JP2004191194A - Collision detector - Google Patents

Collision detector Download PDF

Info

Publication number
JP2004191194A
JP2004191194A JP2002359730A JP2002359730A JP2004191194A JP 2004191194 A JP2004191194 A JP 2004191194A JP 2002359730 A JP2002359730 A JP 2002359730A JP 2002359730 A JP2002359730 A JP 2002359730A JP 2004191194 A JP2004191194 A JP 2004191194A
Authority
JP
Japan
Prior art keywords
acceleration
vehicle
collision
sensor
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359730A
Other languages
Japanese (ja)
Inventor
Moriyuki Io
守之 猪尾
Kozo Nakahama
浩三 中浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002359730A priority Critical patent/JP2004191194A/en
Publication of JP2004191194A publication Critical patent/JP2004191194A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simplify structure, to reduce cost, to be conveniently detachably mounted onto a vehicle, and to easily detect even a light accident to automatically conduct radio notification. <P>SOLUTION: This detector is provided with a sensor means 2 comprising the first acceleration sensor 2a for detecting a longitudinal-directional acceleration, and the second acceleration sensor 2b for detecting a lateral-directional acceleration, a computing part 5 having a composition computing part 20 for finding a vector-sum √(Xa<SP>2</SP>+Xb<SP>2</SP>) of acceleration outputs Xa, Xb from the first and second acceleration sensors 2a, 2b to obtain a composed acceleration A, a comparison computing part 21 for comparing the composed acceleration A with a collision determining part A0, and an output part 22 for outputting a collision signal 4 when a comparison result therein is A>A0, and a radio means 6 for transmitting the collision signal 4 from the output part 22 to an outside of the vehicle by radio. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に試験車両のテスト走行に好適に採用でき、試験車両がテストコースなどで起こした事故を検出して車両外に自動的に無線通報しうる衝突検知装置に関する。
【0002】
【従来の技術、発明が解決しようとする課題】
例えばタイヤの研究開発などでは、開発中のタイヤを用いた実車走行テストがテストコースで広く行われている。この実車走行テストでは、タイヤの限界性能を含めた種々の性能を調査する必要があるため、危険な速度で限界走行する場合も多く、従って、一般道路での通常走行に比べて事故の発生する危険性は非常に高いものとなる。
【0003】
そのため、従来においては試験車両に無線機を搭載し、事故の際にはその旨を、テストドライバーによって後続車や管制室等に無線通報している。しかし係る場合には、事故から無縁通報までの時間ロスが大きくなり、後続車との新たな事故を招く恐れが増す他、事故によっては、テストドライバーが自力で無縁連絡できない場合も生じるなど、安全性を充分に確保することが難しい。
【0004】
なお従来より、例えばエアバック装置を作動させるべく加速度センサを用いて事故を検知する種々の検知装置(例えば特許文献1)が提案されている。しかしこれらは、回路や演算が複雑となるなどコスト高であり、しかも通常10Gを越える大きな衝撃時しか作動せず、従って、実車走行テストにおいて生じがちな軽度の事故、例えば車両がスピンしてガードレールに軽く接触するような事故は検知できず、後続車との新たな事故を回避し得ないという問題がある。
【0005】
【特許文献1】
特開平6−1199号公報
【0006】
そこで本発明の目的は、車両に着脱自在に装着でき、しかも実車走行テストで生じがちな例えば加速度4G程度の軽度の事故も検出可能とするとともに、該事故を後続車や管制室等の車両外に速やかかつ自動的に無線通報でき、実車走行テストの安全性を向上しうる構造簡易かつ低コストな衝突検知装置を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、車両の前後方向の加速度を検出する第1の加速度センサと、横方向の加速度を検出する第2の加速度センサとからなるセンサ手段、
前記第1、第2の加速度センサからの加速度出力Xa、Xbをベクトル和√(Xa2 +Xb2 )して合成加速度Aをうる合成演算部と、前記合成加速度Aと予め設定した衝突判定値A0とを比較する比較演算部と、比較結果がA>A0のとき衝突信号を出力する出力部とを有する演算手段、
及び前記出力部に接続され、該出力部から出力される衝突信号を無線によって車両外に発信する無線手段を具えたことを特徴としている。
【0008】
又請求項2の発明では、前記第1の加速度センサは少なくとも2Gまで測定可能であり、かつ第2の加速度センサは少なくとも4Gまで測定可能としたことを特徴としている。
【0009】
又請求項3の発明では、前記衝突判定値A0を3.5〜4.5Gの範囲としたことを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明の衝突検知装置を示す斜視図である。
図1において衝突検知装置1は、第1、2の加速度センサ2a、2bからなるセンサ手段2と、該第1、第2の加速度センサ2a、2bからの加速度出力Xa、Xbから衝突を判定して衝突信号4を出力する演算手段5と、この演算手段5から出力される前記衝突信号4を無線によって車両外に発信する無線手段6とを具える。
【0011】
なお本例では、この衝突検知装置1が試験車両に装着され、実車走行テストにおいて衝突事故が発生した際にはそれを検出して、例えばテストコース上の他の車両や管制室等に無線通報する場合を例示している。又衝突検知装置1は、前記試験車両に水平に固定されれば、特にその取り付け場所は規制されないが、車両重心高さ位置に近い例えば床面上が好ましい。又取り付け方法としては、ボルトによる固定の他、接着剤、固縛バンド、マジックテープ(商品名)などで固定することもできる。
【0012】
次に、前記センサ手段2は、車両の前後方向の加速度を検出する第1の加速度センサ2aと、横方向の加速度を検出する第2の加速度センサ2bとから構成される。この第1、2の加速度センサ2a、2bは、加速度をその変位量に対応した電気信号として出力する電子式の加速度センサであって、図2に概念的に示すように、検出部10と変換回路部11とを具える。前記検出部10は、固定電極12A、13Aを有する一対のガラス基板12、13と、前記固定電極12A、13Aとの間に微少空隙を介して対向配置される可動電極14とからなり、該可動電極14は、ビーム15によって弾性支持される。又前記変換回路部11は、前記固定電極12A、13Aと可動電極14との間に存在する静電容量C1、C2の差ΔCを検出する静電容量検出部16と、本例では、検出した差ΔCをA/D変換してデジタル信号の加速度出力Xとして出力するA/D変換部17とから形成される。
