLt1とすると、Lt1の角度は、XY平面上のY軸に対して0°に設定される。そのためには平面鏡8(位置T)の反射面は、XY平面に垂直でXZ平面となす角度が45°となるように回転位置を設定すればよい。平面鏡18から平面鏡19に進む光をLt2とすると、Lt2はX軸と平行となる。平面鏡8(位置T)と平面鏡9(位置T)を試料S(位置B)に対して対称に配置するならば、平面鏡19から平面鏡9(位置T)に進む光Lt3の角度も、XY平面上のY軸に対して0°となる。
【0038】
光Lr1の角度をXZ平面上のZ軸に対して13°に設定し、且つ、光Lt1の角度をXY平面上のY軸に対して0°に設定するためには、連結軸36の軸方向が平面鏡8の反射面に対して45°、かつ、XY平面に対して6.5°となるように、連結軸36を平面鏡8の背面に固定すれば良い。平面鏡8と平面鏡9を試料Sに対して対称に配置するならば、連結軸37も同様の角度で平面鏡9の背面に固定すればよい。
【0039】
上述したとおり、連結軸36、37は、それぞれ平面鏡8、9の背面に平面鏡の中心(重心)から少し離れた位置に固定されている。すなわち、固定位置を平面鏡の重心位置から若干ずらす。そして、傘歯車32〜35のバックラッシュ(遊び)を大きくとる。これにより、反射スペクトル測定と透過スペクトル測定の切換えの際に、重力の作用により、平面鏡8、9がストッパ38〜41で保持されるから位置決めの再現性が向上する。
【0040】
以上の配置を図5によって検証する。図5は、反射スペクトル測定と透過スペクトル測定において、平面鏡8から平面鏡9までの光路長を示す光路図である。光路は簡単のために光軸のみで表す。反射スペクトル測定の場合の光路と透過スペクトル測定の場合の光路は、対比し易いように同一面上に示す。
【0041】
反射スペクトル測定の光路は、平面鏡8の反射地点a、試料Sの存在地点b、平面鏡9への入射地点cを結ぶ線である。透過スペクトル測定の光路は、平面鏡8の反射地点a、平面鏡18の反射地点d、試料Sの存在地点e、平面鏡19の反射地点f、平面鏡9への入射地点cを結ぶ線である。また、光Lr1、Lr2の光路長は、それぞれr1、r2で表し、光Lt1、Lt2、Lt3の光路長は、それぞれt1、t2、t3で表す。
【0042】
Z軸に対して、線分abのなす角度は13°、線分adのなす角度は0°と設定されているので、試料Sの位置eを適切に定めることによって、反射スペクトル測定の光路長(r1+r2)と透過スペクトル測定の光路長(t1+t2+t3)を等しくすることができる。
【0043】
以上述べたように、r1+r2≒t1+t2+t3とすることができれば、Z軸に対する反射角度やそれぞれの線分の長さは本実施の形態に限るものではない。
【0044】
本発明によるテラヘルツ光測定装置は、テラヘルツパルス光を試料に照射し、その試料から反射した反射光を検出する反射測定光学系と、テラヘルツパルス光を試料に照射し、その試料を透過した透過光を検出する透過測定光学系と、反射測定光学系と透過測定光学系を切換える切換機構とを備えるものであれば、その構成は実施の形態に限定されない。
【0045】
たとえば、平面鏡8および平面鏡9を回転させるための回転機構は、手動で操作することもできるが、自動で操作すれば、オペレーターの負担が軽減される。自動操作の場合は、試料Sが反射測定の位置にセットされたか、透過測定の位置にセットされたかを光学センサー等で検知し、その信号を制御装置に送り、制御装置が切換機構を作動させるようにすればよい。また、平面鏡8,9を連動して回転させるようにしたが、個別に駆動してもよい。
【0046】
さらに、傘歯車32〜35に大きなバックラッシュを設け、回転軸36,37を平面鏡8,9の重心位置から偏心する位置に固定し、重力で平面鏡8,9をストッパ38〜41に当接して位置決めした。しかし、このような位置決め機構は本発明の必須な構成ではない。平面鏡8,9の位置を電気的、あるいは磁気的に検出して位置決めしてもよい。
【0047】
あるいは、平面鏡8および9を共有せずに光学系を切換えるようにしてもよい。たとえば、反射測定光学系の平面鏡8および9を含む光学系、すなわち、図1の一点鎖線内の光学系と、透過測定光学系の平面鏡8、9、18および19を含む光学系、すなわち、図2の一点鎖線内の光学系とを別々にユニット化し、ユニットの交換により、光学系を切換えてもよい。この場合、平面鏡8,9は共有化されない。
【0048】
より具体的には、反射測定光学系100の一部を収容する反射測定光学系ユニット100Hと、透過測定光学系200の一部を収容する透過測定光学系ユニット200Tと、それらのユニットを択一的に装置本体に着脱する着脱機構300a〜300d,301a〜301dとを設ければよい。すなわち、装置本体には、ユニット100H、200Tを設置する凹部350が設けられ、凹部350の対向面には、テラヘルツ光の光路302a,302bが開口されている。光路302a,302bの開口の両側にはレール301a〜301dが設けられ、ユニット100H,200Tには、レール300a〜300dと嵌合する溝301a〜301dが設けられている。溝301a〜301dの間に光路303a,303bが開口されている。このような構成によれば、反射測定光学系にて計測する際は、ユニット200Tを矢印方向に移動させて装置本体から取り外し、ユニット100Hを矢印方向に移動させて装置本体に装着する。一方、透過測定光学系にて計測する際は、ユニット100Hを矢印方向に移動させて装置本体から取り外し、ユニット200Tを矢印方向に移動させて装置本体に装着する。
【0049】
【発明の効果】
以上説明したように、本発明によれば、1台の分光装置で反射スペクトル測定と透過スペクトル測定が可能になる。そして、反射測定光学系と透過測定光学系の切換を行っても、テラヘルツ光の通る光路長が変化しないため、テラヘルツ光測定のための機構や処理回路をまったく同一にすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るテラヘルツ分光装置であり、反射スペクトル測定の場合の概略構成図である。
【図2】本発明の実施の形態に係るテラヘルツ分光装置であり、透過スペクトル測定の場合の概略構成図である。
【図3】本発明の実施の形態に係るテラヘルツ分光装置の外観斜視図である。
【図4】本発明の実施の形態に係る平面鏡と回転機構を示す部分斜視図である。
【図5】本発明の実施の形態に係る光学系の光路長を示す光路図である。
【図6】本発明の実施の形態に係る反射測定光学系と透過測定光学系のユニットを説明する図である。
【符号の説明】
1:レーザー光源 5:テラヘルツ光発生素子
8,9,18,19:平面鏡 12:テラヘルツ光検出素子(検出器)
30:回転切換機構 100:反射測定光学系
200:透過測定光学系 S:試料
L1,L2,L3:パルス光 L4,L5:テラヘルツパルス光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a time-series conversion terahertz spectroscopy device using terahertz pulse light.
