JP2004191228A - Rolling bearing unit for wheel with rotation detector - Google Patents

Rolling bearing unit for wheel with rotation detector Download PDF

Info

Publication number
JP2004191228A
JP2004191228A JP2002360501A JP2002360501A JP2004191228A JP 2004191228 A JP2004191228 A JP 2004191228A JP 2002360501 A JP2002360501 A JP 2002360501A JP 2002360501 A JP2002360501 A JP 2002360501A JP 2004191228 A JP2004191228 A JP 2004191228A
Authority
JP
Japan
Prior art keywords
encoder
hub
peripheral surface
outer peripheral
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360501A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Sakamoto
潤是 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002360501A priority Critical patent/JP2004191228A/en
Publication of JP2004191228A publication Critical patent/JP2004191228A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure the reliability of the detected rotation of a rotation detecting sensor 15b by securing the magnitude of the output signal of the sensor 15b, even if the shape accuracy and dimensional accuracy of each section of the sensor 15b are not especially enhanced. <P>SOLUTION: The outer peripheral surface of an encoder 13 and the detection plane of the rotation detecting sensor 15b are made parallel to the center axes of an outer ring 1 and of a hub 3a in the direction of the center axes. In addition, an active rotation detecting sensor is used as the sensor 15b. Accordingly, even if the relative position of the encoder 13 and sensor 15b deviates in the axial direction, the magnitude of a detection gap δa will not change. In addition, the active rotation detecting sensor 15b can secure the magnitude of its output signal, even if the detection interval δa is slightly large. Consequently, the above-mentioned problem can be solved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明に係る車輪用回転検出装置は、懸架装置に支持した自動車の車輪の回転速度(回転数を含む)を検出する為に利用する。
【0002】
【従来の技術】
アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御すべく車輪の回転速度を知る為に従来から、懸架装置に対し車輪を支持する為の転がり軸受ユニットに回転速度検出装置を組み込んだ、回転検出装置付車輪用転がり軸受ユニットが、各種知られている。図8は、この様な目的で使用される回転検出装置付車輪用転がり軸受ユニットの1例として、特許文献1に記載されたものを示している。
【0003】
外輪1は、外周面に形成した外向フランジ状の取付部2により懸架装置を構成するナックル等に支持された状態で、使用時にも回転しない。この様な外輪1の内径側に配置したハブ3は、ハブ本体4の内端部(軸方向に関して内とは、自動車への組み付け状態で幅方向中央側を言い、図1、4、6〜10の右側)に内輪5を外嵌固定して成る。上記外輪1の内周面に形成した複列の外輪軌道6、6と、上記ハブ3の外周面に設けた複列の内輪軌道7、7との間には、それぞれが転動体である玉8、8を複数個ずつ、それぞれ保持器9、9により保持した状態で、上記外輪1及びハブ3の軸方向に関し2列に配置した状態で、転動自在に設けている。
【0004】
上述の様な構成により上記ハブ3を、上記外輪1の内径側に回転自在に支持している。この様なハブ3を構成する上記ハブ本体4の外端部(軸方向に関して外とは、自動車への組み付け状態で幅方向端部側を言い、図1、4、6〜10の左側)には、図示しない車輪を支持する為のフランジ10を設けている。又、上記外輪1の両端部内周面と、上記ハブ本体4の中間部外周面及び上記内輪5の内端部外周面との間には、それぞれシールリング11、11を設けて、上記各玉8、8を設置した空間12と外部とを遮断し、この空間12内に封入したグリースが外部に漏洩したり、外部に浮遊する異物がこの空間12内に侵入する事を防止している。
【0005】
又、上記ハブ本体4の中間部で2列に配置した上記各玉8、8同士の間部分にエンコーダ13を、締り嵌めで外嵌固定している。このエンコーダ13は、図示の例の場合、軟鋼等の磁性金属材を円環状に形成すると共に、外周面に歯車状の凹凸を形成した、所謂パルサギヤと呼ばれるもので、この外周面の磁気特性を円周方向に関して交互に且つ等間隔で変化させている。一方、上記外輪1の中間部に、この外輪1の内外両周面同士を連通させる状態で形成した取付孔14に、回転検出センサ15を挿通支持し、この回転検出センサ15の先端面(図8の下端面)に設けた検出部を、上記エンコーダ13の外周面に近接対向させている。
【0006】
上述の様に構成する回転検出装置付車輪用転がり軸受ユニットを懸架装置と車輪との間に組み付けた状態での使用時に、この車輪が回転すると、上記回転検出センサ15の検出面の近傍を上記エンコーダ13の外周面に存在する凹部と凸部とが交互に通過する。この結果、上記回転検出センサ15内を流れる磁束の密度が変化し、この回転検出センサ15の出力が変化する。この出力が変化する周波数は、上記車輪の回転速度に比例するので、この出力信号を図示しない制御器に送れば、ABSやTCSを適正に制御できる。又、変化の回数から、回転数も知る事ができる。
【0007】
又、特許文献2には、図9に示す様に、エンコーダ13aの外周縁部を傾斜させる事により、被検出部であるこの外周縁部と、検出面である回転検出センサ15aの先端面とを互いに平行にした構造が記載されている。この様な特許文献2に記載された構造の場合、明細書の段落番号[0021]部分の記載から明らかな通り、上記回転検出センサ15aとして、永久磁石と、この永久磁石のN極からS極に向け磁束を流す磁極片(ポールピース)と、この磁極片の周囲に配置したコイルとを備えた、所謂パッシブ型のものを使用している。
【0008】
【特許文献1】
特許第2838701号公報
【特許文献2】
特開平6−109027号公報
【0009】
【発明が解決しようとする課題】
上述した様な従来の回転検出装置付車輪用転がり軸受ユニットのうち、図8に示した第1例の構造の場合には、被検出部であるエンコーダ13の外周縁部と検出部である回転検出センサ15の先端面とが非平行である為、これら被検出部と検出部との実質的距離を十分に短くできない。この為、上記回転検出センサ15の出力を大きくする面からは不利である。この回転検出センサ15を外輪1の径方向(図8の上下方向)に対し傾斜させずに設置すれば、上記被検出部と検出部との実質的距離を十分に短くして、上記回転検出センサ15の出力を大きくできる。但し、外輪1の外周面で上記エンコーダ13の周囲に位置する部分には取付部2が存在する為、上記回転検出センサ15を挿入する為の取付孔14は、上記外輪1の径方向に対し傾斜して形成せざるを得ない場合が多い。