【0013】
ここで、可動電極14は、加速度による慣性力を受けることによって同図2では上下方向に変位し、前記固定電極12A、13Aとの間の微少空隙が変化する、すなわち静電容量差ΔCが変化することにより、加速度の大きさを電気信号である加速度出力Xとして出力できる。又第1、2の加速度センサ2a、2bは、各可動電極14の変位の向きを、夫々前後方向及び横方向に合わせて、一つのパッケージ内に実装される。
【0014】
次に、前記演算手段5は、マイクロプロセッサからなり、図3に概念的に示すように、前記第1、第2の加速度センサ2a、2bからの加速度出力Xa、Xbをベクトル和√(Xa2 +Xb2 )して合成加速度Aをうる合成演算部20と、前記合成加速度Aと予め設定した衝突判定値A0とを比較する比較演算部21と、その比較結果がA>A0のとき衝突信号4を出力する出力部22とを含んで構成される。
【0015】
なお前記センサ手段2では、車両の加速度を、例えば1〜5msの周期(本例では2msの周期)で断続的に測定している。そして前記合成演算部20では、各加速度センサ2a、2bから断続的に測定される加速度出力Xa、Xbを、測定毎にベクトル和√(Xa2 +Xb2 )して合成加速度Aを計算する。このとき、ベクトル和でえられた前記合成加速度Aから雑音成分を除去することが好ましく、そのために、本例では、所定周波数(例えば30Hz程度)のローパスフィルタ等によるフィルタ処理、或いは移動平均処理を、前記合成加速度Aに施している。なお移動平均処理では、瞬時瞬時に求められる合成加速度Aを、それよりn周期(例えば10周期)前に求めた10個の合成加速度An 、An-1 、・・・ A1 とともに次式の如く平均処理して、雑音成分の除去を行う。
(An +An-1 +・・・A1 +A)/(n+1)
【0016】
なおフィルタ処理、或いは移動平均処理による雑音成分の除去は、合成演算に先駆け、各加速度センサ2a、2bからの加速度出力Xa、Xbに対して行うこともできる。
【0017】
又前記比較演算部21では、前記合成加速度Aと、予め設定した衝突判定値A0とを比較演算するが、この衝突判定値A0は、実車走行テストにおける事故検知の観点から、3.0G〜5.0Gの範囲とするのが好ましい。3.0G未満では、限界性能をテストすべく高速旋回走行などを行う際、旋回の横加速度自体によって誤って検知してしまう恐れがあり、逆に5.0Gを越えると、例えば車両がスピンしてガードレールに軽く接触するような事故が検知できず、後続車との新たな事故を回避し得ないなど実車走行テストの安全性を充分に高めることができなくなる。このような観点から、衝突判定値A0を3.5G〜4.5Gの範囲、さらには4.0Gの設定するのがより望ましい。
【0018】
又前記加速度センサ2a、2bは、経済性の観点から加速度の測定範囲のできるだけ狭いものを採用するのが好ましいが、前記実車走行テストの性質上、テスト中に大きな横加速度が発生する傾向がある。従って、前記第1の加速度センサ2aとして、0Gから少なくとも2Gまで測定可能なもの、第2の加速度センサ2bとして、0Gから少なくとも4Gまで測定可能なものを使用し、かつ第1の加速度センサ2aの測定可能な最大値が、第2の加速度センサ2bの測定可能な最大値より小であるのが好ましい。
【0019】
又前記出力部22では、前記比較演算部21による合成加速度Aと衝突判定値A0との比較結果が、A>A0のとき、接点メークし衝突信号4を出力する。
【0020】
次に前記無線手段6として、周知の種々の無線送信機が好適に採用しうる。この無線手段6は、前記出力部22に接続され、該出力部22から出力される前記衝突信号4を無線すなわち電波によって発信し、例えばテストコース上の他車や管制室等に設置の警報器を作動させることにより、衝突事故の発生を通報する。なお警報器として、受信機能を有する例えば、ベル、ブザー、警報燈など種々のものを採用することができ、又無線手段6には、他車からの衝突事故の通報を受ける警報器を内蔵させてもよい。又前記無線手段6として、出力部22からの前記衝突信号4を、音声信号などの他の信号に変換して発信可能に構成しても良い。又無線手段6は、衝突検知装置1の装置本体7と一体に形成することも、図1に示す如く取外し可能に形成することもできる。
【0021】
又本実施形態の衝突検知装置1では、車両のシガレットライターのコンセントを電源とすべく、このコンセント用の差込プラグ8を具えるとともに、事故により差込プラグ8が外れた際にも、衝突信号4を続けて発信しうるように、蓄電池9を内蔵している。
【0022】
以上、本発明の特に好ましい実施形態について詳述したが、本発明の衝突検知装置は、試験車両のテスト走行に限定されることなく、一般車両における一般道路での衝突事故の検知のためにも使用しうるなど、図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0023】
【発明の効果】
本発明は叙上の如く構成しているため、構造簡易かつ低コストであり、しかも車両に着脱自在に便宜に装着しうるとともに、軽度の事故も容易に検出してこの事故を後続他車などの車両外に速やかかつ自動的に無線通報でき、走行の安全性を向上しうる。
【図面の簡単な説明】
【図1】本発明の衝突検知装置の一実施例を示す斜視図である。
【図2】加速度センサの構造を概念的に説明する線図である。
【図3】演算手段を概念的に説明する線図である。
【符号の説明】
2 センサ手段
2a 第1の加速度センサ
2b 第2の加速度センサ
4 衝突信号
5 演算手段
6 無線手段
20 合成演算部
21 比較演算部
22 出力部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a collision detection device that can be suitably adopted particularly for test running of a test vehicle, and that can detect an accident caused by the test vehicle on a test course or the like and automatically report the radio to the outside of the vehicle.
[0002]
2. Description of the Related Art
For example, in tire research and development, actual vehicle running tests using tires under development are widely performed on test courses. In this actual vehicle driving test, it is necessary to investigate various performances including the marginal performance of the tires, so that the vehicle often runs at a dangerous speed at the limit speed, and therefore, an accident occurs compared to normal driving on a general road. The danger is very high.
[0003]
Therefore, conventionally, a wireless device is mounted on a test vehicle, and in the event of an accident, the test driver wirelessly notifies a subsequent vehicle, a control room, or the like of the fact in the event of an accident. However, in such a case, the time loss from the accident to the report of unrelatedness increases, increasing the risk of inviting a new accident with the following vehicle.In some accidents, the test driver may not be able to communicate unrelatedly by himself or herself. It is difficult to secure sufficient performance.