[0002]
[Prior art]
In a conventional time-series conversion terahertz spectrometer, a pulse light from a laser light source is split into two, one of which is guided to a terahertz light generating element as pump light, and the other is guided to a detector as probe light. Terahertz pulse light generated from the terahertz light generating element is incident on the sample, and light emitted from the sample is incident on a detector (a terahertz light detecting element) as detection light. An optical system is used both when the terahertz pulse light is incident on the sample and when the light emitted from the sample is guided to the detector. Depending on what characteristics of the sample you want to know, there are cases where the reflection spectrum is measured by detecting the reflected light reflected on the sample surface, and cases where the transmission spectrum is measured by detecting the transmitted light transmitted through the sample .
[0003]
[Problems to be solved by the invention]
The positional relationship between the sample and the optical system differs between the case where the reflection spectrum is measured and the case where the transmission spectrum is measured, and the optical system also differs. Conventionally, dedicated spectroscopes have been used, respectively, but installing two spectroscopes required a large amount of cost and a large space.
[0004]
The present invention provides a terahertz spectrometer capable of both reflection spectrum measurement and transmission spectrum measurement.
[0005]
[Means for Solving the Problems]
INDUSTRIAL APPLICABILITY The present invention is applied to a terahertz spectrometer having a detection optical system for irradiating a sample with terahertz pulsed light and detecting light from the sample, and measuring the detection light by time-series conversion terahertz spectroscopy. The present invention has the following features. The detection optical system irradiates the sample with terahertz pulsed light and guides the reflected light reflected from the sample to the terahertz light detection unit, and the transmitted light that irradiates the sample with terahertz pulsed light and transmits through the sample And a switching mechanism for selectively switching between the reflection measurement optical system and the transmission measurement optical system. Further, the optical path length of the terahertz light is made equal in both the case where the reflection measurement optical system is selected by the switching mechanism and the case where the transmission type measurement optical system is selected.
The reflection measurement optical system and the transmission measurement optical system share at least a pair of plane mirrors for converting the optical path, and switch the reflection measurement optical system and the transmission measurement optical system by changing the attitude of the pair of plane mirrors by a switching mechanism. Is preferable. In this case, the switching mechanism can be composed of a pair of connecting shafts that respectively drive the pair of plane mirrors, and a drive system that rotates the pair of driving shafts in synchronization. Further, in both cases when the reflection measuring optical system is selected by the switching mechanism and when the transmission measuring optical system is selected, the pair of connection axes are connected to the light of the terahertz pulse light so that the optical path length of the terahertz pulse light becomes equal. It is inclined at a predetermined angle with respect to the axis.
Further, the drive system has a gear device for transmitting a rotational force to a pair of connecting shafts. The gear device has a predetermined amount of backlash, and eccentrically fixes the pair of connecting shafts from the center of gravity of the plane mirror. When the reflection measurement optical system is selected by the switching mechanism, the shared plane mirror abuts on the first stopper due to gravity to define the reflection measurement position, and when the transmission measurement optical system is selected, the shared plane mirror is It is preferable that the reflection measurement position is defined by contacting the second stopper.
In such a terahertz spectrometer, a detection unit that detects a sample set at a position for reflection measurement or a position for transmission measurement, and a switching mechanism that is driven and controlled based on a detection result by the detection unit, are connected to the reflection measurement optical system and the transmission system. And a control device for switching between the measurement optical system and the measurement optical system.
The reflection measurement optical system and the transmission measurement optical system are preferably housed in a closed container except for at least the sample.
The switching mechanism may be configured as follows. A reflection measurement optical system unit accommodating a part of the reflection measurement optical system, a transmission measurement optical system unit accommodating a part of the transmission measurement optical system, and an attachment / detachment mechanism for selectively attaching or detaching these units to / from the apparatus main body. including.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a terahertz spectrometer according to the present invention will be described with reference to the drawings.