【0010】
これに対して、図9に示した第2例の構造の場合には、被検出部であるエンコーダ13aの外周縁部と検出部である回転検出センサ15aの先端面とが平行である為、これら被検出部と検出部との距離を短くできる可能性はある。但し、次の様な理由により、この距離を十分に短くする事は難しく、仮に十分に短くしようとした場合には、相当にコストが嵩む。
【0011】
何となれば、上記エンコーダ13aの外周縁部と上記回転検出センサ15aの先端面とが、外輪1及びハブ3の中心軸に対し傾斜した、従来構造の第2例の場合、これら外周縁部と先端面との距離を所望値にする為には、次の▲1▼▲2▼の位置関係を規制する必要がある。
▲1▼ 上記外輪1及びハブ3の径方向に関する、上記エンコーダ13aと上記回転検出センサ15aとの相対位置。
▲2▼ 上記外輪1及びハブ3の軸方向に関する、上記エンコーダ13aと上記回転検出センサ15aとの相対位置。
このうちの▲1▼の相対位置を厳密に規制する事は比較的容易で、あまりコストが嵩む事はないが、▲2▼の相対位置を厳密に規制する事は面倒で、コストが嵩む。
【0012】
この点に就いて、上記第2例に即した構造を記載した、図10により説明する。上記▲2▼の相対位置を、外輪1の外端面16を基準として適正範囲に収める場合、上記外輪1及びハブ3の軸方向に関する、次の4種類の距離L1 〜L4 を適正に規制する必要がある。
1 :上記外端面16と上記回転検出センサ15aを挿通する為の取付孔144aの中心との距離
2 :この外端面16と、外側の外輪軌道6と玉8との接触点までの距離
3 :この外端面16と、外側の内輪軌道7と玉8との接触点までの距離
4 :この外側の内輪軌道7と玉8との接触点からエンコーダ13aの軸方向端面までの距離
これら各距離L1 〜L4 のうちの何れか一つでもずれると、上記▲2▼の相対位置がずれて、上記エンコーダ13aの外周縁部と回転検出センサ15aの先端面との間の検出隙間(の厚さ)δが不適正になってしまう。
【0013】
そして、この検出隙間δが過小になった場合には、上記エンコーダ13aの外周縁部と回転検出センサ15aの先端面とが干渉して、これらエンコーダ13aと回転検出センサ15aとの一方又は双方が損傷する可能性がある。これに対して、上記検出隙間δが過大になった場合には、上記回転検出センサ15aの出力を十分に確保できず、ハブ3の回転速度検出を行なえなくなる。特に、特許文献2に記載された構造の様に、パッシブ型の回転検出センサ15aを使用した場合、この回転検出センサ15aの出力を十分に確保する為には、上記検出隙間δを0.5mm以下に抑える必要がある。従って、上記4種類の距離L1 〜L4 を、何れも厳密に規制する必要がある。
【0014】
ところが、これら4種類の距離L1 〜L4 のうち、特に、玉8と外輪軌道6或は内輪軌道7との接触点と上記外輪1の外端面16との距離L2 、L3 、並びに外側の内輪軌道7と玉8との接触点から上記エンコーダ13aの軸方向端面までの距離L4 に関しては、厳密に規制する事が難しい。この理由は、これら各距離L2 、L3 、L4 が、何れも曲面同士の接触点を基準とするものであり、例えば上記外輪軌道6或は上記内輪軌道7の形状或は寸法が少しずれただけでも、上記各距離L2 、L3 、L4 が大きく変化する為である。
【0015】
この様に、厳密に規制する事が難しい、上記各距離L2 、L3 、L4 に拘らず、上記検出隙間δを適正(0<δ≦0.5mm)にする為には、前記外輪1と前記ハブ3とを、外側列の玉8を介して組み合わせた後、内側列の玉8及び内輪5を組み付ける以前に、前記エンコーダ13aの軸方向位置、即ち、上記外側の内輪軌道7と玉8との接触点から上記エンコーダ13aの軸方向端面までの距離L4 を調節する事が考えられる。但し、この様なエンコーダ13aの位置調節作業は、上記外輪1の内周面と上記ハブ3の外周面との間の狭い空間内で行なわなければならず、面倒である。しかも、上記内側列の玉8及び内輪5を組み付ける作業を後回しにする等、作業工程を非効率化する為、製造コストが嵩む原因となる。本発明の回転検出装置付車輪用転がり軸受ユニットは、この様な事情に鑑みて発明したものである。
【0016】
【課題を解決するための手段】
本発明の回転検出装置付車輪用転がり軸受ユニットは、外輪と、取付孔と、ハブと、エンコーダと、回転検出センサとを備える。
このうちの外輪は、外周面に設けられた外向フランジ状の取付部を介して懸架装置に支持されるもので、使用時にも回転しない。
又、上記取付孔は、上記外輪の内外両周面同士を貫通する状態で、この外輪の径方向に対し傾斜して設けられている。
又、上記ハブは、複数の転動体によりこの外輪の内径側に支持され、車輪を支持した状態でこの車輪と共に回転する。
又、上記エンコーダは、上記ハブの外周面に支持固定されたもので、外周面の磁気特性を円周方向に亙って交互に変化させている。
又、上記回転検出センサは、上記取付孔に上記外輪の外径側から内径側に挿通された状態で、その先端面に設けた検出部を上記エンコーダの外周面に検出隙間を介して対向させている。特に、本発明の場合に上記回転検出センサは、ホール素子、磁気抵抗素子等、永久磁石から出た磁束の変化に対応して特性を変化させる磁気検出素子を備え、電力を供給された状態で使用されるアクティブ型である。尚、上記永久磁石は、回転検出センサ内に組み込むか、又は、上記エンコーダを永久磁石にする。
そして、上記検出隙間を、上記外輪及びハブの軸方向に関して、これら外輪及びハブの軸方向に対し平行にしている。
【0017】
【作用】
上述の様に構成する本発明の回転検出装置付車輪用転がり軸受ユニットは、次の(1)(2)の理由により、特にコストを高くする事なく、回転検出センサの出力を確保して、車輪の回転検出に関する信頼性の確保を図れる。
(1) 各部の形状精度、寸法精度並びに組立精度を極端に高くしなくても、上記回転検出センサの先端面に設けた検出部とエンコーダの外周面との間の検出隙間の大きさを適正値に規制できる。
(2) アクティブ型の回転検出センサは、パッシブ型の回転検出センサの場合よりも、上記検出隙間が大きくなっても、十分に大きな出力信号を得られる。
【0018】
【発明の実施の形態】
図1〜3は、請求項1〜2に対応する、本発明の実施の形態の第1例を示している。外輪1は、外周面に形成した外向フランジ状の取付部2により懸架装置を構成するナックル等に支持された状態で、使用時にも回転しない。この様な外輪1の内径側に配置したハブ3aは、ハブ本体4aの内端部に形成した小径段部17に外嵌した内輪5の内端面を、このハブ本体4aの内端部を径方向外方に塑性変形して成るかしめ部18により抑え付ける事で構成している。そして、上記外輪1の内周面に形成した複列の外輪軌道6、6と、上記ハブ3aの外周面に設けた複列の内輪軌道7、7との間に、それぞれが転動体である玉8、8を複数個ずつ、それぞれ図示しない保持器により保持し、上記外輪1及びハブ3aの軸方向に関し2列に配置した状態で、転動自在に設けている。
【0019】
上述の様な構成により上記ハブ3aを、上記外輪1の内径側に回転自在に支持している。この様なハブ3aを構成する上記ハブ本体4aの外端部には、図示しない車輪を支持する為のフランジ10を設けている。又、上記外輪1の両端部内周面と、上記ハブ本体4aの中間部外周面及び上記内輪5の内端部外周面との間には、それぞれシールリング11a、11bを設けて、上記各玉8、8を設置した空間12と外部とを遮断し、この空間12内に封入したグリースが外部に漏洩したり、外部に浮遊する異物がこの空間12内に侵入する事を防止している。
【0020】
又、上記ハブ本体4aの中間部で2列に配置した上記各玉8、8同士の間部分にエンコーダ13を、締り嵌めで外嵌固定している。このエンコーダ13は、図2に示す様に、軟鋼等の磁性金属材を円環状に形成すると共に、外周面に歯車状の凹凸を形成した、所謂パルサギヤと呼ばれるもので、この外周面の磁気特性を円周方向に関して交互に且つ等間隔で変化させている。又、上記エンコーダ13の外周縁は、上記ハブ3aの中心軸に対し平行にしている。尚、本例に組み込むエンコーダは、図1〜2に示す様な金属の削り出し加工によるものに限らず、図3に示す様な、磁性金属板にプレス加工を施す事により得られる、外周縁部を波形形状とすると共に、内周縁部にハブに外嵌固定する為の円筒部を設けたエンコーダ13bでも良い。
【0021】