[0004]
Conventionally, various detection devices (for example, Patent Document 1) for detecting an accident using an acceleration sensor to operate an airbag device have been proposed. However, these are expensive due to complicated circuits and arithmetic operations, and operate only at a large impact, usually exceeding 10 G. Therefore, minor accidents that tend to occur in a real vehicle running test, for example, when the vehicle spins and the guardrail There is a problem that an accident such as light contact with the vehicle cannot be detected, and a new accident with a following vehicle cannot be avoided.
[0005]
[Patent Document 1]
JP-A-6-1199
Therefore, an object of the present invention is to make it possible to detect a minor accident such as an acceleration of about 4 G which is likely to occur in an actual vehicle running test, and to detect the minor accident outside the vehicle such as a following vehicle or a control room. Another object of the present invention is to provide a simple and low-cost collision detection device capable of promptly and automatically making a radio report and improving the safety of an actual vehicle running test.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present application provides a sensor means comprising: a first acceleration sensor for detecting a longitudinal acceleration of a vehicle; and a second acceleration sensor for detecting a lateral acceleration.
A combining operation unit that obtains a combined acceleration A by adding a vector sum √ (Xa 2 + Xb 2 ) of the acceleration outputs Xa and Xb from the first and second acceleration sensors, and a collision determination value A0 set in advance with the combined acceleration A Calculation means for comparing a comparison result with an output part for outputting a collision signal when the comparison result is A>A0;
And a wireless unit connected to the output unit and wirelessly transmitting a collision signal output from the output unit to the outside of the vehicle.
[0008]
According to a second aspect of the present invention, the first acceleration sensor can measure at least up to 2G, and the second acceleration sensor can measure at least up to 4G.
[0009]
The invention according to claim 3 is characterized in that the collision determination value A0 is set in a range of 3.5 to 4.5G.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to illustrated examples. FIG. 1 is a perspective view showing a collision detection device according to the present invention.
In FIG. 1, a collision detection device 1 determines a collision based on sensor means 2 including first and second acceleration sensors 2a and 2b and acceleration outputs Xa and Xb from the first and second acceleration sensors 2a and 2b. And a radio means 6 for transmitting the collision signal 4 output from the calculation means 5 to the outside of the vehicle by radio.
[0011]
In this example, the collision detection device 1 is mounted on a test vehicle, and when a collision accident occurs in an actual vehicle running test, the collision detection device 1 detects the collision and, for example, sends a radio report to another vehicle or a control room on the test course. This is illustrated as an example. Further, if the collision detection device 1 is fixed horizontally to the test vehicle, the location of the collision detection device 1 is not particularly limited. However, it is preferable that the collision detection device 1 is located on the floor, for example, near the height of the vehicle center of gravity. In addition, as an attachment method, in addition to fixing with a bolt, it can be fixed with an adhesive, a securing band, a magic tape (trade name), or the like.
[0012]