[0007]
This terahertz spectrometer simply switches the optical system with one device, detects reflected light reflected on the sample surface and measures the reflected spectrum, or detects transmitted light transmitted through the sample and changes the transmitted spectrum. It can also be measured. The optical path length from the terahertz light generating element 5 to the terahertz pulsed light detecting element 12 is configured to be substantially equal in both the case of the reflection spectrum measurement and the case of the transmission spectrum measurement.
[0008]
FIG. 1 and FIG. 2 are schematic configuration diagrams schematically showing a terahertz spectroscopic device according to an embodiment. FIG. 1 is an apparatus configuration diagram in the case of reflection spectrum measurement, and FIG. 2 is an apparatus configuration diagram in the case of transmission spectrum measurement. Originally, these two configuration diagrams should be shown together as one, but they are shown separately in two to avoid complicating the drawings.
[0009]
In the configuration diagram of FIG. 1, a plane parallel to the plane of the paper is an XY plane, and a direction perpendicular to the plane of the paper is a Z axis. However, for convenience of drawing, only the area surrounded by the dashed line is defined as a plane parallel to the plane of the paper as the XZ plane and a direction perpendicular to the plane of the paper as the Y axis. That is, a state in which side views (areas surrounded by alternate long and short dash lines) are mixed in the plan view is shown.
[0010]
In FIG. 1, a pulse light L1 emitted from a laser light source 1 is split by a beam splitter 2 into two pulse lights L2 and L3. As the laser light source 1, for example, a femtosecond pulse laser is used. The pulse light L1 is linearly polarized pulse light having a center wavelength of about 780 to 800 nm in the near infrared region, a repetition period on the order of several kHz to 100 MHz, and a pulse width of about 10 to 150 fs.
[0011]
One of the pulse lights L2 split by the beam splitter 2 becomes pump light (excitation light) for exciting the terahertz light generation element 5 to generate terahertz pulse light. This pump light L <b> 2 is guided to the terahertz light generation element 5 via the plane reflecting mirror 3 and the condenser lens 4. As a result, the terahertz light generating element 5 is excited to emit the terahertz pulse light L4. The terahertz pulse light L4 is light in a frequency range from approximately 0.01 × 10 12 to 100 × 10 12 Hertz. The terahertz pulse light L4 reaches the plane mirror 8 via the curved mirrors 6 and 7. As the curved mirrors 6 and 7, for example, a parabolic mirror or an elliptical mirror is used.
[0012]
Here, since the plane mirror 8 is located in an area surrounded by a dashed line, its reflection surface is a plane perpendicular to the XZ plane, and reflects light incident on the plane mirror 8 upward (in the + Z direction). Therefore, the terahertz pulse light L4 travels upward and enters the lower surface of the sample S.
[0013]
The terahertz pulse light L5 reflected on the surface of the sample S is light including information on characteristics of the sample S. The terahertz pulse light L5 travels downward (−Z direction), and enters the terahertz light detection element 12 through the plane mirror 9, the curved mirrors 10, 11, and the like. Since the plane mirror 9 is located in the area surrounded by the dashed line, its reflection surface is a surface perpendicular to the XZ plane.
[0014]
When the terahertz pulse light L5 is incident on the terahertz light detection element 12, an electric field is generated. When this part is irradiated with the probe light L3, a photocurrent according to the electric field strength flows, and by measuring this, the electrical characteristics and impurity concentration of the sample can be obtained. The probe light L3 enters the terahertz light detection element 12 as follows.
[0015]
The other pulse light L3 split by the beam splitter 2 becomes probe light for detecting the terahertz pulse light L5. The pulse light L3 (probe light L3) is incident on the terahertz light detection element 12 via the optical system 14, which is a combination of a movable movable mirror 14a and a fixed plane reflecting mirror 14b, and plane reflecting mirrors 15, 16. The optical system 14 changes the optical path length of the probe light L3 according to the amount of movement of the movable mirror 14a by moving the movable mirror 14a formed by combining two plane reflecting mirrors as shown by the arrow in the figure. As a result, the time for the probe light L3 to reach the terahertz light detection element 12 via the condenser lens 15 is delayed. Then, by observing the light detected by the terahertz light detection element 12 while changing the delay time by the movable mirror 14a, time-series terahertz spectroscopy becomes possible. The reflection measurement optical system 100 is an area surrounded by a broken line.
[0016]
As described above, the terahertz pulse light detecting element 12 detects a photocurrent proportional to the electric field intensity of the received terahertz pulse light, and sends the detected photocurrent to a control / calculation device (not shown). Then, the control / arithmetic unit performs a time series conversion on the detection signal, and executes an arithmetic operation according to a desired characteristic of the sample. The obtained data is displayed on a display unit such as a liquid crystal display or a CRT.
[0017]
Next, an apparatus configuration diagram in the case of transmission spectrum measurement will be described. In the configuration diagram of FIG. 2, a plane parallel to the plane of the paper is an XY plane, and a direction perpendicular to the plane of the paper is a Z-axis. In FIG. 2, the same or corresponding elements as those in FIG. 1 are denoted by the same reference numerals.
[0018]
In FIG. 2, a pulse light L1 emitted from a laser light source 1 is split by a beam splitter 2 into two pulse lights L2 and L3. One of the pulse lights L2 split by the beam splitter 2 becomes pump light (excitation light) for exciting the terahertz light generation element 5 to generate terahertz pulse light. The pump light L2 is guided to the terahertz light generation element 5 via the plane reflecting mirror 3 and the condenser lens 4. The terahertz pulse light L4 reaches the plane mirror 8 via the curved mirrors 6 and 7. The optical path up to this point is the same as in FIG. The reflecting surface of the plane mirror 8 is perpendicular to the XY plane, which is different from the state shown in FIG. The incident light is reflected in the −Y direction by the reflecting surface of the plane mirror 8.