一方、上記外輪1の中間部に取付孔14aを、この外輪1の内外両周面同士を連通させる状態で形成している。この取付孔14aの両端開口部のうち、上記外輪1の外周面側の開口部は前記取付部2の軸方向外側に、同じく内周面側の開口部は複列の外輪軌道6、6の間部分に、それぞれ位置する。この為に上記取付孔14aは、上記外輪1の径方向に対して、角度αだけ傾斜している。この様な取付孔14aに、回転検出センサ15bを挿通支持し、この回転検出センサ15bの先端面(図1の下端面)に設けた検出部を、上記エンコーダ13の外周面に近接対向させている。この様な構成により、上記取付部2の強度を確保しつつ、この取付部2をナックル等の懸架装置の一部に取り付け易くすると共に、上記外輪1への上記回転検出センサ15bの取付作業を容易に行なえる様にしている。
【0022】
上記回転検出センサ15bは、アクティブ型のもので、ホール素子、磁気抵抗素子等、永久磁石から出た磁束の変化に対応して特性を変化させる磁気検出素子と、この磁気検出素子の出力信号の波形を整形(矩形波と)する為の波形整形回路(IC)と、永久磁石とを、合成樹脂製のホルダ19内に保持して成る。この様なアクティブ型の回転検出センサ15bは、別途設けた電源(例えばエンジンルーム内のバッテリ)により、上記磁気検出素子に所定の電圧を印加した状態で使用される。尚、エンコーダとして、例えばゴム磁石エンコーダの様に、外周面にS極とN極とを交互に配置した永久磁石製のものを使用すれば、回転検出センサ側の永久磁石は不要である。
【0023】
更に本例の場合には、上記回転検出センサ15bの先端面を、この回転検出センサ15bの中心軸に対し、角度βだけ傾斜させている。この傾斜角度βは、上記取付孔14aの中心軸が上記外輪1の径方向に対し傾斜している角度αの余角(α+β=90°)としている。そして、上記回転検出センサ15bの先端部乃至中間部を上記取付孔14aに挿通し、更にこの回転検出センサ15bの基端部を上記外輪1の外周面に結合固定した状態で、この回転検出センサ15bの先端面と前記エンコーダ13の外周面とが、上記外輪1及び前記ハブ3の軸方向に関して互いに平行になる様にしている。言い換えれば、上記回転検出センサ15bの先端面に設けた検出部と上記エンコーダ13の外周面との間の検出隙間δaを、上記外輪1及び前記ハブ3の軸方向に対し平行にしている。尚、検出面である上記回転検出センサ15bの先端面には、上記磁気検出素子に磁束を導く為の磁性材製のヨークの端面が露出している。従って、このヨークの端部も、上記先端面に合わせて、その中心軸に対し傾斜させている。
【0024】
上述の様に構成する回転検出装置付車輪用転がり軸受ユニットを懸架装置と車輪との間に組み付けた状態での使用時に、この車輪が回転すると、上記回転検出センサ15bの先端面(検出面)が対向する部分を、上記エンコーダ13の外周面に存在する凹部と凸部とが交互に通過する。この結果、上記回転検出センサ15bを構成する磁気検出素子を流れる磁束の密度が変化して、この磁気検出素子の特性が変化し、この特性変化に応じて上記回転検出センサ15bの出力が変化する。この出力が変化する周波数は、上記車輪の回転速度に比例するので、この出力信号を図示しない制御器に送れば、ABSやTCSを適正に制御できる。又、変化の回数から、回転数も知る事ができる。
【0025】
特に、本例の回転検出装置付車輪用転がり軸受ユニットは、次の(1)(2)の理由により、特にコストを高くする事なく、上記回転検出センサ15bの出力を確保して、車輪の回転検出に関する信頼性の確保を図れる。
(1) 各部の形状精度、寸法精度並びに組立精度を極端に高くしなくても、上記回転検出センサ15bの先端面に設けた検出部と上記エンコーダ13の外周面との間の検出隙間δaの大きさを適正値に規制できる。
即ち、上記回転検出センサ15bと上記エンコーダ13との軸方向に関する相対位置関係が多少ずれた場合でも(上記検出部と上記外周面とが対向している限り)検出隙間δaの大きさは変化しない。従って、上記各部の形状精度、寸法精度並びに組立精度を極端に高くする必要がなくなり、コスト低減を図れる。
(2) アクティブ型の回転検出センサ15bは、上記検出隙間δaが1〜2mm程度あっても、十分に大きな出力信号を得られ、回転検出の信頼性を確保できる。即ち、検出隙間を0.5mm以下に抑える必要があるパッシブ型の回転検出センサに比べて、上記検出隙間δaを2〜4倍程度にまで大きくできる。勿論、上記検出部と上記外周面とが干渉しない限り、上記検出隙間δaが小さくなる事は差し支えない。従って、この面からも、上記各部に要求される形状精度、寸法精度並びに組立精度が緩やかになる。
【0026】
次に、図4〜5は、請求項1〜3に対応する、本発明の実施の形態の第2例を示している。本例の場合には、ハブ本体4aの中間部で外側の内輪軌道7と内輪5を外嵌した小径段部17との間に形成された小径部20に、エンコーダ13cを外嵌固定している。このエンコーダ13cは、磁性金属板を円筒状に形成すると共に、軸方向中間部に多数のスリット21、21と柱部22、22とを、円周方向に亙って交互に且つ等間隔で形成する事により、外周面の磁気特性を交互に且つ等間隔で変化させている。この様なエンコーダ13cの自由状態での内径寸法は、上記小径部20の外径寸法よりも僅かに小さくしている。又、厚さ寸法は、この小径部20の外端部の段差部23の高さ以下(好ましくは未満)としている。従って、上記エンコーダ13cを上記小径部20に、締り嵌めで外嵌固定した状態で、このエンコーダ13cの外径D13が、上記外側の内輪軌道7のうちで最も径が小さくなった部分の直径D7 以下(D13≦D7 、好ましくはD13<D7 )となる。
【0027】
この様な本例の場合には、上記ハブ本体4aに対し上記エンコーダ13cを予め組み付けてから、このハブ本体4aを外輪1の内径側に、複数個の玉8、8を介して組み付ける事ができる。即ち、上記エンコーダ13cを組み付けたハブ本体4aを含む車輪用転がり軸受ユニットの組立作業を、エンコーダを持たない構造の場合と同様に行なえる。従って、回転検出装置の有無に拘らず、車輪用転がり軸受ユニットの組立設備の共用化を図れて、設備投資の節約によるコスト低減を図れる。
その他の部分の構成及び作用は、前述した第1例と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
【0028】
次に、図6は、請求項1〜2に対応する、本発明の実施の形態の第3例を示している。本例の場合には、外輪1aの内周面に形成した複列の外輪軌道6a、6aを、円すい凹面状としている。又、ハブ3bの外周面に形成した複列の内輪軌道7a、7aを、それぞれ円すい凸面状としている。又、上記ハブ3bは、ハブ本体4bに外嵌した1対の内輪5a、5bを、このハブ本体4bの内端部に形成したかしめ部18により抑え付けて成る。又、エンコーダ13は、内側の内輪5bの外端部に外嵌固定している。そして、上記各外輪軌道6a、6aと各内輪軌道7a、7aとの間に、それぞれが転動体である円すいころ24、24を、それぞれ保持器9a、9aにより保持した状態で、軸方向に関して2列に亙り、転動自在に設けている。
その他の部分の構成及び作用は、前述した第1例と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
【0029】
次に、図7は、請求項1〜2に対応する、本発明の実施の形態の第4例を示している。本例の場合には、外輪1に対して取付孔14aを、上述した各例とは反対方向に傾斜させて、この取付孔14aの外径側開口を、取付部2よりも軸方向内側に設置している。この様な本例の構造によれば、上記取付孔14aへの回転検出センサ15bの抜き差し作業を、フランジ10に固定された車輪により覆われない広い空間で、容易に行なえる。又、上記回転検出センサ15bに付属のハーネス28と車輪との干渉防止の為の構造も、簡略化できる。
その他の部分の構成及び作用は、前述した第1例と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。尚、この様に取付孔14aの傾斜方向を逆にする構造は、図4、6に示した構造に就いても適用可能な事は勿論である。
【0030】
【発明の効果】
本発明は、以上に述べた通り構成し作用するので、車輪の回転速度を、低速走行時から高速走行時まで十分な信頼性を確保して検出できる回転検出装置付車輪用転がり軸受ユニットを、特にコストを高くする事なく実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す半部断面図。
【図2】第1例に組み込んだエンコーダを取り出して、その一部を図1の側方から見た図。
【図3】第1例に適用可能なエンコーダの別例を示す、図2と同様の図。
【図4】本発明の実施の形態の第2例を示す半部断面図。
【図5】第2例に組み込んだエンコーダを取り出して、その一部を図4の上方から見た図。
【図6】本発明の実施の形態の第3例を示す半部断面図。
【図7】同第4例を示す半部断面図。