Next, the sensor means 2 includes a first acceleration sensor 2a for detecting the acceleration in the front-rear direction of the vehicle and a second acceleration sensor 2b for detecting the acceleration in the lateral direction. The first and second acceleration sensors 2a and 2b are electronic acceleration sensors that output acceleration as an electric signal corresponding to the amount of displacement, and as shown conceptually in FIG. And a circuit unit 11. The detection unit 10 includes a pair of glass substrates 12 and 13 having fixed electrodes 12A and 13A, and a movable electrode 14 disposed opposite to the fixed electrodes 12A and 13A with a small gap therebetween. The electrode 14 is elastically supported by the beam 15. In addition, the conversion circuit unit 11 detects a difference ΔC between the capacitances C1 and C2 existing between the fixed electrodes 12A and 13A and the movable electrode 14, and a capacitance detection unit 16 in this example. An A / D converter 17 that A / D converts the difference ΔC and outputs the result as an acceleration output X of a digital signal.
[0013]
Here, the movable electrode 14 is vertically displaced in FIG. 2 by receiving an inertial force due to acceleration, and the minute gap between the fixed electrodes 12A and 13A changes, that is, the capacitance difference ΔC changes. By doing so, the magnitude of the acceleration can be output as the acceleration output X which is an electric signal. The first and second acceleration sensors 2a and 2b are mounted in a single package with the directions of displacement of the movable electrodes 14 being adjusted in the front-rear direction and the lateral direction, respectively.
[0014]
Next, the arithmetic means 5 comprises a microprocessor, and as shown conceptually in FIG. 3, the acceleration outputs Xa, Xb from the first and second acceleration sensors 2a, 2b are summed into a vector sum √ (Xa 2 + Xb 2 ) to obtain a combined acceleration A, a comparison calculation unit 21 for comparing the combined acceleration A with a predetermined collision determination value A0, and a collision signal 4 when the comparison result is A> A0. And an output unit 22 that outputs
[0015]
The sensor means 2 measures the acceleration of the vehicle intermittently, for example, at a cycle of 1 to 5 ms (in this example, a cycle of 2 ms). Then, the composite operation unit 20 calculates the composite acceleration A by summing the acceleration outputs Xa and Xb intermittently measured from the respective acceleration sensors 2a and 2b for each measurement ベ ク ト ル (Xa 2 + Xb 2 ). At this time, it is preferable to remove a noise component from the resultant acceleration A obtained by the vector sum. For this reason, in this example, a filtering process using a low-pass filter of a predetermined frequency (for example, about 30 Hz) or a moving average process is performed. , The composite acceleration A. In the moving average processing, the composite acceleration A obtained instantaneously is averaged together with the ten composite accelerations An, An-1,..., A1 obtained n cycles (for example, 10 cycles) earlier, as in the following equation. Processing to remove noise components.
(An + An-1 +... A1 + A) / (n + 1)
[0016]
The removal of the noise component by the filtering process or the moving average process may be performed on the acceleration outputs Xa and Xb from the acceleration sensors 2a and 2b prior to the synthesis operation.
[0017]
The comparison operation unit 21 performs a comparison operation between the combined acceleration A and a preset collision determination value A0. The collision determination value A0 is determined to be 3.0 G to 5 G from the viewpoint of detecting an accident in an actual vehicle running test. It is preferably in the range of 0.0G. If the speed is less than 3.0 G, the vehicle may be erroneously detected based on the lateral acceleration of the turn when performing high-speed turning to test the marginal performance. If the speed exceeds 5.0 G, for example, the vehicle may spin. Therefore, an accident such as light contact with the guardrail cannot be detected, and a new accident with a following vehicle cannot be avoided. Thus, safety of a real vehicle running test cannot be sufficiently improved. From such a viewpoint, it is more desirable to set the collision determination value A0 in the range of 3.5 G to 4.5 G, and more preferably, 4.0 G.