[0019]
In FIG. 2, the terahertz pulse light L4 reflected by the plane mirror 8 is further bent in the optical path by the plane mirror 18 and enters the sample S. The optical path of the terahertz pulse light L5 transmitted through the sample S is bent by the plane mirror 19 and enters the plane mirror 9. The reflecting surface of the plane mirror 9 is perpendicular to the XY plane, which is different from the state shown in FIG. The terahertz pulse light L5 reflected by the plane mirror 9 enters the terahertz light detection element 12 through the same optical path as in FIG. 1, that is, through the curved mirrors 10 and 11.
[0020]
The optical path on which the other pulsed light L3 split by the beam splitter 2 enters the terahertz light detection element 12 is the same as that in FIG. The transmission measurement optical system 200 is an area surrounded by a broken line.
[0021]
The optical path from the plane mirror 8 to the plane mirror 9 and the optical system are different from the case of the reflection spectrum measurement of FIG. 1 and the case of the transmission spectrum measurement of FIG. Other configurations are the same. In other words, the optical system 100H surrounded by the dashed line in FIG. 1 is different from the optical system 200T surrounded by the dashed line in FIG.
[0022]
FIG. 3 is a perspective view showing the appearance of the terahertz spectroscopy device according to the embodiment of the present invention. In the case of reflection spectrum measurement, the sample S is placed horizontally on the upper surface (position A) of the container 20, and in the case of transmission spectrum measurement, the sample S is placed vertically in the sample holder (position B) on the near side of the container 20. Is done. When the cover 21 is opened, it can be seen that the sample S is placed between the plane mirrors 18 and 19.
[0023]
In the terahertz spectrometer according to the present embodiment, the reflection measurement optical system and the transmission measurement optical system are housed in the closed container 20 except for the sample S and its peripheral part. The inside of the container 20 may be kept in a vacuum or filled with a predetermined gas. With this configuration, it is possible to prevent dust and moisture in the air from adversely affecting the optical system while maintaining the ease of sample replacement.
[0024]
Next, a mechanism for switching between two different optical systems, a reflection measurement optical system and a transmission measurement optical system, will be described.
[0025]
In the case of the reflection spectrum measurement in FIG. 1, the plane mirror 8 reflects the terahertz pulse light L4 in the + Z direction, and the terahertz pulse light L5 traveling from the sample S in the −Z direction enters the plane mirror 9. At this time, if the optical path length of the optical axis from the plane mirror 8 to the sample S is r1, and the optical path length of the optical axis from the sample S to the plane mirror 9 is r2, the optical path length of the optical axis from the plane mirror 8 to the plane mirror 9 is ( r1 + r2).
[0026]
On the other hand, in the case of the transmission spectrum measurement of FIG. 2, the plane mirror 8 reflects the terahertz pulse light L4 in the −Y direction, and the plane mirror 18 reflects the reflected light from the plane mirror 8 toward the sample S. The transmitted light transmitted through the sample S is reflected by the plane mirror 19, and the terahertz pulse light L5 traveling in the + Y direction from the plane mirror 19 is incident on the plane mirror 9. At this time, if the optical path length of the optical axis from the plane mirror 8 to the plane mirror 18 is t1, the optical path length of the optical axis from the plane mirror 18 to the plane mirror 19 is t2, and the optical path length of the optical axis from the plane mirror 19 to the plane mirror 9 is t3, The optical path length of the optical axis from the plane mirror 8 to the plane mirror 9 is (t1 + t2 + t3).
[0027]
In order to be able to use two different optical systems for reflection spectrum measurement and transmission spectrum measurement by switching, the optical path length from the plane mirror 8 to the plane mirror 9 needs to be substantially equal. That is, it is necessary to set r1 + r2 ≒ t1 + t2 + t3. Further, it is necessary to make the optical path length of the pulse light L3 substantially equal to the sum of the optical path lengths of the pulse light L2, the terahertz pulse light L4, and the terahertz pulse light L5. With this configuration, the reflection measurement optical system and the transmission measurement optical system can be switched and used.
[0028]
Note that the object of the present invention can be achieved by changing the optical path length of the pulsed light L3 without making the optical path lengths from the plane mirror 8 to the plane mirror 9 substantially equal. That is, the amount of movement of the movable mirror 14a may be adjusted to change the optical path length of the pulsed light L3 so as to be substantially equal to the sum of the optical path lengths of the pulsed light L2, the terahertz pulsed light L4, and the terahertz pulsed light L5. However, using such an adjustment method requires a stage having a long moving distance, which leads to an increase in the size of the apparatus.
[0029]
In the present embodiment, the plane mirror 8 and the plane mirror 9 are rotated so that r1 + r2 ≒ t1 + t2 + t3. A stage with a short stroke length can be adopted.
[0030]
FIG. 4 is a partial perspective view showing the plane mirror and the rotation mechanism. In FIG. 4, two different optical systems for reflection spectrum measurement and transmission spectrum measurement are represented on one drawing. The optical path is represented only by the optical axis for simplicity.