【図8】従来構造の第1例を示す断面図。
【図9】同第2例を示す部分断面図。
【図10】この第2例に即した構造の1例を示す半部断面図。
【符号の説明】
1、1a、1b 外輪
2 取付部
3、3a、3b、3c ハブ
4、4a、4b ハブ本体
5、5a、5b 内輪
6、6a 外輪軌道
7、7a 内輪軌道
8 玉
9、9a 保持器
10 フランジ
11、11a、11b シールリング
12 空間
13、13a、13b、13c エンコーダ
14、14a 取付孔
15、15a、15b 回転検出センサ
16 外端面
17 小径段部
18 かしめ部
19 ホルダ
20 小径部
21 スリット
22 柱部
23 段差部
24 円すいころ
25 ナックル
26 止め輪
27 腕部
28 ハーネス
[0001]
TECHNICAL FIELD OF THE INVENTION
The wheel rotation detecting device according to the present invention is used for detecting a rotation speed (including a rotation speed) of a vehicle wheel supported by a suspension device.
[0002]
[Prior art]
In order to control the anti-lock brake system (ABS) and the traction control system (TCS), the rotation speed detection device was incorporated in the rolling bearing unit to support the wheel to the suspension system to know the rotation speed of the wheel. Various types of rolling bearing units for wheels with a rotation detecting device are known. FIG. 8 shows an example of a rolling bearing unit for a wheel with a rotation detecting device used for such a purpose, which is described in Patent Document 1.
[0003]
The outer race 1 does not rotate during use in a state where it is supported by a knuckle or the like constituting a suspension device by an outward flange-shaped mounting portion 2 formed on the outer peripheral surface. The hub 3 arranged on the inner diameter side of the outer race 1 is an inner end portion of the hub body 4 (the inner side in the axial direction means the center side in the width direction in a state of being assembled to an automobile, and FIGS. The inner ring 5 is externally fitted and fixed to (right side of 10). Balls, each of which is a rolling element, are provided between a double-row outer raceway 6, 6 formed on the inner peripheral surface of the outer race 1 and a double-row inner raceway 7, 7 provided on the outer peripheral surface of the hub 3. In a state in which a plurality of the gears 8 and 8 are held by the cages 9 and 9, respectively, and are arranged in two rows in the axial direction of the outer ring 1 and the hub 3, they are rotatably provided.
[0004]
With the above-described configuration, the hub 3 is rotatably supported on the inner diameter side of the outer ring 1. The outer end of the hub main body 4 that constitutes such a hub 3 (the outer side in the axial direction refers to the end in the width direction when assembled to an automobile, and is on the left side in FIGS. 1, 4, 6 to 10). Has a flange 10 for supporting a wheel (not shown). Seal rings 11 are provided between inner peripheral surfaces of both ends of the outer race 1 and outer peripheral surfaces of an intermediate portion of the hub body 4 and inner ends of the inner race 5, respectively. The space 12 in which the spaces 8 and 8 are installed is isolated from the outside, so that the grease sealed in the space 12 is prevented from leaking to the outside, and foreign substances floating outside are prevented from entering the space 12.
[0005]
Further, an encoder 13 is externally fixed to the portion between the balls 8, 8 arranged in two rows at the intermediate portion of the hub body 4 by interference fitting. In the case of the example shown in the figure, the encoder 13 is a so-called pulsar gear in which a magnetic metal material such as mild steel is formed in an annular shape, and gear-shaped irregularities are formed on the outer peripheral surface. They are alternately and equally spaced in the circumferential direction. On the other hand, a rotation detecting sensor 15 is inserted and supported in a mounting hole 14 formed in a middle portion of the outer ring 1 so as to allow the inner and outer peripheral surfaces of the outer ring 1 to communicate with each other. The lower end surface of the encoder 8 is closely opposed to the outer peripheral surface of the encoder 13.