[0018]
It is preferable that the acceleration sensors 2a and 2b have an acceleration measurement range as narrow as possible from the viewpoint of economy. However, due to the nature of the actual vehicle running test, a large lateral acceleration tends to occur during the test. . Therefore, a sensor capable of measuring from 0G to at least 2G is used as the first acceleration sensor 2a, and a sensor capable of measuring from 0G to at least 4G is used as the second acceleration sensor 2b. It is preferable that the maximum measurable value is smaller than the maximum measurable value of the second acceleration sensor 2b.
[0019]
The output unit 22 makes a contact and outputs a collision signal 4 when the comparison result of the composite acceleration A and the collision determination value A0 by the comparison operation unit 21 is A> A0.
[0020]
Next, various known wireless transmitters can be suitably used as the wireless means 6. The wireless means 6 is connected to the output section 22 and transmits the collision signal 4 output from the output section 22 by radio, that is, by radio waves. For example, an alarm device installed in another vehicle on a test course, a control room, or the like. Is activated to report the occurrence of a collision accident. As the alarm device, various devices having a receiving function, such as a bell, a buzzer, a warning light, etc., can be employed. The radio means 6 has a built-in alarm device for receiving a notification of a collision accident from another vehicle. You may. The radio means 6 may be configured so that the collision signal 4 from the output unit 22 can be converted into another signal such as an audio signal and transmitted. Further, the wireless means 6 can be formed integrally with the device main body 7 of the collision detection device 1, or can be formed so as to be removable as shown in FIG.
[0021]
In addition, the collision detection device 1 according to the present embodiment is provided with a plug 8 for an outlet of a cigarette lighter of a vehicle so as to use the outlet as a power source. A storage battery 9 is built in so that the signal 4 can be continuously transmitted.
[0022]
As described above, the particularly preferred embodiment of the present invention has been described in detail, but the collision detection device of the present invention is not limited to the test running of the test vehicle, but also for detecting a collision accident on a general road in a general vehicle. The present invention is not limited to the illustrated embodiment, for example, can be used, and may be implemented in various forms.
[0023]
【The invention's effect】
Since the present invention is configured as described above, the structure is simple and low-cost, and it can be detachably attached to a vehicle for convenience, and a minor accident can be easily detected and this accident can be detected by a subsequent vehicle. Can be promptly and automatically transmitted to the outside of the vehicle by radio, and the driving safety can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a collision detection device of the present invention.
FIG. 2 is a diagram conceptually illustrating the structure of an acceleration sensor.
FIG. 3 is a diagram conceptually illustrating an arithmetic unit.
[Explanation of symbols]
2 Sensor Means 2a First Acceleration Sensor 2b Second Acceleration Sensor 4 Collision Signal 5 Calculation Means 6 Wireless Means 20 Synthesis Calculation Unit 21 Comparison Calculation Unit 22 Output Unit