[0031]
The rotational position of the plane mirror 8 and the plane mirror 9 for the reflection spectrum measurement is indicated by a position R, and the rotational position of the plane mirror 8 and the plane mirror 9 for the transmission spectrum measurement is indicated by a position T. The position of the sample S in the case of the reflection spectrum measurement is indicated by a position A, and the position of the sample S in the case of the transmission spectrum measurement is indicated by a position B. In the following description, these are indicated by 8R, 9R, 8T, 9T, SA, and SB for convenience.
[0032]
In the case of the reflection spectrum measurement, the terahertz pulse light L4 proceeds in the order of the plane mirror 8R (position R), the sample SA (position A), and the plane mirror 9R (position R), and travels to the curved mirror 10 as the terahertz pulse light L5. On the other hand, in the case of transmission spectrum measurement, the terahertz pulse light L4 travels in the order of the plane mirror 8T (position T), the plane mirror 18, the sample SB (position B), the plane mirror 19, and the plane mirror 9T (position T), and becomes a terahertz pulse light L5. Head to mirror 10.
[0033]
Switching of the optical system, that is, rotation of the plane mirror 8 and the plane mirror 9 is performed by a rotation switching mechanism 30 including a rotating shaft 31, a plurality of bevel gears 32 to 35, and two connecting shafts 36 and 37. A main bevel gear 32 is attached to the rotating shaft 31. The main bevel gear 32 is engaged with bevel gears 33 and 34, and the bevel gear 34 is engaged with a bevel gear 35. One end of the connecting shaft 36 is fixed at a position eccentric by a predetermined distance from the center of gravity of the rear surface of the plane mirror 8, and a bevel gear 33 is fixed to the other end of the connecting shaft 36. One end of the connecting shaft 37 is fixed at a position eccentric from the center of gravity of the rear surface of the plane mirror 9 by a predetermined distance, and a bevel gear 35 is fixed to the other end of the connecting shaft 37.
[0034]
In the case of the reflection spectrum measurement, the plane mirror 8 and the plane mirror 9 are set at the position R by rotating the rotating shaft 31. At the position R, the plane mirror 8 and the plane mirror 9 are held and positioned by stoppers 38 and 39, respectively.
[0035]
In the present embodiment, assuming that the terahertz pulse light L4 traveling from the plane mirror 8 (position R) to the sample S (position A) is Lr1, the incident angle of Lr1 is set to 13 ° with respect to the Z axis on the XZ plane. You. For this purpose, the rotational position of the reflecting surface of the plane mirror 8 (position R) may be set so that the angle formed by the plane perpendicular to the XZ plane and the XY plane is 38.5 °. If the plane mirror 8 (position R) and the plane mirror 9 (position R) are arranged symmetrically with respect to the sample S (position A), the angle of the light Lr2 traveling from the sample S (position A) to the plane mirror 9 (position R) is also , With respect to the Z axis on the XZ plane.
[0036]
On the other hand, in the case of the transmission spectrum measurement, the plane mirror 8 and the plane mirror 9 are set at the position T by rotating the rotation shaft 31. At the position T, the plane mirror 8 and the plane mirror 9 are held and positioned by the stoppers 40 and 41.
[0037]
In the present embodiment, assuming that the terahertz pulse light L4 traveling from the plane mirror 8 (position T) to the plane mirror 18 is Lt1, the angle of Lt1 is set to 0 ° with respect to the Y axis on the XY plane. For this purpose, the rotational position of the reflecting surface of the plane mirror 8 (position T) may be set so that the angle between the reflecting surface perpendicular to the XY plane and the XZ plane is 45 °. Assuming that light traveling from the plane mirror 18 to the plane mirror 19 is Lt2, Lt2 is parallel to the X axis. If the plane mirror 8 (position T) and the plane mirror 9 (position T) are arranged symmetrically with respect to the sample S (position B), the angle of the light Lt3 traveling from the plane mirror 19 to the plane mirror 9 (position T) is also on the XY plane. 0 ° with respect to the Y axis.
[0038]
To set the angle of the light Lr1 at 13 ° with respect to the Z axis on the XZ plane and set the angle of the light Lt1 at 0 ° with respect to the Y axis on the XY plane, The connecting shaft 36 may be fixed to the rear surface of the plane mirror 8 so that the direction is 45 ° with respect to the reflection surface of the plane mirror 8 and 6.5 ° with respect to the XY plane. If the plane mirror 8 and the plane mirror 9 are arranged symmetrically with respect to the sample S, the connecting shaft 37 may be fixed to the rear surface of the plane mirror 9 at the same angle.
[0039]
As described above, the connection shafts 36 and 37 are fixed to the rear surfaces of the plane mirrors 8 and 9, respectively, at positions slightly away from the center (center of gravity) of the plane mirrors. That is, the fixed position is slightly shifted from the center of gravity of the plane mirror. The backlash (play) of the bevel gears 32 to 35 is increased. Thereby, when switching between the reflection spectrum measurement and the transmission spectrum measurement, the plane mirrors 8 and 9 are held by the stoppers 38 to 41 by the action of gravity, so that the reproducibility of positioning is improved.
[0040]
The above arrangement will be verified with reference to FIG. FIG. 5 is an optical path diagram showing the optical path length from the plane mirror 8 to the plane mirror 9 in the reflection spectrum measurement and the transmission spectrum measurement. The optical path is represented only by the optical axis for simplicity. The optical path for the measurement of the reflection spectrum and the optical path for the measurement of the transmission spectrum are shown on the same plane for easy comparison.