[0006]
When the wheel rotates when the wheel rolling bearing unit with the rotation detecting device configured as described above is assembled between the suspension device and the wheel, when the wheel rotates, the vicinity of the detection surface of the rotation detecting sensor 15 is adjusted as described above. The concave and convex portions present on the outer peripheral surface of the encoder 13 pass alternately. As a result, the density of the magnetic flux flowing in the rotation detection sensor 15 changes, and the output of the rotation detection sensor 15 changes. Since the frequency at which this output changes is proportional to the rotation speed of the wheel, if this output signal is sent to a controller (not shown), the ABS and TCS can be properly controlled. Also, the number of rotations can be known from the number of changes.
[0007]
In Patent Document 2, as shown in FIG. 9, by tilting the outer peripheral edge of the encoder 13a, the outer peripheral edge of the detected portion and the tip surface of the rotation detection sensor 15a as the detection surface are separated. Are described parallel to each other. In the case of such a structure described in Patent Document 2, as is apparent from the description in the paragraph [0021] of the specification, the rotation detection sensor 15a has a permanent magnet and an N pole to an S pole of the permanent magnet. A so-called passive type having a pole piece (pole piece) through which magnetic flux flows toward and a coil disposed around the pole piece is used.
[0008]
[Patent Document 1]
Japanese Patent No. 2838701 [Patent Document 2]
JP-A-6-109027
[Problems to be solved by the invention]
Among the conventional rolling bearing units with a rotation detecting device as described above, in the case of the structure of the first example shown in FIG. 8, the outer peripheral edge of the encoder 13 which is the detected portion and the rotation which is the detecting portion. Since the tip surface of the detection sensor 15 is non-parallel, the substantial distance between the detected part and the detection part cannot be sufficiently reduced. This is disadvantageous in terms of increasing the output of the rotation detection sensor 15. If the rotation detection sensor 15 is installed without being inclined with respect to the radial direction of the outer race 1 (vertical direction in FIG. 8), the substantial distance between the detected part and the detection part is sufficiently reduced, and the rotation detection The output of the sensor 15 can be increased. However, since the mounting portion 2 is present in a portion of the outer peripheral surface of the outer ring 1 which is located around the encoder 13, the mounting hole 14 for inserting the rotation detection sensor 15 is provided in the radial direction of the outer ring 1. In many cases, it must be formed at an angle.
[0010]
On the other hand, in the case of the structure of the second example shown in FIG. 9, since the outer peripheral edge of the encoder 13a as the detected portion and the tip end surface of the rotation detection sensor 15a as the detecting portion are parallel, There is a possibility that the distance between the detected part and the detecting part can be shortened. However, it is difficult to make this distance sufficiently short for the following reasons, and if it is to be made sufficiently short, the cost is considerably increased.
[0011]
In the second example of the conventional structure in which the outer peripheral edge of the encoder 13a and the distal end surface of the rotation detection sensor 15a are inclined with respect to the center axis of the outer ring 1 and the hub 3, In order to make the distance from the tip end surface a desired value, it is necessary to regulate the following positional relationship (1) and (2).
(1) The relative position between the encoder 13a and the rotation detection sensor 15a in the radial direction of the outer race 1 and the hub 3.
(2) The relative position between the encoder 13a and the rotation detection sensor 15a in the axial direction of the outer ring 1 and the hub 3.
Strictly controlling the relative position of (1) among them is relatively easy and does not increase the cost, but strictly controlling the relative position of (2) is troublesome and increases the cost.
[0012]
This point will be described with reference to FIG. 10, which describes a structure according to the second example. The relative position of the ▲ 2 ▼, when to keep the outer end surface 16 of the outer ring 1 in a proper range as a reference, properly regulated in the axial direction of the outer ring 1 and the hub 3, four types of the distance L 1 ~L 4 There is a need to.
L 1 : distance between the outer end face 16 and the center of the mounting hole 144 a for inserting the rotation detection sensor 15 a L 2 : distance between the outer end face 16 and the contact point between the outer raceway 6 and the ball 8 on the outside L 3 : Distance between the outer end face 16 and the contact point between the outer inner raceway 7 and the ball 8 L 4 : Distance from the contact point between the outer inner raceway 7 and the ball 8 to the axial end face of the encoder 13a If any one of these distances L 1 to L 4 is deviated, the relative position of (2) is deviated, and the detection between the outer peripheral edge of the encoder 13a and the tip end surface of the rotation detection sensor 15a is performed. The gap (thickness) δ becomes inappropriate.
[0013]
When the detection gap δ is too small, the outer peripheral edge of the encoder 13a and the tip end surface of the rotation detection sensor 15a interfere with each other, and one or both of the encoder 13a and the rotation detection sensor 15a are disturbed. May be damaged. On the other hand, if the detection gap δ is excessive, the output of the rotation detection sensor 15a cannot be sufficiently secured, and the rotation speed of the hub 3 cannot be detected. In particular, when a passive rotation detection sensor 15a is used as in the structure described in Patent Document 2, in order to sufficiently secure the output of the rotation detection sensor 15a, the detection gap δ is set to 0.5 mm. It is necessary to keep it below. Therefore, it is necessary to strictly control all four types of distances L 1 to L 4 .
[0014]
However, among these four types of distances L 1 to L 4 , distances L 2 and L 3 between the contact point between the ball 8 and the outer raceway 6 or the inner raceway 7 and the outer end face 16 of the outer race 1, and in particular, with respect to the distance L 4 from the contact point between the outer ring raceway 7 and ball 8 to axial end surface of the encoder 13a, it is difficult to strictly regulated. The reason for this is that these distances L 2 , L 3 , L 4 are all based on the contact point between the curved surfaces. For example, the shape or dimensions of the outer raceway 6 or the inner raceway 7 are slightly different. This is because the distances L 2 , L 3 , and L 4 change greatly even if the distance is shifted.
[0015]
As described above, regardless of the distances L 2 , L 3 , and L 4 , it is difficult to strictly control the above-mentioned outer ring in order to make the detection gap δ appropriate (0 <δ ≦ 0.5 mm). 1 and the hub 3 via the outer row of balls 8, before the inner row of balls 8 and the inner ring 5 are assembled, the axial position of the encoder 13 a, that is, the outer inner ring raceway 7. from the point of contact with the balls 8 it is conceivable to adjust the distance L 4 to the axial end surface of the encoder 13a. However, such an operation of adjusting the position of the encoder 13a must be performed in a narrow space between the inner peripheral surface of the outer race 1 and the outer peripheral surface of the hub 3, which is troublesome. In addition, the work process is inefficient, for example, the work of assembling the balls 8 and the inner ring 5 in the inner row is postponed, so that the production cost is increased. The rolling bearing unit for a wheel with a rotation detecting device according to the present invention has been invented in view of such circumstances.