Claims (3)

車両の前後方向の加速度を検出する第1の加速度センサと、横方向の加速度を検出する第2の加速度センサとからなるセンサ手段、
前記第1、第2の加速度センサからの加速度出力Xa、Xbをベクトル和√(Xa2 +Xb2 )して合成加速度Aをうる合成演算部と、前記合成加速度Aと予め設定した衝突判定値A0とを比較する比較演算部と、比較結果がA>A0のとき衝突信号を出力する出力部とを有する演算手段、
及び前記出力部に接続され、該出力部から出力される衝突信号を無線によって車両外に発信する無線手段を具えたことを特徴とする衝突検知装置。
Sensor means comprising a first acceleration sensor for detecting acceleration in the front-rear direction of the vehicle, and a second acceleration sensor for detecting acceleration in the lateral direction;
A combining operation unit that obtains a combined acceleration A by adding a vector sum √ (Xa 2 + Xb 2 ) of the acceleration outputs Xa and Xb from the first and second acceleration sensors, and a collision determination value A0 set in advance with the combined acceleration A Calculation means for comparing a comparison result with an output part for outputting a collision signal when the comparison result is A>A0;
And a wireless means connected to the output unit and wirelessly transmitting a collision signal output from the output unit to the outside of the vehicle.
前記第1の加速度センサは少なくとも2Gまで測定可能であり、かつ第2の加速度センサは少なくとも4Gまで測定可能としたことを特徴とする請求項1記載の衝突検知装置。2. The collision detecting device according to claim 1, wherein the first acceleration sensor can measure at least up to 2G, and the second acceleration sensor can measure at least up to 4G. 前記衝突判定値A0を3.5〜4.5Gの範囲としたことを特徴とする請求項1又は2記載の衝突検知装置。The collision detection device according to claim 1, wherein the collision determination value A0 is in a range of 3.5 to 4.5 G.
JP2002359730A 2002-12-11 2002-12-11 Collision detector Pending JP2004191194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359730A JP2004191194A (en) 2002-12-11 2002-12-11 Collision detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359730A JP2004191194A (en) 2002-12-11 2002-12-11 Collision detector