[0041]
The optical path of the reflection spectrum measurement is a line connecting the reflection point a of the plane mirror 8, the existing point b of the sample S, and the point of incidence c on the plane mirror 9. The optical path of the transmission spectrum measurement is a line connecting the reflection point a of the plane mirror 8, the reflection point d of the plane mirror 18, the existence point e of the sample S, the reflection point f of the plane mirror 19, and the point of incidence c on the plane mirror 9. The optical path lengths of the lights Lr1 and Lr2 are represented by r1 and r2, respectively, and the optical path lengths of the lights Lt1, Lt2 and Lt3 are represented by t1, t2 and t3, respectively.
[0042]
Since the angle formed by the line segment ab and the angle formed by the line segment ad are set to 13 ° and 0 ° with respect to the Z axis, the optical path length of the reflection spectrum measurement can be obtained by appropriately setting the position e of the sample S. (R1 + r2) and the optical path length (t1 + t2 + t3) of the transmission spectrum measurement can be made equal.
[0043]
As described above, if r1 + r2Zt1 + t2 + t3 can be satisfied, the reflection angle with respect to the Z axis and the length of each line segment are not limited to the present embodiment.
[0044]
The terahertz light measurement device according to the present invention includes a reflection measurement optical system that irradiates a sample with terahertz pulse light and detects reflected light reflected from the sample, and a transmitted light that irradiates the sample with terahertz pulse light and transmits the sample. The configuration is not limited to the embodiment as long as it has a transmission measurement optical system for detecting the transmission and a switching mechanism for switching between the reflection measurement optical system and the transmission measurement optical system.
[0045]
For example, the rotation mechanism for rotating the plane mirror 8 and the plane mirror 9 can be manually operated, but if operated automatically, the burden on the operator is reduced. In the case of the automatic operation, whether the sample S is set at the position of the reflection measurement or the position of the transmission measurement is detected by an optical sensor or the like, the signal is sent to the control device, and the control device operates the switching mechanism. What should I do? Although the plane mirrors 8 and 9 are rotated in conjunction with each other, they may be driven individually.
[0046]
Further, a large backlash is provided on the bevel gears 32 to 35, the rotating shafts 36 and 37 are fixed at positions eccentric from the centers of gravity of the plane mirrors 8 and 9, and the plane mirrors 8 and 9 are brought into contact with the stoppers 38 to 41 by gravity. Positioned. However, such a positioning mechanism is not an essential component of the present invention. The positions of the plane mirrors 8 and 9 may be electrically or magnetically detected and positioned.
[0047]
Alternatively, the optical system may be switched without sharing the plane mirrors 8 and 9. For example, the optical system including the plane mirrors 8 and 9 of the reflection measuring optical system, that is, the optical system within the dashed line in FIG. 1 and the optical system including the plane mirrors 8, 9, 18 and 19 of the transmission measuring optical system, that is, FIG. The optical systems within the two-dot chain line may be separately unitized, and the optical systems may be switched by exchanging the units. In this case, the plane mirrors 8 and 9 are not shared.
[0048]
More specifically, a reflection measurement optical system unit 100H that accommodates a part of the reflection measurement optical system 100, a transmission measurement optical system unit 200T that accommodates a part of the transmission measurement optical system 200, and one of these units is selected. What is necessary is just to provide the attachment / detachment mechanism 300a-300d and 301a-301d which are attached to and detached from the apparatus main body. That is, the device main body is provided with a concave portion 350 in which the units 100H and 200T are installed, and optical surfaces 302a and 302b of terahertz light are opened on a surface facing the concave portion 350. Rails 301a to 301d are provided on both sides of the openings of the optical paths 302a and 302b, and the units 100H and 200T are provided with grooves 301a to 301d to be fitted with the rails 300a to 300d. Optical paths 303a and 303b are opened between the grooves 301a to 301d. According to such a configuration, when measurement is performed by the reflection measurement optical system, the unit 200T is moved in the direction of the arrow to remove it from the apparatus main body, and the unit 100H is moved in the direction of the arrow to be mounted on the apparatus main body. On the other hand, when measuring with the transmission measurement optical system, the unit 100H is moved in the direction of the arrow to remove it from the apparatus main body, and the unit 200T is moved in the direction of the arrow to be mounted on the apparatus main body.
[0049]
【The invention's effect】
As described above, according to the present invention, reflection spectrum measurement and transmission spectrum measurement can be performed with one spectrometer. Even if the reflection measurement optical system and the transmission measurement optical system are switched, the optical path length of the terahertz light does not change, so that the mechanism and the processing circuit for the terahertz light measurement can be made exactly the same.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a terahertz spectroscopic device according to an embodiment of the present invention, in the case of measuring a reflection spectrum.
FIG. 2 is a schematic configuration diagram of a terahertz spectroscopic device according to an embodiment of the present invention, in the case of transmission spectrum measurement.
FIG. 3 is an external perspective view of the terahertz spectrometer according to the embodiment of the present invention.
FIG. 4 is a partial perspective view showing a plane mirror and a rotation mechanism according to the embodiment of the present invention.
FIG. 5 is an optical path diagram showing an optical path length of the optical system according to the embodiment of the present invention.
FIG. 6 is a diagram illustrating units of a reflection measurement optical system and a transmission measurement optical system according to an embodiment of the present invention.