[0016]
[Means for Solving the Problems]
A rolling bearing unit for a wheel with a rotation detection device according to the present invention includes an outer ring, a mounting hole, a hub, an encoder, and a rotation detection sensor.
Of these, the outer ring is supported by the suspension device via an outward flange-shaped mounting portion provided on the outer peripheral surface, and does not rotate during use.
The mounting hole is provided to be inclined with respect to the radial direction of the outer ring so as to penetrate the inner and outer peripheral surfaces of the outer ring.
The hub is supported on the inner diameter side of the outer ring by a plurality of rolling elements, and rotates together with the wheels while supporting the wheels.
The encoder is supported and fixed on the outer peripheral surface of the hub, and changes the magnetic characteristics of the outer peripheral surface alternately in the circumferential direction.
Further, in a state where the rotation detection sensor is inserted into the mounting hole from the outer diameter side to the inner diameter side of the outer ring, the detection unit provided on the tip surface is opposed to the outer peripheral surface of the encoder via a detection gap. ing. In particular, in the case of the present invention, the rotation detecting sensor includes a magnetic detecting element such as a Hall element or a magnetoresistive element that changes characteristics in response to a change in magnetic flux emitted from a permanent magnet, and is supplied with power. Active type used. The permanent magnet is incorporated in a rotation detection sensor, or the encoder is a permanent magnet.
The detection gap is parallel to the axial direction of the outer ring and the hub with respect to the axial direction of the outer ring and the hub.
[0017]
[Action]
The rolling bearing unit for a wheel with a rotation detecting device of the present invention configured as described above ensures the output of the rotation detecting sensor without particularly increasing the cost for the following reasons (1) and (2), It is possible to ensure the reliability of the detection of the rotation of the wheel.
(1) The size of the detection gap between the detection unit provided on the tip surface of the rotation detection sensor and the outer peripheral surface of the encoder is appropriate without extremely increasing the shape accuracy, dimensional accuracy, and assembly accuracy of each part. Can be regulated to a value.
(2) The active rotation detection sensor can obtain a sufficiently large output signal even when the detection gap is larger than that of the passive rotation detection sensor.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. FIG. The outer race 1 does not rotate during use in a state where it is supported by a knuckle or the like constituting a suspension device by an outward flange-shaped mounting portion 2 formed on the outer peripheral surface. The hub 3a arranged on the inner diameter side of the outer ring 1 is formed such that the inner end face of the inner ring 5 externally fitted to the small-diameter stepped portion 17 formed at the inner end of the hub body 4a has a diameter equal to the inner end of the hub body 4a. It is configured to be suppressed by a caulking portion 18 which is plastically deformed outward in the direction. Rolling elements are provided between the double-row outer raceways 6, 6 formed on the inner peripheral surface of the outer race 1 and the double-row inner raceways 7, 7 provided on the outer peripheral surface of the hub 3a. A plurality of balls 8, 8 are respectively held by retainers (not shown), and are provided rotatably in a state of being arranged in two rows in the axial direction of the outer ring 1 and the hub 3a.
[0019]
With the above configuration, the hub 3a is rotatably supported on the inner diameter side of the outer race 1. A flange 10 for supporting wheels (not shown) is provided at the outer end of the hub body 4a constituting the hub 3a. Seal rings 11a and 11b are provided between inner peripheral surfaces of both ends of the outer ring 1 and outer peripheral surfaces of an intermediate portion of the hub body 4a and an inner end of the inner ring 5, respectively. The space 12 in which the spaces 8 and 8 are installed is isolated from the outside, so that the grease sealed in the space 12 is prevented from leaking to the outside, and foreign substances floating outside are prevented from entering the space 12.
[0020]
Further, an encoder 13 is externally fitted and fixed to the portion between the balls 8 arranged in two rows at the intermediate portion of the hub main body 4a by interference fitting. As shown in FIG. 2, this encoder 13 is a so-called pulsar gear in which a magnetic metal material such as mild steel is formed in an annular shape and gear-shaped irregularities are formed on the outer peripheral surface. Are alternately and equally spaced in the circumferential direction. The outer peripheral edge of the encoder 13 is parallel to the center axis of the hub 3a. The encoder incorporated in this embodiment is not limited to the one formed by cutting out a metal as shown in FIGS. 1 and 2, and the outer peripheral edge obtained by applying a pressing process to a magnetic metal plate as shown in FIG. 3. The encoder 13b may have a corrugated shape and a cylindrical portion provided on the inner peripheral edge for external fitting to the hub.
[0021]
On the other hand, a mounting hole 14a is formed in an intermediate portion of the outer ring 1 so that the inner and outer peripheral surfaces of the outer ring 1 communicate with each other. Of the openings at both ends of the mounting hole 14a, the opening on the outer peripheral surface side of the outer ring 1 is located outside the mounting portion 2 in the axial direction, and the opening on the inner peripheral surface is also the outer raceway 6 of the double row. It is located in the middle part. Therefore, the mounting hole 14a is inclined by an angle α with respect to the radial direction of the outer race 1. The rotation detection sensor 15b is inserted into and supported by such a mounting hole 14a, and a detection unit provided on the tip end surface (the lower end surface in FIG. 1) of the rotation detection sensor 15b is brought close to and opposed to the outer peripheral surface of the encoder 13. I have. With such a configuration, while securing the strength of the mounting portion 2, the mounting portion 2 can be easily mounted on a part of a suspension device such as a knuckle, and the operation of mounting the rotation detection sensor 15 b on the outer ring 1 can be performed. Easy to do.
[0022]
The rotation detection sensor 15b is of an active type, such as a Hall element, a magnetoresistive element, or the like, a magnetic detection element that changes characteristics in response to a change in magnetic flux emitted from a permanent magnet, and an output signal of the magnetic detection element. A waveform shaping circuit (IC) for shaping the waveform (to be a rectangular wave) and a permanent magnet are held in a synthetic resin holder 19. Such an active rotation detection sensor 15b is used in a state where a predetermined voltage is applied to the magnetic detection element by a separately provided power supply (for example, a battery in an engine room). If a permanent magnet having an S pole and an N pole alternately arranged on the outer peripheral surface, such as a rubber magnet encoder, is used as the encoder, the permanent magnet on the rotation detection sensor side is unnecessary.
[0023]
Further, in the case of this example, the tip surface of the rotation detection sensor 15b is inclined by an angle β with respect to the center axis of the rotation detection sensor 15b. The inclination angle β is a complementary angle (α + β = 90 °) of the angle α at which the central axis of the mounting hole 14a is inclined with respect to the radial direction of the outer race 1. Then, the rotation detecting sensor 15b is inserted into the mounting hole 14a through the distal end portion or the intermediate portion thereof, and furthermore, the base end portion of the rotation detecting sensor 15b is fixedly connected to the outer peripheral surface of the outer race 1. The distal end surface of the outer ring 1 and the outer peripheral surface of the encoder 13 are parallel to each other in the axial direction of the outer race 1 and the hub 3. In other words, the detection gap δa between the detection unit provided on the distal end surface of the rotation detection sensor 15b and the outer peripheral surface of the encoder 13 is made parallel to the axial direction of the outer ring 1 and the hub 3. An end surface of a yoke made of a magnetic material for guiding a magnetic flux to the magnetic detection element is exposed at a tip end surface of the rotation detection sensor 15b serving as a detection surface. Therefore, the end of this yoke is also inclined with respect to the center axis thereof in accordance with the above-mentioned tip surface.