Publications (1)

Publication Number Publication Date
JP2004191194A true JP2004191194A (en) 2004-07-08

Family

ID=32759040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359730A Pending JP2004191194A (en) 2002-12-11 2002-12-11 Collision detector

Country Status (1)

Country Link
JP (1) JP2004191194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120310485A1 (en) * 2009-12-10 2012-12-06 Gunther Lang Method and control unit for ascertaining a type of collision of a vehicle
US11388338B2 (en) * 2020-04-24 2022-07-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Video processing for vehicle ride
US11396299B2 (en) * 2020-04-24 2022-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Video processing for vehicle ride incorporating biometric data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120310485A1 (en) * 2009-12-10 2012-12-06 Gunther Lang Method and control unit for ascertaining a type of collision of a vehicle
US9266488B2 (en) * 2009-12-10 2016-02-23 Robert Bosch Gmbh Method and control unit for ascertaining a type of collision of a vehicle
US11388338B2 (en) * 2020-04-24 2022-07-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Video processing for vehicle ride
US11396299B2 (en) * 2020-04-24 2022-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Video processing for vehicle ride incorporating biometric data

Similar Documents

Publication Publication Date Title
KR960014661B1 (en) Method of detecting a deflated tyre on a vehicle
EP0291217B1 (en) A method of detecting a deflated tyre on a vehicle
JP3516917B2 (en) System and method for monitoring vehicle conditions affecting tires
JP2768710B2 (en) A device that activates a protection device that protects a vehicle occupant
JP3159596B2 (en) Hydroplaning phenomenon detector
US6759952B2 (en) Tire and suspension warning and monitoring system
KR101475578B1 (en) Tire state determination device
JP2004142543A (en) Abnormality notifying device for automobile
EP1690748B1 (en) Vehicle rollover detection method based on differential Z-axis acceleration
CN101554830A (en) Method for monitoring and sampling burst tire
WO2006035688A1 (en) Method and device for detecting acceleration, acceleration sensor module, and tire
JP4816933B2 (en) Tire / wheel theft detection device
JP2004191194A (en) Collision detector
JPH05213112A (en) Warning device for vehicle
CN105539642B (en) traffic safety detection method and device
JP2014044053A (en) Tire pressure reduction detection device, method, and program
JP2003156361A (en) Electronic pedometer
JP3125365B2 (en) Vehicle collision determination device
JP2010273752A (en) Sleep onset determination system
WO2009142044A1 (en) Alcohol detection device and vehicle provided with the alcohol detection device
DIMA et al. Use of MEMS sensors for data acquisition in crash tests
JPH0642373U (en) Automotive heart sound detector
JP2001233213A (en) Alarm device for rolling stock approach
CN217456221U (en) Electric bicycle
JP2002337687A (en) Vehicular approach alarm device