[Explanation of symbols]
1: laser light source 5: terahertz light generating element 8, 9, 18, 19: plane mirror 12: terahertz light detecting element (detector)
30: rotation switching mechanism 100: reflection measurement optical system 200: transmission measurement optical system S: sample L1, L2, L3: pulse light L4, L5: terahertz pulse light

Claims (8)

テラヘルツパルス光を試料に照射し前記試料からの光を検出する検出光学系を有し、時系列変換テラヘルツ分光により検出光を測定するテラヘルツ分光装置において、
前記検出光学系は、
前記テラヘルツパルス光を試料に照射し、その試料から反射した反射光をテラヘルツ光検出部へ導く反射測定光学系と、
前記テラヘルツパルス光を試料に照射し、その試料を透過した透過光をテラヘルツ光検出部へ導く透過測定光学系と、
前記反射測定光学系と前記透過測定光学系を択一的に切換える切換機構とを備え、
前記切換機構により前記反射測定光学系を選択した場合、および前記透過型測定光学系を選択した場合のいずれの場合もテラヘルツ光の光路長が等しくなることを特徴とするテラヘルツ分光装置。
A terahertz spectrometer that has a detection optical system that irradiates a sample with terahertz pulsed light and detects light from the sample, and measures detection light by time-series conversion terahertz spectroscopy.
The detection optical system includes:
A reflection measurement optical system that irradiates the sample with the terahertz pulse light and guides the reflected light reflected from the sample to a terahertz light detection unit,
A transmission measurement optical system that irradiates the sample with the terahertz pulse light and guides the transmitted light transmitted through the sample to a terahertz light detection unit;
A switching mechanism for selectively switching the reflection measurement optical system and the transmission measurement optical system,
A terahertz spectrometer, wherein the optical path length of terahertz light is equal in both cases when the reflection measurement optical system is selected by the switching mechanism and when the transmission type measurement optical system is selected.
請求項1のテラヘルツ分光装置において、
前記反射測定光学系と前記透過測定光学系は、光路を変換するための少なくとも一対の平面鏡を共有し、前記切換機構により前記一対の平面鏡の姿勢を変更して反射測定光学系と透過測定光学系を切換えることを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to claim 1,
The reflection measurement optical system and the transmission measurement optical system share at least a pair of plane mirrors for converting an optical path, and change the posture of the pair of plane mirrors by the switching mechanism to change the positions of the reflection measurement optical system and the transmission measurement optical system. A terahertz spectroscopy device characterized by switching.
請求項2のテラヘルツ分光装置において、
前記切換機構は、前記一対の平面鏡をそれぞれ駆動する一対の連結軸と、この一対の駆動軸を同期して回転する駆動系とを備えることを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to claim 2,
The switching mechanism includes a pair of connecting shafts that respectively drive the pair of plane mirrors, and a driving system that rotates the pair of driving shafts in synchronization with each other.
請求項3のテラヘルツ分光装置において、
前記切換機構により前記反射測定光学系を選択した場合および前記透過測定光学系を選択した場合のいずれの場合もテラヘルツパルス光の光路長が等しくなるように、前記一対の連結軸は、前記テラヘルツパルス光の光軸に対して所定角度傾斜していることを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to claim 3,
The pair of connection axes are connected to the terahertz pulse so that the optical path lengths of the terahertz pulsed light are equal in both the case where the reflection measurement optical system is selected and the case where the transmission measurement optical system is selected by the switching mechanism. A terahertz spectrometer characterized by being inclined at a predetermined angle with respect to the optical axis of light.
請求項3または4のテラヘルツ分光装置において、
前記駆動系は、前記一対の連結軸に回転力を伝達する歯車装置を有し、この歯車装置には所定量のバックラッシュを持たせるとともに、
前記一対の連結軸を前記平面鏡の重心位置から偏心して固定し、
前記切換機構により前記反射測定光学系を選択した場合に、前記共有する平面鏡が重力で第1のストッパに当接して反射測定位置が規定され、
前記透過測定光学系を選択した場合に、前記共有する平面鏡が重力で第2のストッパに当接して反射測定位置が規定されるように構成したことを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to claim 3 or 4,
The drive system has a gear device that transmits a rotational force to the pair of connection shafts, and the gear device has a predetermined amount of backlash,
The pair of connecting shafts are fixed eccentrically from the center of gravity of the plane mirror,
When the reflection measurement optical system is selected by the switching mechanism, the shared plane mirror abuts on a first stopper by gravity to define a reflection measurement position,
The terahertz spectrometer is characterized in that when the transmission measurement optical system is selected, the shared plane mirror abuts on a second stopper by gravity to define a reflection measurement position.
請求項1〜5のいずれかのテラヘルツ分光装置において、
反射測定の位置または透過測定の位置にセットされた前記試料を検知する検知手段と、
前記検知手段による検知結果により前記切換機構を駆動制御して、前記反射測定光学系と透過測定光学系とを切換える制御装置とを備えることを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to any one of claims 1 to 5,
Detecting means for detecting the sample set at the position of reflection measurement or the position of transmission measurement,
A terahertz spectrometer, comprising: a control device that drives and controls the switching mechanism based on a detection result of the detection unit to switch between the reflection measurement optical system and the transmission measurement optical system.
請求項1〜6のいずれかのテラヘルツ分光装置において、
前記反射測定光学系と透過測定光学系は、少なくとも前記試料を除き、密閉容器中に収納されていることを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to any one of claims 1 to 6,
The terahertz spectrometer, wherein the reflection measurement optical system and the transmission measurement optical system are housed in a closed container except for at least the sample.