[0024]
When the wheel rotates when the wheel rolling bearing unit with the rotation detecting device configured as described above is assembled between the suspension device and the wheel, when the wheel rotates, the tip surface (detection surface) of the rotation detecting sensor 15b. The concave portions and the convex portions present on the outer peripheral surface of the encoder 13 alternately pass through the portion facing the. As a result, the density of the magnetic flux flowing through the magnetic detection element constituting the rotation detection sensor 15b changes, the characteristics of the magnetic detection element change, and the output of the rotation detection sensor 15b changes according to the change in the characteristic. . Since the frequency at which this output changes is proportional to the rotational speed of the wheel, sending this output signal to a controller (not shown) allows the ABS and TCS to be properly controlled. Also, the number of rotations can be known from the number of changes.
[0025]
In particular, the rolling bearing unit for a wheel with a rotation detecting device according to the present embodiment secures the output of the rotation detecting sensor 15b without increasing the cost particularly for the following reasons (1) and (2), and Reliability of rotation detection can be ensured.
(1) The detection gap δa between the detection unit provided on the tip end surface of the rotation detection sensor 15b and the outer peripheral surface of the encoder 13 can be increased without extremely increasing the shape accuracy, dimensional accuracy, and assembly accuracy of each unit. The size can be regulated to an appropriate value.
That is, even when the relative positional relationship between the rotation detection sensor 15b and the encoder 13 in the axial direction is slightly shifted (as long as the detection unit and the outer peripheral surface face each other), the size of the detection gap δa does not change. . Therefore, it is not necessary to extremely increase the shape accuracy, dimensional accuracy, and assembly accuracy of each of the above-described portions, and cost can be reduced.
(2) The active rotation detection sensor 15b can obtain a sufficiently large output signal even if the detection gap δa is about 1 to 2 mm, and can secure the reliability of rotation detection. That is, the detection gap δa can be increased to about 2 to 4 times as compared with a passive rotation detection sensor which needs to suppress the detection gap to 0.5 mm or less. Of course, the detection gap δa can be reduced as long as the detection section does not interfere with the outer peripheral surface. Therefore, also from this aspect, the shape accuracy, dimensional accuracy, and assembly accuracy required for each of the above-described portions are moderated.
[0026]
Next, FIGS. 4 and 5 show a second example of the embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, the encoder 13c is externally fitted and fixed to a small-diameter portion 20 formed between the outer inner ring raceway 7 and the small-diameter step portion 17 to which the inner ring 5 is externally fitted at the intermediate portion of the hub body 4a. I have. The encoder 13c has a magnetic metal plate formed in a cylindrical shape, and a large number of slits 21 and 21 and column portions 22 and 22 formed at an axially intermediate portion alternately and at equal intervals in a circumferential direction. By doing so, the magnetic properties of the outer peripheral surface are changed alternately and at equal intervals. The inner diameter of the encoder 13c in the free state is slightly smaller than the outer diameter of the small diameter portion 20. The thickness dimension is equal to or less than (preferably less than) the height of the step portion 23 at the outer end of the small diameter portion 20. Accordingly, the encoder 13c in the small-diameter portion 20, with externally secured state by interference fit, the outer diameter D 13 of the encoder 13c is most diameter is reduced part of the outer inner ring raceway 7 diameter D 7 or less (D 13 ≦ D 7 , preferably D 13 <D 7 ).
[0027]
In the case of this example, it is possible to assemble the encoder 13c with the hub body 4a in advance and then assemble the hub body 4a on the inner diameter side of the outer ring 1 with a plurality of balls 8,8. it can. That is, the assembling work of the wheel rolling bearing unit including the hub body 4a to which the encoder 13c is assembled can be performed in the same manner as in the case of the structure having no encoder. Therefore, regardless of the presence or absence of the rotation detecting device, the assembly equipment of the rolling bearing unit for wheels can be shared, and the cost can be reduced by saving capital investment.
Since the configuration and operation of the other parts are the same as those of the first example described above, the same reference numerals are given to the same parts, and duplicate description will be omitted.
[0028]
Next, FIG. 6 shows a third example of the embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, double-row outer raceways 6a, 6a formed on the inner peripheral surface of the outer race 1a have a conical concave shape. The double-row inner raceways 7a, 7a formed on the outer peripheral surface of the hub 3b are each formed in a conical convex shape. The hub 3b is formed by pressing a pair of inner races 5a and 5b which are fitted to the hub body 4b with a caulking portion 18 formed at the inner end of the hub body 4b. The encoder 13 is externally fitted and fixed to the outer end of the inner inner ring 5b. Then, between the outer raceways 6a, 6a and the inner raceways 7a, 7a, the tapered rollers 24, 24, which are rolling elements, are held by retainers 9a, 9a, respectively. It is provided so as to roll freely over the rows.
Since the configuration and operation of the other parts are the same as those of the first example described above, the same reference numerals are given to the same parts, and duplicate description will be omitted.
[0029]
Next, FIG. 7 shows a fourth example of the embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, the mounting hole 14 a is inclined with respect to the outer ring 1 in the direction opposite to the above-described examples, and the outer diameter side opening of the mounting hole 14 a is axially inward of the mounting portion 2. Has been installed. According to such a structure of the present example, the work of inserting and removing the rotation detection sensor 15b into and from the mounting hole 14a can be easily performed in a wide space that is not covered by the wheels fixed to the flange 10. Further, the structure for preventing interference between the harness 28 attached to the rotation detection sensor 15b and the wheels can be simplified.
Since the configuration and operation of the other parts are the same as those of the first example described above, the same reference numerals are given to the same parts, and duplicate description will be omitted. Incidentally, the structure in which the inclination direction of the mounting hole 14a is reversed in this way can of course be applied to the structure shown in FIGS.
[0030]
【The invention's effect】
Since the present invention is configured and operates as described above, the rotation speed of the wheel, a rolling bearing unit for a wheel with a rotation detection device that can detect the rotation speed from a low speed traveling to a high speed traveling while ensuring sufficient reliability, In particular, it can be realized without increasing the cost.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a view of an encoder incorporated in the first example taken out, and a part thereof is viewed from a side in FIG. 1;
FIG. 3 is a view similar to FIG. 2, showing another example of an encoder applicable to the first example;
FIG. 4 is a half sectional view showing a second example of the embodiment of the present invention.
FIG. 5 is a view of an encoder incorporated in the second example taken out, and a part thereof is viewed from above in FIG. 4;
FIG. 6 is a half sectional view showing a third example of the embodiment of the present invention.
FIG. 7 is a half sectional view showing the fourth example.
FIG. 8 is a sectional view showing a first example of a conventional structure.
FIG. 9 is a partial sectional view showing the second example.
FIG. 10 is a half sectional view showing one example of a structure according to the second example.
[Explanation of symbols]
1, 1a, 1b Outer ring 2 Mounting portion 3, 3a, 3b, 3c Hub 4, 4a, 4b Hub body 5, 5a, 5b Inner ring 6, 6a Outer ring track 7, 7a Inner ring track 8 Ball 9, 9a Cage 10 Flange 11 , 11a, 11b Seal ring 12 Space 13, 13a, 13b, 13c Encoder 14, 14a Mounting hole 15, 15a, 15b Rotation detection sensor 16 Outer end face 17 Small diameter step 18 Caulking 19 Holder 20 Small diameter 21 Slit 22 Column 23 Step 24 Tapered roller 25 Knuckle 26 Retaining ring 27 Arm 28 Harness

Claims (3)

外周面に外向フランジ状の取付部を有し、使用時にも回転しない外輪と、この外輪の内外両周面同士を貫通する状態でこの外輪の径方向に対し傾斜して設けられた取付孔と、複数の転動体によりこの外輪の内径側に支持され、車輪を支持した状態でこの車輪と共に回転するハブと、このハブの外周面に支持固定された、外周面の磁気特性を円周方向に亙って交互に変化させたエンコーダと、上記取付孔に上記外輪の外径側から内径側に挿通された状態で、その先端面に設けた検出部を上記エンコーダの外周面に検出隙間を介して対向させた、アクティブ型の回転検出センサとを備え、この検出隙間を、上記外輪及びハブの軸方向に関して、これら外輪及びハブの軸方向に対し平行にした回転検出装置付転がり軸受ユニット。An outer ring that has an outward flange-shaped mounting portion on the outer peripheral surface and does not rotate during use, and a mounting hole that is provided to be inclined with respect to the radial direction of the outer ring while penetrating the inner and outer peripheral surfaces of the outer ring. A hub supported by a plurality of rolling elements on the inner diameter side of the outer ring and rotating together with the wheel while supporting the wheel; and a magnetic characteristic of the outer peripheral surface supported and fixed to the outer peripheral surface of the hub in a circumferential direction. In the state where the encoder is alternately changed over the outer ring and the outer ring is inserted from the outer diameter side to the inner diameter side of the outer ring through the mounting hole, a detection unit provided on the tip end surface of the encoder is inserted into the outer peripheral surface of the encoder via a detection gap. A rolling bearing unit with a rotation detecting device, comprising: an active type rotation detection sensor facing the rotation direction of the outer ring and the hub with respect to the axial direction of the outer ring and the hub. 各転動体は、外輪の内周面に設けられた複列の外輪軌道とハブの外周面に設けられた複列の内輪軌道との間にそれぞれ複数個ずつ、外輪及びハブの軸方向に関し2列に配置されており、エンコーダ及び回転検出センサの先端部が、これら2列の転動体の間部分に設けられている、請求項1に記載した回転検出装置付転がり軸受ユニット。A plurality of rolling elements are provided between the double-row outer raceway provided on the inner peripheral surface of the outer race and the double-row inner raceway provided on the outer peripheral surface of the hub. The rolling bearing unit with a rotation detecting device according to claim 1, wherein the rolling bearing units are arranged in a row, and the end portions of the encoder and the rotation detection sensor are provided in a portion between the two rows of rolling elements. ハブが、中間部外周面に一方の内輪軌道を直接形成したハブ本体と、このハブ本体の端部に外嵌固定された、外周面に他方の内輪軌道を形成した内輪とから成るものであり、上記ハブ本体の中間部で上記一方の内輪軌道と上記内輪を外嵌した部分との間に形成された小径部にエンコーダが外嵌固定されており、このエンコーダの外径が上記一方の内輪軌道のうちで最も径が小さくなった部分の直径以下である、請求項2に記載した回転検出装置付転がり軸受ユニット。The hub comprises a hub body in which one inner raceway is directly formed on the outer peripheral surface of the intermediate portion, and an inner race which is externally fitted and fixed to an end of the hub body and has the other inner raceway formed on the outer peripheral surface. An encoder is externally fixed to a small-diameter portion formed between the one inner raceway and a portion where the inner race is externally fitted at an intermediate portion of the hub body, and the outer diameter of the encoder is one inner race. 3. The rolling bearing unit with a rotation detecting device according to claim 2, wherein the diameter is equal to or smaller than the diameter of a portion of the track whose diameter is smallest.
JP2002360501A 2002-12-12 2002-12-12 Rolling bearing unit for wheel with rotation detector Pending JP2004191228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360501A JP2004191228A (en) 2002-12-12 2002-12-12 Rolling bearing unit for wheel with rotation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360501A JP2004191228A (en) 2002-12-12 2002-12-12 Rolling bearing unit for wheel with rotation detector

Publications (1)

Publication Number Publication Date
JP2004191228A true JP2004191228A (en) 2004-07-08

Family

ID=32759558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360501A Pending JP2004191228A (en) 2002-12-12 2002-12-12 Rolling bearing unit for wheel with rotation detector

Country Status (1)

Country Link
JP (1) JP2004191228A (en)

Similar Documents

Publication Publication Date Title
JP2004198378A (en) Anti-friction bearing system
JP2004294414A (en) Load measuring device of roller bearing unit, and roller bearing unit for load measurement
JP2004345439A (en) Wheel supporting hub unit
US6375359B1 (en) Rolling bearing unit with rotation speed sensor
US6109793A (en) Rolling bearing unit with rotational speed sensor
JPH11118816A (en) Rolling bearing unit with rotating speed detector
JP3331728B2 (en) Tapered roller bearing with rotation speed detector
JP4114438B2 (en) Rolling bearing device
JP2004084848A (en) Roller bearing device
JP4480656B2 (en) Wheel bearing device with rotation speed detector
JP2007303522A (en) Hub unit
JPH11248726A (en) Rolling bearing unit with rotation speed detecting device
JP2004191228A (en) Rolling bearing unit for wheel with rotation detector
JP2008014471A (en) Rolling bearing device with sensor
JPH1172501A (en) Roller bearing unit with rotational speed sensor and assembling method thereof
JP3834977B2 (en) Rolling bearing unit with rotational speed detector
JP2004340579A (en) Instrument for measuring load of rolling bearing unit, and rolling bearing unit for measuring load
JP2008082483A (en) Rolling bearing unit with state quantity measuring device
JP2002172909A (en) Bearing device for axle
JP4706306B2 (en) Bearing unit with rotation detector
JP4062992B2 (en) Rolling bearing device
JP4483852B2 (en) Rotating support device for wheel and assembling method thereof
JP3491394B2 (en) Rolling bearing unit with tone wheel
JP2008008463A (en) Rolling bearing unit with sensor
JP2010164112A (en) Sensor-equipped wheel bearing device