請求項1のテラヘルツ分光装置において、
前記切換機構は、前記反射測定光学系の一部を収容する反射測定光学系ユニットと、前記透過測定光学系の一部を収容する透過測定光学系ユニットと、それらのユニットを択一的に装置本体に着脱する着脱機構とを含むことを特徴とするテラヘルツ分光装置。
The terahertz spectrometer according to claim 1,
The switching mechanism is a reflection measurement optical system unit accommodating a part of the reflection measurement optical system, a transmission measurement optical system unit accommodating a part of the transmission measurement optical system, and a device for selectively using these units. A terahertz spectroscopic device, comprising: a detachable mechanism that is detachably attached to a main body.
JP2002362244A 2002-12-13 2002-12-13 Terahertz spectrometer Expired - Fee Related JP4002173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362244A JP4002173B2 (en) 2002-12-13 2002-12-13 Terahertz spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362244A JP4002173B2 (en) 2002-12-13 2002-12-13 Terahertz spectrometer

Publications (2)

Publication Number Publication Date
JP2004191302A true JP2004191302A (en) 2004-07-08
JP4002173B2 JP4002173B2 (en) 2007-10-31

Family

ID=32760748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362244A Expired - Fee Related JP4002173B2 (en) 2002-12-13 2002-12-13 Terahertz spectrometer

Country Status (1)

Country Link
JP (1) JP4002173B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308426A (en) * 2005-04-28 2006-11-09 Tochigi Nikon Corp Terahertz measuring device
JP2007057407A (en) * 2005-08-25 2007-03-08 Tochigi Nikon Corp Terahertz spectral device
JP2007271637A (en) * 2003-08-22 2007-10-18 Japan Science & Technology Agency Time series conversion pulse spectrometer
EP2098853A2 (en) 2008-03-04 2009-09-09 Sony Corporation Terahertz spectrometer
US7619736B2 (en) 2006-04-28 2009-11-17 Canon Kabushiki Kaisha Apparatus and method for obtaining sample information by detecting electromagnetic wave
JP2014186039A (en) * 2009-03-04 2014-10-02 Malvern Instruments Ltd Particle characterization
CN105784634A (en) * 2016-03-31 2016-07-20 电子科技大学 Terahertz time domain spectrograph capable of measuring transmission and reflection simultaneously under vertical incidence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330159B (en) * 2014-10-16 2016-08-24 中国电子科技集团公司第五十研究所 A kind of Terahertz frequency domain spectra instrument

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271637A (en) * 2003-08-22 2007-10-18 Japan Science & Technology Agency Time series conversion pulse spectrometer
JP4632373B2 (en) * 2003-08-22 2011-02-16 独立行政法人科学技術振興機構 Time-series conversion pulse spectrometer
JP2006308426A (en) * 2005-04-28 2006-11-09 Tochigi Nikon Corp Terahertz measuring device
JP2007057407A (en) * 2005-08-25 2007-03-08 Tochigi Nikon Corp Terahertz spectral device
JP4601516B2 (en) * 2005-08-25 2010-12-22 株式会社栃木ニコン Terahertz spectrometer
US7619736B2 (en) 2006-04-28 2009-11-17 Canon Kabushiki Kaisha Apparatus and method for obtaining sample information by detecting electromagnetic wave
EP2098853A2 (en) 2008-03-04 2009-09-09 Sony Corporation Terahertz spectrometer
US7898668B2 (en) 2008-03-04 2011-03-01 Sony Corporation Terahertz spectrometer
JP2014186039A (en) * 2009-03-04 2014-10-02 Malvern Instruments Ltd Particle characterization
CN105784634A (en) * 2016-03-31 2016-07-20 电子科技大学 Terahertz time domain spectrograph capable of measuring transmission and reflection simultaneously under vertical incidence

Also Published As

Publication number Publication date
JP4002173B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
CN103561638B (en) Subject information acquisition device
JPH07146295A (en) Immunoanalysis method and device by raman spectral measurement
JP4002173B2 (en) Terahertz spectrometer
JP4832187B2 (en) High-speed polarizing device, high-speed birefringence measuring device using the same, and stereoscopic image display device
CN209992396U (en) Microscopic imaging full-spectrum high-voltage module time-resolved fluorescence measurement system
US7173705B2 (en) Measuring device for immunochromatography test piece
WO2003010519A1 (en) Time resolution transient absorption measuring device
JP4031360B2 (en) Measuring device using terahertz light
JP4601516B2 (en) Terahertz spectrometer
JP2002350342A (en) Method and apparatus for measuring surface state
WO2004077030A1 (en) Device for measuring immunochromatography test piece and light source device
JP2004279352A (en) Measuring instrument using terahertz light
JP2003294618A (en) Infrared microspectroscopic apparatus and near-field infrared microspectroscopic apparatus
JP3446120B2 (en) Sample horizontal type goniometer photometer
JPH0943143A (en) Gas-correlated spectroscope
JP2003121355A (en) Sample information-acquiring method and terahertz light apparatus
JP2006250836A (en) Spectrophotometer
JPH10115573A (en) Method and apparatus for measurement of tertiary nonlinear susceptibility rate
JP2005227021A (en) Terahertz light measuring instrument
JP5672376B2 (en) Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus
JP2008256497A (en) Measurement apparatus
JP4569316B2 (en) Spectral colorimeter
JPS6157701B2 (en)
CN112014362B (en) Microscopic imaging full-spectrum high-voltage module time-resolved fluorescence measurement system
JPS636427A (en) Spectrophotometer for vltraviolet and visible regions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees